
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

Seuss: Decoupling responsibilities
from static methods for fine-grained

configurability
Niko Schwarza Mircea Lungua Oscar Nierstrasza

a. University of Bern

Abstract Unit testing is often made more difficult by the heavy use of
classes as namespaces and the proliferation of static methods to encapsulate
configuration code. We have analyzed the use of 120 static methods from
96 projects by categorizing them according to their responsibilities. We find
that most static methods support a hodgepodge of mixed responsibilities,
held together only by their common need to be globally visible. Tight
coupling between instances and their classes breaks encapsulation, and,
together with the global visibility of static methods, complicates testing. By
making dependency injection a feature of the programming language, we
can get rid of static methods altogether. We employ the following semantic
changes: (1) Replace every occurrence of a global with an access to an
instance variable; (2) Let that instance variable be automatically injected
into the object when it is instantiated. We present Seuss, a prototype
that implements this change of semantics in Smalltalk. We show how
Seuss eliminates the need to use class methods for non-reflective purposes,
reduces the need for creational design patterns such as Abstract Factory
and simplifies configuration code, particularly for unit tests. We present
benchmarks showing that Seuss introduces a 34 % additional memory cost,
and runs at 53 % speed, without any optimizations.

Keywords Dependency Injection, Empirical Studies, Object-oriented De-
sign

1 Introduction
Class methods, which are statically associated to classes rather than instances, are
a popular mechanism in object-oriented design. Java and C#, for example, provide
static methods, and Smalltalk provides “class-side” methods, methods understood by
classes, rather than their instances. 9 of the 10 most popular programming languages

Niko Schwarz, Mircea Lungu, Oscar Nierstrasz. Seuss: Decoupling responsibilities from static methods
for fine-grained configurability. In Journal of Object Technology, vol. 11, no. 1, 2012, pages 3:1–23.
doi:10.5381/jot.2012.11.1.a3

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.1.a3
http://dx.doi.org/10.5381/jot.2012.11.1.a3

2 · N. Schwarz, M. Lungu, O. Nierstrasz

listed by TIOBE provide some form of static methods.1 In most of these languages,
classes are the key mechanism for defining namespaces. For this reason, static methods
offer a convenient mechanism for defining globally visible services, such as instance
creation methods. As a consequence, static methods end up being used in practice
wherever globally visible services are needed.

Unfortunately this common practice leads callers of static methods to implicitly
depend on the classes that provide these static methods. The implicit dependency on
static methods complicates testing. That is because unit tests should test only the
unit under test, and mock [MFC01] the rest of the application. However, mocks can
hardly be plugged in from the outside when static methods are called from within the
unit under test, and thus hard-wired into the code. Clearly, a better alternative to
static method calls is needed. In order to be able to argue for a credible alternative to
static method calls, we need to better understand the need for static methods in the
first place.

Classes are known to have both meta-level and base-level responsibilities [BU04].
To see what those are, we examined 120 static methods, chosen at random from
SqueakSource, a public repository of open source Smalltalk projects. We found that
while nearly all static methods inherited from the system are reflective in nature,
only few of the user-supplied methods are. Users never use static methods to define
reflective functionality.

Dependency injection is a design pattern that shifts the responsibility of resolving
dependencies to a dedicated dependency injector that knows which dependent objects
to inject into application code [Fow02, Pra09]. Dependency injection offers a partial
solution to our problem, by offering an elegant way to plug in either the new objects
taking over the responsibilities of static methods, or others required for testing purposes.
Dependency injection however introduces syntactic clutter that can make code harder
to understand and maintain.

We propose to regain program modularity while maintaining code readability
by introducing dependency injection as a language feature. Seuss is a prototype of
our approach, implemented by adapting the semantics of the host language. Seuss
eliminates the need to abuse static methods by offering dependency injection as
an alternative to using classes as namespaces for static services. Seuss integrates
dependency injection into an object-oriented language by introducing the following
two semantic changes:

1. Replace every occurrence of a global (such as a class literal) with an access to
an instance variable;

2. Let that instance variable be automatically injected into the object at instantia-
tion time.

Seuss cleans up class responsibilities by reserving the use of static methods for
reflective purposes. Furthermore, Seuss simplifies code responsible for configuration
tasks. In particular, code that is hard to test (due to implicit dependencies) becomes
testable. Design patterns related to configuration, such as the Abstract Factory pattern,
which has been demonstrated to be detrimental to API usability [ESM07], become
unnecessary.

1TIOBE Programming Community Index for January 2011, http://www.tiobe.com. Those 10
languages are Java, C, C++, PHP, Python, C#, (Visual) Basic, Objective-C, Perl, Ruby. The outlier
is C, which does not have a class system.

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.tiobe.com
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 3

This paper is an extension of previous work presented at the TOOLS conference
2011 [SLN11]. It adds the following contributions:

1. The description of the implementation in Section §5 is further detailed.

2. The performance and memory consumption of Seuss are evaluated in Section §6

3. The discussion Section §8 is expanded. Among other things, we outline possible
optimizations in Section §8.2.

4. The development using Seuss is detailed in Section §7

Structure of the article. In Section §2 we analyze the responsibilities of static
methods and establish the challenges for reassigning them to suitable objects. In
Section §3 we demonstrate how Seuss leads to cleaner allocation of responsibilities
of static methods, while better supporting the development of tests. In Section §4
we show how some creational design patterns in general and the Abstract Factory
design in particular are better implemented using Seuss. In Section §5 we go into more
details regarding the implementation of Seuss. In Section §6 we evaluate the memory
consumption and time performance of Seuss. In Section §7 we discuss development
using Seuss in more detail. In Section §8 we discuss the challenges for statically-typed
languages, and we summarize issues of performance, human factors and security. In
Section §9 we summarize the related work and we conclude in Section §10.

2 Understanding class responsibilities
Static methods, by being associated to globally visible class names, hard-wire services
to application code in ways that interfere with the ability to write tests. To determine
whether these responsibilities can be shifted to objects, thus enabling their substitution
at run-time, in subsection 2.1 we first analyze the responsibilities static methods bear
in practice. Then in subsection 2.2 we pose the challenges facing us for a better
approach.

2.1 Identifying responsibilities
We follow Wirfs-Brock and Wilkerson’s [BW89] suggestion and ask what the current
responsibilities of static methods are, for that will tell us what the new classes should
be.

We determine the responsibilities following a study design by Ko et al. [KMA04].
Their study identifies six learning impediments by categorizing insurmountable barriers
encountered by test subjects. The authors of the paper independently categorize the
impediments and attain 94 % agreement.

