
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Lifted Java: A Minimal Calculus
for

Translation Polymorphism

Matthias Diehn Ingesmana Erik Ernsta

a. Department of Computer Science, Aarhus University, Denmark

Abstract To support roles and similar notions involving multiple views on
an object, languages like Object Teams and CaesarJ include mechanisms
known as lifting and lowering. These mechanisms connect pairs of objects
of otherwise unrelated types, and enable programmers to consider such a
pair almost as a single object which has both types. In the terminology
of Object Teams this is called translation polymorphism. In both Object
Teams and CaesarJ the type system of the Java programming language
has been extended to support this through the use of advanced language
features. The type soundness of translation polymorphism has so far
only been proven in a simple special case. This paper presents a simple
model that extends Featherweight Java with a general semantics that
captures the core operations of translation polymorphism, providing an
entire language design space for languages with translation polymorphism.
Type soundness is proven for every language in this language design space,
and mechanization of the proof in Coq shows that the proof is accurate
and complete.

Keywords Formal foundations, language design, lifting/lowering,
Translation Polymorphism, type systems

1 Introduction

In this paper we investigate the mechanisms lifting and lowering that provide a
means to connect pairs of objects of otherwise unrelated types; mechanisms that have
existed since 1998 [ML98, MSL00, Ost02], but have so far not been proven sound.
The Object Teams/Java language (OT/J) [HHM10, Her07] calls them translation
polymorphism [HHM04].

OT/J is an extension of the Java programming language [GJSB05] that facilitates
non-invasive customisation through addition of code instead of modification. This is
done by introducing two new types of classes called teams and roles. Roles solve many
of the same problems as aspects [KLM+97, KHH+01], i.e. extension of existing code;

Matthias Diehn Ingesman, Erik Ernst. Lifted Java: A Minimal Calculus for Translation Polymorphism.
In Journal of Object Technology, vol. 11, no. 1, 2012, pages 2:1–23. doi:10.5381/jot.2012.11.1.a2

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.1.a2
http://dx.doi.org/10.5381/jot.2012.11.1.a2

2 · M. D. Ingesman & E. Ernst

teams provide the means of controlling which roles are active, along with state that
is shared between roles in the team. In other words teams provide the context for
families of related roles, and in fact teams implement family polymorphism [Ern01].
Furthermore, teams can inherit and extend the roles of their super class, a feature
known as virtual classes [MMP89, EOC06]. Each role is connected to a regular class,
the base class, through a special playedBy relation, making these two objects seem
almost like a single object. The mechanisms lifting and lowering use the playedBy
relation and provide the translation between roles and base classes. In situations where
a role is expected but a base class is given, lifting translates the base class object into
the appropriate role. Similarly, if a base class object is expected but a role is given,
lowering translates the role into the base class object. In both cases the role and the
base are connected via the playedBy relation, either through smart lifting (OT/J)
or through a flexible invariant on the playedBy relation (this calculus). In OT/J
lifting works across inheritance hierarchies on both the role side and the base side.
Smart lifting is an algorithm that lets the run-time system choose the most specific
role for a base class. We note that smart-lifting makes it possible to make old code
produce errors without modifying it, due to the fact that it tries to always provide
the most specific role when lifting. This calculus features a general lifting operation
that captures the behaviour of selecting the most specific role as a special case. OT/J
is defined in terms of its implementation and a language specification document. A
soundness proof for the extensions to the Java programming language type system
has not been presented so far. For the full details on OT/J see [HHM10].

This is an extended version of our TOOLS’11 paper [IE11] to which we have added
subtyping among roles, generalised the semantics of the calculus, and added the full
soundness proof as an appendix. Role subtyping is important to be able to fully
describe the lifting operation in ObjectTeams/Java, which dynamically chooses a more
specific role than the statically requested. The generalised semantics show that there
is in fact a large safe language design space for the semantics of the lifting operation.
Thus, the main contributions of this paper are: a minimal calculus of translation
polymorphism, along with a full soundness proof of this calculus; and a safe language
design space for languages with translation polymorphism. The soundness proof is
made using the Coq proof assistant [BC04], on the basis of a Featherweight Java
(FJ) [IPW01] soundness proof by De Fraine et al. [DF09].

Excluding comments and empty lines, the modifications to the FJ source code
amount to ∼150 changed lines of code and ∼1100 new1. To put these numbers into
perspective, the original FJ source code is ∼700 lines of code. The introduction of
roles, in particular the part dealing with role subtyping, had a large impact overall,
while lifting and lowering mainly resulted in an increase in the number of cases for the
safety properties.

The concepts described in this paper are not specific to OT/J, and thus no previous
knowledge of OT/J is required. However, we use some terminology of OT/J which
will be explained as it is introduced. The rest of this paper is structured as follows. In
section 2 we describe our choice of features for this calculus, give an example program,
and describe the way objects are represented. Section 3 presents the calculus and
gives the proof of standard type soundness. Section 4 discusses the semantics of lifting
in more detail. In section 5 related and future work is discussed, and in section 7 the
paper is concluded. Appendix A provides the full soundness proof.