We examined 120 static methods and classified their responsibilities from a user’s
point of view. For example, a static method that provides access to a tool bar icon
would be categorized as providing access to a resource, regardless of how it produced or
obtained that image. We chose 95 projects uniformly at random from SqueakSource,2
the largest open source repository for Smalltalk projects. We then selected uniformly
at random one static method from the latest version of each of these projects. To avoid
biasing our analysis against framework code, we then added 25 static methods selected

2http://www.squeaksource.com/

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.squeaksource.com/
http://dx.doi.org/10.5381/jot.2012.11.1.a3

4 · N. Schwarz, M. Lungu, O. Nierstrasz

uniformly at random from the standard library of Pharo Smalltalk,3 as shipped in the
development environment for developers.

Of the 120 methods selected, two were empty. We randomly chose another two
methods from SqueakSource to replace them. Two subjects then categorized the
120 methods independently into the categories, achieving 83 % agreement. We then
reviewed the methods that were not agreed upon. Most disagreements were due to lack
of knowledge of the exact inner workings of the API they were taken from. After further
review, we placed them into the most appropriate subcategory. Figure 1 presents an
overview of the distribution of methods in categories.

Singleton
Instance creation - Other

Install/Uninstall a resource
Access a resource or setting

Display to / Prompt user
Access network

System Initialization
Class indirection

Service - Other
Class annotations
Reflection - Other

0 10 20 30 40 50

Figure 1 – The classification of responsibilities of the static methods from a user’s point of
view in our study

We identified the following three umbrella categories: Instance creation, Service
and Reflection, each further subdivided into subcategories. Whenever a method did
not fit into any of the subcategories, we marked it as “other”.

Instance creation
(28 of 120) Instance creation methods create new instances of their own class. They
are subdivided as follows.

Singleton. (4 of 28) These methods implement the singleton pattern [GHJV94] to
ensure that the instance is created only once.

Other. (24 of 28) Some methods provided default parameters, some simply relayed
the method parameters into setters of the newly created instance. Only 3 methods
did anything more than setting a default value or relaying parameters. These
three methods each performed simple computations on the input parameters,
such as converting from minutes to seconds, each no longer than a single line of
code.

Services
(86 of 120) Service methods provide globally available functionality. They often serve
as entry points to an API. We have identified the following sub-categories.

Install/uninstall a resource. (6 of 86) By resource, we mean a widely used object
that other parts of the system need to function. Examples of installable resources

3http://pharo-project.org/

Journal of Object Technology, vol. 11, no. 1, 2012

http://pharo-project.org/
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 5

that we encountered are: packages of code; fonts; entries to menus in the user
interface.

Access a resource or setting (41 of 86) These methods grant access to a resource
or a specific setting in a configuration. Complex settings resemble resources,
hence one cannot easily distinguish between the two. Examples include: a status
object for an application; the packet size of headers in network traffic; default
CSS classes for widgets; a sample XML file needed to test a parser; the default
lifetime of a connection; the color of a GUI widget.

Display to/prompt user (4 of 86) Examples: showing the recent changes in a
versioning system; opening a graphical editor.

Access network (2 of 86) These methods grant access to the network. Examples:
sending an HTTP put request; sending a DAV delete request.

System initialization (11 of 86) These methods set the system status to be ready
for future interactions. Examples: setting operation codes; setting the positions
for figures; asking other system parts to commence initialization.

Class indirection (5 of 86) These return a class, or a group of classes, to pro-
vide some indirection for which class or classes to use. For example, method
compilerClass in Object returns Compiler, in order to allow subclasses to choose
another compiler for their methods.

Other (17 of 86) Other responsibilities included: converting objects from one class to
another; taking a screenshot; sorting an array; granting access to files; starting a
process; mapping roles to privileges; signaling failure and mailing all packages in
a database.

Reflection
(6 of 120) Unlike methods that offer services, reflective methods on a class are by
their nature tightly coupled to instances of the class. We have found the following
sub-categories.

Class Annotations. (5 of 6) Class annotations specify the semantics of fields
of their class. All the examples we examined were annotations interpreted
by Magritte [RDK07], a framework for adapting an applications model and
metamodel at run-time.

Other. (1 of 6) One method provided an example on how to use the API.

2.2 Challenges
Out of the 120 static methods we have analyzed, only 6 belonged naturally and directly
to the instances of that class, namely the reflective ones. All other responsibilities can
be implemented in instance methods of objects tailored to these responsibilities.

We conclude that static methods are defined in application code purely as a
matter of convenience to exploit the fact that class names are globally known. Nothing
prevents us from shifting the responsibilities of non-reflective static methods to regular
application objects, aside from the loss of this syntactic convenience. In summary the
challenges facing us are:

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

6 · N. Schwarz, M. Lungu, O. Nierstrasz

• to shift static methods to be instance responsibilities,

• while avoiding additional syntactic clutter, and

• enabling easy substitution of these new instances to support testing.

In the following we show how Seuss, our dependency injection framework, allows
us to address these challenges.

3 Seuss: moving services to the instance side
We would like to turn misplaced static methods into regular instance methods, while
avoiding the syntactic clutter of creating, initializing and passing around these instances.
Dependency injection turns out to be a useful design pattern to solve this problem,
but introduces some syntactic clutter of its own. We therefore propose to support
dependency injection as a language feature, thus maintaining the superficial simplicity
of global variables but without the disadvantages. Dependency injection furthermore
shifts the responsibility of injecting dependent variables to a dedicated injector,
thus enabling the injection of objects needed for testing purposes. Let us illustrate
dependency injection in an example.

In the active record design pattern [Fow02, p. 160 ff], objects know how to store
themselves into the database. In the SandstoneDB implementation of active record for
Smalltalk [Leo08] a Person object can save itself into the database as in Figure 2.
user := Person firstName: 'Ramon' lastName: 'Leon'.
user save.

Figure 2 – Using the active record pattern in SandstoneDB
The code of the save method is illustrated in Figure 3. (The actual method is

slightly more complicated due to the need to handle further special cases.)
save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [Store storeObject: self]
ifFalse: [Store updateObject: self].

self onAfterSave.
]

Figure 3 – The save method in SandstoneDB, without dependency injection.
The save method returns the result of evaluating a block of code in a critical

section (self critical: [...]). It first evaluates some “before” code, then either stores or
updates the state of the object in the database, depending on whether it has previously
been saved or not. Finally it evaluates the “after” code.

In the save method, the database must somehow be referenced. If the database were
an ordinary instance variable that has to be passed during instance creation, the code
for creating Person objects would become cluttered. The conventional workaround
is to introduce static methods storeObject: and updateObject: to encapsulate the
responsibility of connecting to the database, thus exploiting the global nature of the

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 7

Store class name, while abusing the mechanism of static methods for non-reflective
purposes.

Unfortunately, testing the save method now becomes problematic because the
database to be used is hard-wired in static methods of the Store class. There is no easy
way to plug in a mock object [MFC01] that simulates the behavior of the database for
testing purposes.