1Reported by the ’diffstat’ tool.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 3

2 The Model

In this section we first argue why we do not model various features of OT/J. After that
an example of a program written in the calculus is provided. The example is used to
highlight some problems with the lifting operation that demand careful consideration,
and we present our solution to these problems. Finally, because our representation of
objects is non-standard, we conclude this section by describing objects.

We ignore all features of OT/J that are not at the core of translation polymorphism.
Thus the following features are not part of the model: teams, team activation, call-in
bindings, and call-out bindings.

Teams are not in the model because the only part they play in relation to translation
polymorphism is to contain roles. Instead of being contained in teams roles are top-level
classes. It may seem surprising that our model omits teams, because their semantics
are at the core of the semantics of OT/J (just like classes containing cclasses are at
the core of CaesarJ). However, we do not need to model the support for virtual classes
in order to establish a universe which is sufficiently rich to support a model of lifting
and lowering with a semantics that mirrors the behaviour of full-fledged languages. In
fact, the connected pairs of roles and base objects in OT/J can simply be modelled as
a cloud of objects with a label pointing to the currently active one. An object in our
calculus is then such a cloud, which is just a finite set of objects of which one is an
instance of a normal class (the base object), and the remaining objects are instances
of role classes: the set of roles which the base class is currently playing. Such an
object cloud works as the base object when its label points to the base object, and as
a role object when its label points to one of the role objects. Lowering just means
changing the label from one of the role objects to the base object, and lifting means
changing the label from the base object to one of the roles in the cloud. In case the
base object has not yet played the role which is requested in a lifting operation, a fresh
instance of that role is created and added to the cloud. This semantics corresponds to
a redistribution of the role objects in OT/J, where each team is responsible for storing
existing roles of that team in some internal data structure managed by the language
run-time. In this way, not modelling teams is in some sense equivalent to restricting
OT/J to a single global and always active team, inside which every role is defined.
Without teams there is no need for modelling the team activation constructs. As our
aim is to stay close to the implementation of translation polymorphism in OT/J, in
which a legal base class is not a role of the same team [HHM10], we do not allow roles
to be playedBy another role.

Call-in and call-out bindings provide the Aspect-Oriented Programming features of
OT/J, and are thus unrelated to the core of translation polymorphism. Lifting and
lowering do occur inside these bindings, but not in a way that is different from regular
method and constructor invocations.

To summarise, translation polymorphism is defined by roles and the operations
lifting and lowering. Thus those are the concepts we add to FJ. Roles are restricted
in that they cannot have state and cannot be explicitly instantiated. In OT/J
roles by default only have a so-called lifting constructor for explicit instantiation.
Such a constructor requires a single argument which is a fresh instance of the role’s
declared base class. This semantics corresponds to a call to lift(new C(t), R), and
a programming language based on this calculus could add syntax for explicit role
instantiation that compiles down to such an expression. Fields in roles are inessential
because roles may still add non-trivial behaviour to a base object by accessing its
fields and methods. Moreover, in a calculus that does not support mutable state, role

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

4 · M. D. Ingesman & E. Ernst

class Point extends Object {
int x;
int y;
Point(int x, int y) { this.x = x; this.y = y; }

}

class Location extends Object playedBy Point {
string getCountry() {

int x = lower(this).x;
int y = lower(this).y;
string country = "DK"; // placeholder for (possibly advanced)

// computation converting a point in
// the plane to the name of a country

return country;
}

}

lift(new Point(3,4), Location).getCountry();

Figure 1 – Example.

objects with fields would have to initialise their fields to values that could as well
be computed when needed. In other words, state could easily be added to roles, but
unless the calculus were extended with mutable state as well there would be no reason
to do so. This may be an interesting extension in itself, but in line with FJ we claim
that a calculus without mutable state is capable of producing a useful analysis of the
soundness of an object-oriented language.

2.1 Example

Let us demonstrate with an example what a program looks like in our calculus,
see Figure 1. The class Point is a regular FJ class that describes a point in the plane.
Location is a role class that is playedBy Point, and provides a view of points in
the plane as physical locations on a map of the world. A new instance of Point is
lifted to a Location, which makes it possible to call the method getCountry on that
object. getCountry shows how members of the base class are accessed: using the
lower keyword to retrieve the base class object.

To illustrate the problem with the smart lifting operation of OT/J consider the
following situation: we might have a class 3DPoint that extends Point, and two classes
SpaceLocation and SeaLocation that both extend Location and are playedBy
3DPoint. In OT/J this could lead to a run-time error due to ambiguity [HHM04],
because the smart lifting algorithm would not know whether to lift to SpaceLocation
or SeaLocation, given an instance of 3DPoint and target role Location.