The dependency injection design pattern offers a way out by turning globals into
instance variables that are automatically assigned at the point of instantiation. We
add a method to Person that declares that Person is interested to receive a Store as an
instance variable during instance creation by the runtime environment, rather than by
the caller, as seen in Figure 4. Afterwards, instead of accessing the global Store (in
upper case), save is re-written to access instance variable store (in lower case; see
Figure 5).
store: anObject

<inject: #Store>
store := anObject

Figure 4 – Person declares that a Store should be injected upon creation.

save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [store storeObject: self]
ifFalse: [store updateObject: self].

self onAfterSave.
]

Figure 5 – The save method from SandstoneDB rewritten to use dependency injection
does not access the globally visible class name Store.
In the example in Figure 5, we also see that Person does not ask specifically for

an instance of a class Store. It only declares that it wants something injected that
is labeled #Store. This indirection is beneficial for testing. Method storeObject: may
pollute the database if called on a real database object. Provided that there is a mock
class TestStore, we can now inject instances of that class rather than real database
objects in the context of unit tests.

Avoiding cluttered code by language alteration. The dependency injection
pattern introduces a certain amount of clutter itself, since it requires classes to be
written in an idiomatic way to support injection. This clutter manifests itself in terms
of special constructors to accept injected objects, and factories responsible for creating
the injected objects. Seuss avoids this clutter by incorporating dependency injection
as a language feature. As a consequence, the application developer may actually write
the code as it is shown in Figure 3. The semantics of the host language are altered so
that the code is interpreted as shown in Figure 5.

In Seuss, what is injected is defined in configuration objects, which are created in
code, rather than in external configuration files. Therefore, we can cheaply provide
configurations tailored for specific unit tests. Figure 6 illustrates how a unit test
can now test the save method without causing side effects. The code implies that
the storeObject: and updateObject: methods are defined on the instance side of the

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

8 · N. Schwarz, M. Lungu, O. Nierstrasz

TestStore class.
testing := Configuration bind: [:conf | conf bind: #Store to: TestStore new].
user :=∼(Injector forConfiguration: testing get: #User).

user firstName: 'Ramon' lastName: 'Leon'.
user save.

Figure 6 – Unit test using dependency injection. The injector interprets the configuration,
and fills all dependencies into user, including the TestStore.

Typically, a developer using dependency injection has to explicitly call only one
injector per unit test, and only one for the rest of the application, even though the
injector is active during every object instantiation. Section 5 details how the injector
is implicitly made available.

4 Cleaning up instance creation
The design patterns by Gamma et al. [GHJV94] are often ways of addressing language
limitations. It is not surprising that by introducing a language change as powerful as
dependency injection some of the design patterns will become obsolete. A special class
of design patterns that we care about in this section are the creational ones, since
we have seen in subsection 2.1 that a considerable percentage of static methods are
responsible for instance creation.

The abstract factory pattern has been shown to frequently dumbfound users of
APIs that make use of it [ESM07]. Gamma defines the intent of the abstract factory
pattern as to “provide an interface for creating families of related or dependent objects
without specifying their concrete classes” [GHJV94]. Gamma gives the example of a
user interface toolkit that supports multiple look and feel standards. The abstract
factory pattern then enables code to be written that creates a user interface agnostic
to the precise toolkit in use.

Let us suppose the existence of two frameworks A and B, each with implementations
of an abstract class Window, named AWindow and BWindow, and the same for buttons.
Following the abstract factory pattern, Figure 7 shows how we could create a window
with a button that prints “World!” when pressed.

createWindow: aFactory
window :=∼(aFactory make: #Window) size: 100 @ 50.
button :=∼(aFactory make: #Button) title: 'Hello'.
button onClick: [Transcript show: 'World’]. window add: button.

Figure 7 – Object creation with Abstract Factory

Ellis et al. [ESM07] show that using this pattern dumbfounds users. When presented
with the challenge of instantiating an instance that is provided by a factory, they do
not find the required factory. In Seuss, the code snippet in Figure 8 may generate a
window either using framework A or B, depending on the configuration, with no need
to find (or even write) a factory:

Seuss allows writing natural code that still bears all the flexibility needed to
exchange the underlying framework. It can be used even on code that was not written

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 9

createWindow
window := Window size: 100 @ 50.
button := Button title: 'Hello'.
button onClick: [Transcript show: 'World’].window add: button.

Figure 8 – Replacing object creation with Dependency Injection

with the intention of allowing the change of the user interface framework.

5 Dependency injection as a language feature
Normally, using dependency injection frameworks requires intrusively modifying the
way code is written. The developer needs to make the following modifications to the
code:

• Add the definition of an instance variable.

• Specify through an annotation which instance variable gets injected (the inject
annotation from Figure 4).

• Provide a method through which the dependency injection framework can set
the instance variable to the value of the injected object. This is a setter method
in Smalltalk and Java (Figure 4) or a dedicated constructor in Java.

To improve usability, in Seuss4 we completely remove the requirement of modifying
the code in any of the previously mentioned ways. As a result, the code in Figure 3 is
interpreted just as if the code in Figure 5 and Figure 4 had been written.

The feature that allows us to use dependency injection without the invasive
modification of source code is a slight change to the Smalltalk language: for every
global being accessed, the access is redirected to an instance variable. This instance
variable is annotated for injection, made accessible through setters, and then is set by
the framework when the object is created.

Since every access to a global is redirected to an instance variable, it is tempting to
store the global in the instance variable. However, this will not suffice. That is because
the unaltered class is not aware of Seuss and thus does not inject dependencies into
objects it newly creates. Instead, we inject an instantiator object that resembles the
class, but knows the injector and uses it for initializing new instances.

The class of the instantiator is an anonymous copy of the original class, save for the
following modifications. First, for every global that a class method calls, a class variable
is added, and declared as an injectable dependency. Thus, the instantiator has more
class variables than the class it is a copy of. Second, the class methods are recompiled
so that all accesses to globals are redirected to their respective class variables. Third,
if the original class was not Object, but another class, then the superclass of the
instantiator is chosen to be the instantiator of that other class. If no such instantiator
exists, one is created. Fourth, by adding a trait [SDNB03] to the instantiator, the
instantiator overwrites the basicNew method5 to inject all dependencies into newly
created objects, using the injector.

4Seuss can be downloaded at http://www.squeaksource.com/Seuss.html
5basicNew is a primitive that allocates memory for the new object. It is normally not overridden.

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.squeaksource.com/Seuss.html
http://dx.doi.org/10.5381/jot.2012.11.1.a3

10 · N. Schwarz, M. Lungu, O. Nierstrasz

/basicNew()
Object

Overwrite

Anonymous

basicNew()
injector

C
aliceGame store

Figure 9 – Class C is injected into object aliceGame. Instances of C mimic Store, but use
the injector when creating instances.

For example, in Figure 4, the object that is injected into instance variable store
is the anonymous class C. As illustrated in Figure 9, C overwrites method basicNew
which is inherited from Object class.

However, not the entire system can be interpreted using the new semantics. That is
because Seuss cannot use the features it provides itself. This is the same meta-regression
problem that reflective systems encounter, known as the “reflective tower.” [TNCC03,
p. 13]

In the current implementation, the injector works reflectively. When asked to inject
into an object, it analyzes the object’s class for declared dependencies, looks them up
in the current configuration, and reflectively invokes the appropriate setter to inject
each dependency. This is a straightforward and simple implementation, but clearly
leaves room for optimization. We will discuss some options in section §8.2.

In order to change the semantics of a standard Pharo as described above, we use
Helvetia [RGN10], a language workbench for Smalltalk. Helvetia lets us intercept the
compilation of every individual method. Helvetia requires us to specify our language
change as a Rule, which is really a transformation from one method AST to another.
When changing methods, we also modify the containing class when needed. During the
transformation, we also create and update a default configuration, which lets the code
run as before, if used. It can also be overridden by the user in unit tests. Algorithm 1
details the transformation.

Introducing dependency injection as a language feature brings two advantages:

1. Backwards compatibility. Dependency injection can be used for code that was
not written with dependency injection in mind. We were able to use the unit
test from Figure 6 without having to modify the SandstoneDB project, which
does not use dependency injection.

2. Less Effort. Other frameworks require that all dependencies be explicitly declared
through some boilerplate code for each dependency. In our case, by automatically
injecting needed dependencies where possible, the amount of code to write was
reduced.

6 Performance
We show that the performance of Seuss is worse than that of standard Smalltalk for
identical code, but not prohibitively so. Since Seuss stores all dependencies of an object

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 11

Algorithm 1 Transforming ordinary code into dependency injected code.

1. Replace every occurrence of a global with an access to an instance variable. Add
that instance variable if necessary.

2. Generate a setter method for that variable and annotate it so that the dependency
injection framework can inject into that variable.

3. If the injected global is a class, act as follows. Generate an anonymous metaclass
C as described above, and make its instance known to the default configuration.
As described above, the instance should behave just like the original class, but
should additionally inject all dependencies into newly created instances of class C.

4. Make the default configuration aware of the referred to global.

in instance variables, Seuss objects require more space in memory. Slowdown is due not
only to increased memory consumption, but also to the need for instance variables to
be set by the injector at instantiation time. Currently, Seuss’s implementation to carry
out instantiation is straightforward, but reflective at instantiation time, which is slow.
We perform benchmarks to assess both memory consumption and time performance,
and show that even the current implementation is workable for practical purposes,
while there remains much room for optimization.

In our current, naive implementation, Seuss impacts the performance of applica-
tions primarily during object instantiation when there is a penalty for injecting all
dependencies. The other performance hit is due to pointers to globals being replaced
by pointers to instance variables. The resulting increased memory consumption implies
a performance hit in itself, since caches will hit less frequently. Further, it makes some
optimizations harder, though not impossible. Since the underlying computation is
the same, in principle all the above performance penalties can be undone. In Sec-
tion §8.2 we will see which optimizations a compiler will have to perform to undo the
performance hit we cause.

6.1 Evaluation setup
We evaluate the performance implications of having all objects created using depen-
dency injection on the example of the Seaside6 web framework.

Using Seuss, we run two versions of the Seaside framework. Both are identical in
code, but the semantics of one are transformed using Seuss, while the other is executed
according to standard Smalltalk semantics. We also transformed all dependencies
of Seaside that are not contained in a standard image of Pharo Smalltalk, namely
the http server, ‘KomHttpServerLight’, and ‘Grease’, a compatibility layer between
different dialects of Smalltalk. Since no further modifications are carried out, both
bases of code behave the same way, save for their difference in performance and memory
consumption.

6http://seaside.st

Journal of Object Technology, vol. 11, no. 1, 2012

http://seaside.st
http://dx.doi.org/10.5381/jot.2012.11.1.a3

12 · N. Schwarz, M. Lungu, O. Nierstrasz

As a sample server application, we chose the ‘Sushi store’, an online shop that
ships with Seaside and consists of 16 classes. We script our browser7 to follow a simple
shopping scenario: add three items to the cart, remove one, add another one, then
check out and pay for the purchase. Three instances of Firefox are employed in parallel,
each running the script three times. The Firefox instances query a server running on
the same machine, a 2.3 GHz 2011 Mac Book Pro.8

6.2 Memory Consumption evaluation
To observe the effects of Seuss on a large, realistic code base, we analyzed the
Seaside framework, together with Pier. Seaside is a commercially and widely used
web framework. Pier9 is a content management system implemented on top of it.
When all dependencies of Seaside (excluding the standard Smalltalk libraries, those
dependencies are Pier, KomHttpServerLight, Grease, and Magritte) are included into
the count, the framework counts 1300 classes. We analyzed these classes, before and
after transforming them using Seuss,10 to establish the extra memory footprint and
added execution time.

As can be seen in Table 1, the number of additional instance variables in each
class is considerable. The number of inherited variables grows faster than the number
of instance variables, simply because it is the sum of all instance variables added
in superclasses. Thus, the more superclasses a class has, the more added instance
variables it must bear. Altogether, a mean of 13 instance variables is added per class,
counting inherited instance variables.

Table 1 – Number of instance variables before and after transforming it with Seuss

Mean Std. dev. Median

Local instance variables Without Seuss 0.902365 1.76555 0
With Seuss 2.72006 4.53942 1

Inherited instance variables Without Seuss 3.30587 2.79563 3
With Seuss 16.5278 12.0294 13

As a result of the increase in the number of instance variables, the size of the
objects of most classes will thus increase by an order of magnitude. However, perhaps
unsurprisingly, most space in the system is occupied by arrays and other simple
datatype objects, which are unaffected by Seuss. By not transforming simple datatype
objects, we can transform almost all classes in the system, and still affect only a
minority of all objects.

The last claim can easily be verified in any image of Pharo, which allows one to
count all instances of all classes. Figure 10 shows that the number of instances per
class falls faster than exponentially. In our test system, the objects of the first 4 classes,
Array, Association, ByteString and CompiledMethod, together outnumber all other
objects in the system by 1,154,310 to 991,462 objects.

7To script the browser, we used the Selenium WebDriver in Ruby, http://seleniumhq.org/.
8The script can be found here: http://github.com/nes1983/selenium-bench.
9http://www.piercms.com/

10The transformation is enabled by changing the default compiler in Pharo. The entire transforma-
tion runs in under an hour.

Journal of Object Technology, vol. 11, no. 1, 2012

http://seleniumhq.org/
http://github.com/nes1983/selenium-bench
http://www.piercms.com/
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 13

100 200 300 400 500 600

10

100

1000

104

105

Number of instances

Figure 10 – Measured probability density function of number of instances per class. The
y-axis is the number of instances for a class, sorted in descending order.

In order to see the impact of the increased number of instance variables on the
total memory consumption, we computed the memory per session after each run of
the benchmark. Without Seuss, all sessions were exactly 290,436 bytes in size. After
the transformation by Seuss, this size increased to 439,712 bytes, which is an increase
of 33.9 %.

Since all sessions had exactly the same size after each run of the benchmark, we
could pick one at random to analyze. The size of an object, including all objects
visible from it, can be computed in Smalltalk by traversing the object graph and
aborting whenever the global scope is reached. This is implemented in the Seaside
project.11 The names of instance variables that Seuss adds, all end in a magic suffix,
making them identifiable. The added memory consumption is the number of added
instance variables reached during traversal, multiplied by pointer size in bytes. We
could compute the additional memory consumption exactly by adapting the traversal
of the object graph to count all added instance variables that were reached.

The increase of 33.9 % in memory is incidental to our implementation and compiler,
not inherent to the problem. As we will outline in section §8.2, a better implementation
with an optimizing compiler could probably execute code according to Seuss’s semantics
at no additional performance or memory penalty.

6.3 Time Performance evaluation
We ran our benchmark 10 times both in standard Seaside, and in our transformed
version of Seaside. As seen in Table 2, the transformed version runs at 51 % of the
original performance. To assess if a difference in performance is statistically significant
we use the Wilcoxon signed-rank test which we prefer over Student’s t-test, because
deviations from mean execution times are necessarily skewed, and thus, the assumption
of a normal distribution is problematic. The Wilcoxon test rejects the null-hypothesis
that there is no underlying difference in means with p = 10−5 and W = 100.0.

11The relevant class is WAMemory

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

14 · N. Schwarz, M. Lungu, O. Nierstrasz

Table 2 – The time performance of the Sushi store with and without Seuss.

Mean run time Standard deviation

With Seuss 27.097 s 1.653 s
Without Seuss 13.703 s 1.093 s

Although the slowdown is significant, the benchmarked prototype is unoptimized.
Possible optimizations are discussed in Section §8.2.

7 Developing in Seuss
Seuss allows for two modi operandi. They differ in what gets injected by default if a
class is declared to be a dependency. In Seuss language mode, the changed semantics for
static method calls are taken advantage of, by injecting an auto factory. In compatibility
mode, the class12 is injected.

Both modes can be mixed, i.e. a configuration can explicitly, for every dependency,
state whether an auto factory, or a class should be injected. Further, objects assembled
in Seuss language mode can interact with objects assembled in compatibility mode and
vice versa. As a third option, some objects can (and must, because of the infinite meta
regression problem) be used unmodified. The objects of Seuss itself, and all simple
data types, must be used unmodified. We will describe the two modi in turn.

7.1 The Seuss language mode
In the Seuss language mode, the syntax and the object model stay the same, but the
semantics of static method calls changes. In contrast to the standard Smalltalk, the
following two rules hold.

• Classes do not have class sides. Instead, they have factories. Code that appears
to access a class literal, instead accesses a factory that must be injected.

• A class can have more than one factory.

Consider the following example.

UBSClientManager#saveClientHassan
client := Client name: 'Hassan' ; get.
client save.

ActiveRecord subclass: Client.
Client#save

store save: self name.

Since in the code snippet, Client starts with an uppercase letter, the class UB-
SClientManager will declare a dependency of name Client. The framework will inject
this dependency based on its configuration, but by default will be an auto factory.
So, in our example, while Client with a capital C looks like a reference to a class, it is
really an instance variable containing a factory.

12Or rather: something very similar. See Section §5.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 15

To understand auto factories, note that most factories, like most constructors, are
simple: they accept values and assign them to instance variables. Since the semantics
of a standard factory are so simple, we can make them part of the framework in
Seuss. For every class, the system provides an auto factory. Auto factories gather
parameters until they are asked to produce (or get) a new object. An auto factory
produces new objects in just three steps: (1) a new instance of their produced class
(in our example, Client) is allocated, (2) all dependencies are injected into the newly
allocated instance and (3) all parameters that the factory has saved up are assigned to
instance variables of the newly allocated instance. This design is different from other
dependency injection frameworks, where an object is either injected into, or provided
by a factory, but never both.

Note that the produced object is given no chance to initialize itself. This is by
design: the initialization of an object is the responsibility of its factory. This design
makes it easier to realize immutable objects. From the point of view of an object, as
soon as any method is called, all instance variables will have been assigned already
by the factory. If the object refrains from changing its instance variables later on, all
instance variables will have the exact same contents for all invocations of all methods.13

However, the user is free to write custom-written factories that give objects a chance
to initialize themselves.

If the developer wishes to have a name: method that does not blindly assign, but
retain the right to reject a parameter if it does not appear in a blacklist, they can do
that by subclassing Autofactory as follows:

AutoFactory subclass: SecureClientFactory.
SecureClientFactory#name: aString

blacklist includes: aString
ifTrue: [(Error message: 'Blacklisted’) raise].

super name: aString.

7.2 Compatibility mode
Using Seuss, we can run standard Smalltalk code in such a way that all accesses to
class literals and other globals are transformed into accesses to instance variables,
gaining configurability. The implementation of this compatibility mode is described in
Section §5.

To run legacy code, all the user has to do is create a Compatibility module, which
accepts as an input a list of all classes that should be transformed. The Seaside web
service is started in compatibility module as follows:

compatibility := CompatibilityConfiguration forClassesMatching: 'Seaside--∗'.
injector := Injector configure: compatibility.
adaptor := injector getProviderFor: #WAComancheAdaptor.
adaptor startOn: 8080.

Running the second line, the injector will create anonymous replacement classes
for all matching classes and store them in a compatibility module. The newly created
classes are first injected and then initialized by calling their initialize method.

13The case for immutability has often been made, but never as pointed as by Hickey [Hic11] “State
complects value and time,” which makes it the opposite of simple.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

16 · N. Schwarz, M. Lungu, O. Nierstrasz

Running code using the compatibility module allows us to replace any config-
ured dependency. For example, the following snippet will replace all accesses to the
Transcript by access to a mock object.

compatibility := CompatibilityConfiguration forClassesMatching: 'Seaside--∗'.
configuration := Configuration configure:

[:module | module bind: #Transcript toInstance: MockTranscript new].
injector := Injector configure:∼(configuration override: compatibility) .
adaptor := injector getProviderFor: #WAComancheAdaptor.
adaptor startOn: 8080.

8 Discussion
In this section, we explore the challenges for implementing Seuss in statically-typed
languages like Java. We describe optimizations that can improve performance or
entirely eliminate the performance overhead introduced by Seuss. We touch on human
factors and security implications.

8.1 Challenges for statically typed languages.
In a language where classes are reified as first-class objects, such as Smalltalk, classes
can simply be injected as objects. In other languages, such as Java, a proxy must be
used.

Seuss works by replacing access to globals by access to instance variables. In a
statically typed language, the question arises what type injected instance variables
ought to be. To see if our small language change would be feasible in a typed language,
we ported part of Seuss to Java. In the following transformation by JSeuss, our Java
version of Seuss,14 the access to the global Store is replaced by an instance variable
store (note the lower case initial letter) of type ICStore.
class Before {

void save() {
Store.storeObject(this);

}
}

is transformed into

class After {
@Inject
ICStore store;
void save() {

store.storeObject(this);
}

}

The interface ICStore is a generated interface. Our Java transformation generates two
interfaces for every class, one for all static methods, and one for all instance methods.
The interfaces carry the same name as the class, except for the prefixed upper-case
letters IC, or I, respectively. During class load time, all occurrences of type Store are

14The version repository of the project can be found at http://github.com/nes1983/JSeuss

Journal of Object Technology, vol. 11, no. 1, 2012

http://github.com/nes1983/JSeuss
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 17

then replaced by type ICStore, and so with all classes. All new calls on Store return
instances of type IStore. On the other hand, existing interfaces are not touched.

The object of type ICStore serves as a proxy for the class ICStore. This is necessary
since classes are not first class in Java, and thus cannot be injected directly. To avoid
expensive recompilation, we use Javassist to modify all code at the bytecode level,
during class load time.

JSeuss enables unit testing the save method above, and offers the same config-
urability as the Smalltalk version. However, since many developers wish to develop
exclusively in an IDE, combining JSeuss with IDEs remains a challenge. We believe this
to be true of most bytecode transformation approaches. In our case, the difficulty stems
from the interfaces having to be visible to Eclipse’s compiler. We currently achieve
this by running a background process that automatically adds all needed interfaces to
a directory which must be included in Eclipse’s path. While full transparency to the
developer would be preferable, this proved to be workable.

8.2 Optimizations
The current code base is naive, and could benefit greatly from just a few optimizations.
Since dependencies do not change between instantiations, the instantiator could
maintain a pre-computed list of dependencies. Furthermore, instead of reflectively
invoking the appropriate setter, different instantiators could be pre-compiled, which
do not have to use reflection.

Besides our own codebase showing potential for optimizations, we think that the
performance penalty that we measured is entirely incidental to the implementation.
That is, we believe that a well-optimized implementation together with a highly
optimizing compiler should, together, yield the same performance as Smalltalk code
interpreted according to the old semantics.

While dependency injection conceptually requires a large number of instance
variables, these instance variables can be optimized away by an optimizing compiler
in the following way. The key is that the instance variables that receive dependencies
are final, i.e. are written into only once, during object creation. Modern compilers
can already detect final instance variables. If a compiler now sees that the object
written into an instance variable is always the same, the compiler can store that object
reference in a hidden table outside of the object, rather than inside the object. Then,
methods accessing the instance variable can be rewritten to access the table, instead
of an instance variable. This optimization can work if there is a unique configuration
in the entire system.

If there are more configurations, then each configuration prescribes its own set of
values to be injected. Now, the compiler can maintain hidden subclasses, one for each
configuration. If within one configuration a new object is created, the compiler can
make the object be a member of the appropriate hidden subclass for that configuration.
The subclass differs from its superclass in that all accesses to injected instance variables
in the source code are compiled to be accesses to the compiler’s table outside of the
object. Note that in this scheme, objects, through their class pointers, maintain all
information that was previously contained in the injected instance variables. This
allows objects to be de-optimized for inspection.

Thus, it may be possible to interpret code according to the semantics of Seuss
without adding any instance variables at all. We see no fundamental obstacle to
running Seuss at full speed.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

18 · N. Schwarz, M. Lungu, O. Nierstrasz

8.3 Human factors
In a study by Ko et al., the information need that was observed by far the most
frequently was “What caused this program state?” [KDV07]. Although Seuss brings
additional state to objects, that injected state is immutable and can easily be traced
back to the configuration.

A possible concern is that dependency injection may obscure the intent of the
code, since it is no longer clear what a name refers to. However, that is the nature
of all decoupling. And untangling things is the path toward simplicity. The reduced
navigability can be mitigated by a configuration-aware IDE. An IDE should be able
to gather all configurations and use them to display which literals are bound to what.

Since Seuss changes the semantics of the programming language, using it in an
IDE poses some challenges. For example, the Pharo code browser, the primary tool
for editing Smalltalk code, shows the class and instance side of every class.15 However,
using Seuss, one never needs the class side, and instead would prefer to see, for every
class, a list of all factories that create objects of this kind. Similarly, the object inspector
draws no distinction between instance variables containing injected state and those
containing mutable state, whereas the latter would be more interesting to examine.

8.4 Using Seuss to sandbox code
If Object’s reflective methods are removed, then all objects can only find other classes
through their dependencies or method parameters. Thus, any piece of code from within
a configuration that does not include access to the File class prevents that code from
reading or writing files. This concept of security by unreachability was described by
Bracha [BvdAB+10].

9 Related work
Dependency injection [Fow02, Pra09] is a design pattern that decouples highly de-
pendent objects. Using it involves avoiding built-in methods for object construction,
handing it off to framework code instead. It enables testing of components that
would ordinarily be hard to test due to side-effects that would be intolerable in unit
tests. There are other frameworks that support dependency injection like Google
Guice [Van08] and Spring, after which Seuss’s dependency injection capabilities are
modeled. In contrast to Google Guice and Spring, Seuss turns dependency injection
into a language feature that works even on code that was not written with dependency
injection in mind. By superficially allowing the use of standard language constructs
for object creation while using dependency injection under the hood, Seuss programs
look in large parts like conventional source code.

Achermann and Nierstrasz [AN00] note that inflexible namespaces can lead to
name clashes and inflexibilities. They propose to make namespaces an explicit feature
of the language and present a language called Piccola based on first-class namespaces.
First-class namespaces enable a fine degree of control over the binding of names to
services, and in particular make it easy to run code within a sandbox. While Seuss sets
the namespace of an object at that object’s instantiation time, Piccola allows it to be
manipulated in the scope of an execution (dynamically) as well as statically. Similarly,

15These are loosely analogous to the distinction between static and instance methods in Java.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 19

some mocking frameworks, such as PowerMock,16 allow re-writing of all accesses to
global namespace to access a mock object. Piccola and PowerMock do not attempt to
clean up static method responsibilities, but rather add flexibility to their lookup.

Bracha presents the Newspeak programming language [BvdAB+10], which sets the
namespace of an object at that object’s instantiation time, just like Seuss. However,
while Seuss provides a framework that automatically injects individual dependencies
into the dependent object during instantiation time, Newspeak leaves this to the
developer. Bracha shows that by restricting a module to accessing the set of objects
that were passed in during instantiation time, untrusted software can be sandboxed
reliably by not passing in the dependencies that it would need to be harmful, such as
file system access modules. The same argument holds for Seuss so long as reflection is
disabled. While the rewiring of dependencies is a strong suit of dependency injection,
and while Newspeak makes it technically possible, the system’s design makes it costly
in lines of code to run a unit test in a new configuration. By manually searching for a
module instantiation that happens in a unit test, we could not find a single unit test
in Newspeak that makes use of Newspeak’s capabilities to change namespaces.

We have motivated the need for a dependency injection framework by performing
an empirical study on the usage of static methods in a large Smalltalk ecosystem. We
are not alone in performing this kind of empirical research—recently there has been a
surge in the interest of researchers for studying various aspects of software usage and
evolution: the occurrence of ripple effects in software ecosystems [RL11], the usage
of reflexion in dynamic programming language [CRTR11], or even the adoption of
the dependency injection pattern in a corpus of Java systems [YTM08]. While all
these approaches present empirical evidence related to certain aspects of software
development and evolution, we have made a step further and, informed by the empirical
study we performed, we have provided a technical solution that we have also validated.

10 Conclusion
Static methods pose obstacles to the development of tests by hardwiring instance
creation. A study of 120 static methods in open-source Smalltalk code shows that out
of the 120 static methods, only 6 could not equally well be implemented as instance
methods, but were not, thus burdening their caller with the implicit dependency on
these static methods.

The dependency injection design pattern offers a partial solution to decoupling
responsibilities from static methods, but still entails tedious rewriting of application
code and the use of boilerplate code. We have shown how introducing dependency
injection as a language feature can drastically simplify the task of migrating class
responsibilities to instance methods, while maintaining code readability and enabling
the development of tests through explicit configurability. Moreover, we have shown
how a language with dependency injection as a feature becomes more powerful and
renders certain design patterns obsolete.

We have demonstrated the feasibility of the approach by presenting Seuss, an
implementation of dependency injection as a language feature in Smalltalk. We have
discussed aspects regarding the usage of Seuss from the perspective of developer
usability. We have presented benchmarks that show that Seuss introduces a 34 %
additional memory cost, and runs at 53 % speed, without any optimizations. We

16http://code.google.com/p/powermock/

Journal of Object Technology, vol. 11, no. 1, 2012

http://code.google.com/p/powermock/
http://dx.doi.org/10.5381/jot.2012.11.1.a3

20 · N. Schwarz, M. Lungu, O. Nierstrasz

have furthermore demonstrated the feasibility of our approach in the context of
statically-typed languages by presenting JSeuss, a port of Seuss to Java.

References
[AN00] Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In

Jürg Gutknecht and Wolfgang Weck, editors, Modular Program-
ming Languages, volume 1897 of Lecture Notes in Computer Sci-
ence, chapter 8, pages 77–89. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2000. URL: http://dx.doi.org/10.1007/10722581_8,
doi:10.1007/10722581_8.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. SIGPLAN
Not., 39(10):331–344, October 2004. URL: http://dx.doi.org/10.
1145/1035292.1029004, doi:10.1145/1035292.1029004.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai,
William Maddox, and Eliot Miranda. Modules as objects in Newspeak.
In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 405–428, Berlin, Heidelberg, 2010.
Springer-Verlag. URL: http://portal.acm.org/citation.cfm?id=
1884007.

[BW89] R. Wirfs Brock and B. Wilkerson. Object-oriented design: a
responsibility-driven approach. SIGPLAN Not., 24:71–75, Septem-
ber 1989. URL: http://dx.doi.org/10.1145/74878.74885, doi:
10.1145/74878.74885.

[CRTR11] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger.
How developers use the dynamic features of programming languages:
The case of smalltalk. In Proceedings of the 8th working conference
on Mining software repositories (MSR 2011), pages 23–32, New York,
NY, USA, 2011. IEEE Computer Society. URL: http://scg.unibe.
ch/archive/papers/Call11aDynamicFeaturesMSR2011.pdf, doi:
10.1145/1985441.1985448.

[ESM07] Brian Ellis, Jeffrey Stylos, and Brad Myers. The Factory Pattern in
API Design: A Usability Evaluation. In 29th International Conference
on Software Engineering (ICSE’07), pages 302–312, Washington, DC,
USA, May 2007. IEEE. URL: http://dx.doi.org/10.1109/ICSE.
2007.85, doi:10.1109/ICSE.2007.85.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, November 2002. URL: http://www.
amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=
ASIN/0321127420.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1 edition, November 1994.
URL: http://www.aw-bc.com/catalog/academic/product/0,1144,
0201633612,00.html.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1007/10722581_8
http://dx.doi.org/10.1007/10722581_8
http://dx.doi.org/10.1145/1035292.1029004
http://dx.doi.org/10.1145/1035292.1029004
http://dx.doi.org/10.1145/1035292.1029004
http://portal.acm.org/citation.cfm?id=1884007
http://portal.acm.org/citation.cfm?id=1884007
http://dx.doi.org/10.1145/74878.74885
http://dx.doi.org/10.1145/74878.74885
http://dx.doi.org/10.1145/74878.74885
http://scg.unibe.ch/archive/papers/Call11aDynamicFeaturesMSR2011.pdf
http://scg.unibe.ch/archive/papers/Call11aDynamicFeaturesMSR2011.pdf
http://dx.doi.org/10.1145/1985441.1985448
http://dx.doi.org/10.1145/1985441.1985448
http://dx.doi.org/10.1109/ICSE.2007.85
http://dx.doi.org/10.1109/ICSE.2007.85
http://dx.doi.org/10.1109/ICSE.2007.85
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321127420
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321127420
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321127420
http://www.aw-bc.com/catalog/academic/product/0,1144,0201633612,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201633612,00.html
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 21

[Hic11] Rich Hickey. Simple made easy, Oct 2011. URL: http://www.infoq.
com/presentations/Simple-Made-Easy.

[KDV07] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs
in collocated software development teams. In Proceedings of the 29th
international conference on Software Engineering, ICSE ’07, pages
344–353, Washington, DC, USA, May 2007. IEEE Computer Society.
URL: http://dx.doi.org/10.1109/ICSE.2007.45, doi:10.1109/
ICSE.2007.45.

[KMA04] Andrew J. Ko, Brad A. Myers, and Htet H. Aung. Six Learning Bar-
riers in End-User Programming Systems. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing,
VLHCC ’04, pages 199–206, Washington, DC, USA, 2004. IEEE Com-
puter Society. URL: http://dx.doi.org/10.1109/VLHCC.2004.47,
doi:10.1109/VLHCC.2004.47.

[Leo08] Ramon Leon. SandstoneDb, simple ActiveRecord style persistence
in Squeak, http://www.squeaksource.com/SandstoneDb.html,
2008. URL: http://onsmalltalk.com/
sandstonedb-simple-activerecord-style-persistence-in-squeak.

[MFC01] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing:
Unit testing with mock objects. In Extreme programming examined,
chapter 17, pages 287–301. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[Pra09] Dhanji Prasanna. Dependency Injection. Manning Publications,
pap/pas edition, August 2009. URL: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20&path=ASIN/193398855X.

[RDK07] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte —
a meta-driven approach to empower developers and end users. In
Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil,
editors, Model Driven Engineering Languages and Systems, volume
4735 of LNCS, pages 106–120. Springer, September 2007. URL: http:
//scg.unibe.ch/archive/papers/Reng07aMagritte.pdf, doi:10.
1007/978-3-540-75209-7_8.

[RGN10] Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Embed-
ding languages without breaking tools. In Theo D’Hondt, edi-
tor, ECOOP’10: Proceedings of the 24th European Conference on
Object-Oriented Programming, volume 6183 of LNCS, pages 380–
404, Maribor, Slovenia, 2010. Springer-Verlag. URL: http://scg.
unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf,
doi:10.1007/978-3-642-14107-2_19.

[RL11] Romain Robbes and Mircea Lungu. A study of ripple effects in soft-
ware ecosystems (nier). In Proceedings of the 33rd International Confer-
ence on Software Engineering (ICSE 2011), pages 904–907, May 2011.
URL: http://scg.unibe.ch/archive/papers/Robb11aRipples.pdf,
doi:10.1145/1985793.1985940.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and An-
drew P. Black. Traits: Composable units of behaviour ECOOP 2003
– Object-Oriented programming. volume 2743 of Lecture Notes in

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.infoq.com/presentations/Simple-Made-Easy
http://www.infoq.com/presentations/Simple-Made-Easy
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/VLHCC.2004.47
http://dx.doi.org/10.1109/VLHCC.2004.47
http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak
http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/193398855X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/193398855X
http://scg.unibe.ch/archive/papers/Reng07aMagritte.pdf
http://scg.unibe.ch/archive/papers/Reng07aMagritte.pdf
http://dx.doi.org/10.1007/978-3-540-75209-7_8
http://dx.doi.org/10.1007/978-3-540-75209-7_8
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://scg.unibe.ch/archive/papers/Robb11aRipples.pdf
http://dx.doi.org/10.1145/1985793.1985940
http://dx.doi.org/10.5381/jot.2012.11.1.a3

22 · N. Schwarz, M. Lungu, O. Nierstrasz

Computer Science, chapter 12, pages 327–339. Springer Berlin / Hei-
delberg, Berlin, Heidelberg, 2003. URL: http://dx.doi.org/10.1007/
978-3-540-45070-2_12, doi:10.1007/978-3-540-45070-2_12.

[SLN11] Niko Schwarz, Mircea Lungu, and Oscar Nierstrasz. Seuss: Better
class responsibilities through Language-Based dependency injection
objects, models, components, patterns. volume 6705 of Lecture Notes
in Computer Science, chapter 20, pages 276–289. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2011. URL: http://dx.doi.org/10.
1007/978-3-642-21952-8_20, doi:10.1007/978-3-642-21952-8\
_20.

[TNCC03] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial
behavioral reflection: spatial and temporal selection of reification. In
Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, volume 38
of OOPSLA ’03, pages 27–46, New York, NY, USA, November 2003.
ACM. URL: http://dx.doi.org/10.1145/949305.949309, doi:
10.1145/949305.949309.

[Van08] Robbie Vanbrabant. Google Guice: Agile Lightweight Dependency Injec-
tion Framework. Apress, April 2008. URL: http://www.amazon.
com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/
1590599977.

[YTM08] Hong Yul Yang, E. Tempero, and H. Melton. An empirical study into
use of dependency injection in java. In Software Engineering, 2008.
ASWEC 2008. 19th Australian Conference on, pages 239 –247, march
2008. doi:10.1109/ASWEC.2008.4483212.

About the authors

Niko Schwarz is a PhD student at the Institute of Computer
Science (IAM) of the University of Bern, where he researches
into code cloning, dependency injection, and collaboration be-
tween developers that are not co-located. Visit him at http:
//scg.unibe.ch/staff/Schwarz

Mircea Lungu is a PhD researcher at the Institute of Computer
Science (IAM) of the University of Bern. His research focuses
on the analysis and visualization of software ecosystems in the
context of reverse engineering. Visit him at http://scg.unibe.
ch/staff/mircea

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/978-3-642-21952-8_20
http://dx.doi.org/10.1007/978-3-642-21952-8_20
http://dx.doi.org/10.1007/978-3-642-21952-8_20
http://dx.doi.org/10.1007/978-3-642-21952-8_20
http://dx.doi.org/10.1145/949305.949309
http://dx.doi.org/10.1145/949305.949309
http://dx.doi.org/10.1145/949305.949309
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1590599977
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1590599977
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1590599977
http://dx.doi.org/10.1109/ASWEC.2008.4483212
http://scg.unibe.ch/staff/Schwarz
http://scg.unibe.ch/staff/Schwarz
http://scg.unibe.ch/staff/mircea
http://scg.unibe.ch/staff/mircea
http://dx.doi.org/10.5381/jot.2012.11.1.a3

Seuss: Language-based Dependency Injection · 23

Oscar Nierstrasz is a Professor of Computer Science at the
Institute of Computer Science (IAM) of the University of Bern,
where he founded the Software Composition Group in 1994. Prof.
Nierstrasz is co-author of over 200 publications and co-author of
the books Object-Oriented Reengineering Patterns and Pharo by
Example. Visit him at http://scg.unibe.ch/staff/oscar

Acknowledgments We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing Models and Code” (SNF
Project No. 200020-131827, Oct. 2010 - Sept. 2012). We also thank CHOOSE, the
special interest group for Object-Oriented Systems and Environments of the Swiss
Informatics Society, for its financial contribution to the presentation of this paper. We
thank Simon Vogt for his help in implementing JSeuss. We thank Toon Verwaest and
Erwann Wernli for their input.

Journal of Object Technology, vol. 11, no. 1, 2012

http://scg.unibe.ch/staff/oscar
http://dx.doi.org/10.5381/jot.2012.11.1.a3

	Introduction
	Understanding class responsibilities
	Identifying responsibilities
	Challenges

	Seuss: moving services to the instance side
	Cleaning up instance creation
	Dependency injection as a language feature
	Performance
	Evaluation setup
	Memory Consumption evaluation
	Time Performance evaluation

	Developing in Seuss
	The Seuss language mode
	Compatibility mode

	Discussion
	Challenges for statically typed languages.
	Optimizations
	Human factors
	Using Seuss to sandbox code

	Related work
	Conclusion
	Bibliography
	About the authors