As mentioned in section 1, smart lifting introduces the possibility of making old
code fail without modifying it. This is due to the ambiguity mentioned above; a piece
of code that looks safe when viewed in isolation might years later become the source
of lifting errors because new code can extend old roles, thereby creating an inheritance
hierarchy with similar structure as the previous example. A compile-time warning
can be given for the new code, but the old code is not necessarily available so the

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 5

B1

...

Bn

R1 pB

...

Rn pB

R′

pB

R′′
pB

Figure 2 – This hierarchy contains a potential ambiguity. However, when a lifting opera-
tion lifting to R1 is given a base class object of type Bn it is always safe to return a role
object between R1 and Rn (inclusive).

warning cannot point out which part of the program may fail. This requires a whole
program analysis at compile time, which in turn requires that all sources are available.
A lifting operation in the old code is now possibly passed a base class object from the
new code that makes the lifting operation fail at run-time.

In this calculus our general semantics provide an entire language design space
for the lifting operation, where it is possible for the language implementer to choose
whether to avoid the ambiguity issue entirely or produce an algorithmic solution that
handles it. Figure 2 shows a hierarchy that can cause ambiguity problems, depending
on the chosen language design. For this particular hierarchy, given the lifting expression
lift(bn,R1), it is always safe to return a role R that is a subtype of the statically
required role R1, as long as R is a super type of the role Rn after which the hierarchy
fans out. Choosing the most specific role in this hierarchy requires some kind of
priority system for the roles R′ and R′′.

2.2 Objects

This calculus uses objects with more structure than what is common among calculi in
the FJ family. As mentioned, what we think of as an object is represented by a cloud
of objects. In this section we explain in more detail what requirements this cloud must
satisfy, and why.

The requirements are in fact influenced by the possible semantics of the lifting
operation. The lifting operation is capable of delivering a role whose playedBy class
is a strict supertype of the class of the base object of the cloud. This means that we
may obtain a Location role from a 3DPoint object, even though Location specifies
that it is playedBy a Point. The obvious alternative would be to insist that the cloud
contains only roles that directly specify the class of the base object in its playedBy
clause. However, it is necessary in order to preserve type soundness to allow for a
flexible invariant. The two situations are illustrated in Figure 3.

Assume we have a class 3DPoint that extends Point from the previous example.
The wrapper method for the lifting operation, shown in Figure 4, illustrates the
problem. makeLocation might be called with a p that is an instance of 3DPoint at
run-time. Thus if lifting is unable to lift to roles playedBy super types this might get
stuck at run-time. This is obviously also a problem for any full-fledged language which

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

6 · M. D. Ingesman & E. Ernst

B

R1

pB

R2

pB R3pB

A

B

R1

pB

R2
pB

R3pB

Figure 3 – Left: an object cloud containing only roles directly playedBy the base class.
Right: an object cloud containing roles playedBy super types (A) of the base class (B).

Location makeLocation(Point p) {
return lift(p, Location);

}

Figure 4 – Example

contains our calculus as a sub language. Given that FJ is a sub language of Java,
our calculus is essentially a sub language of any language that supports translation
polymorphism; hence this property applies to them all.

In the Point and Location example we included a standard new expression for
the creation of an object. The formal calculus does not include such an expression;
instead it directly creates an object cloud containing a base object and a list of roles.
It would be easy to define a surface language that includes traditional new expressions
and a preprocessing stage that transforms them to cloud creation expressions with an
empty role list. In this situation programs would never create clouds with pre-existing
roles, they would always come into existence on demand during a lifting operation.
However, we note that the actual calculus is safe even without the restriction that all
roles are created on demand. We discuss this issue in more detail in section 4.

Before we give the formal definition of the calculus, Figure 5 provides the intuitive
relation between the base class type hierarchy and the evaluation and typing rules for
lifting and lowering. Both the type of a lifting expression and the result of evaluating
it result in a role played by a supertype of the object being lifted. The result of typing
a lowering expression is the class that is statically declared as the base class of the
role object being lowered; and evaluating a lowering expression results in a subtype of
the class that is statically declared as the roles’ base.

Evaluation & typing

Lifting

Typing

Evaluation

Lowering

Figure 5 – The relation between the base class hierarchy and lifting/lowering expressions.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 7

Expressions, values, and evaluation contexts
e ::= x | [new C(e), R, C] | t.f | expressions

t.m(e) | lift(e, R) |
lift-proc(e, R) | lower(e)

v,w ::= [new C(v), R, G] values

E ::= [] | [new C(v, E, e), R, G] | evaluation
E.f | E.m(e) | v.m(v, E, e) | contexts
lift(E, R) | lift-proc(E, R) |
lower(E)

Member and top-level declarations
CL ::= class C extends D {G f; M} classes
RL ::= class R2 extends R1 playedBy C {M} roles
M ::= G m(G x) {return e;} methods

Table 1 – The syntax

3 Formal Definition of Lifted Java

In this section we present the formal definition of the calculus. We use a sequence
notation similar to the one used in the original article on FJ [IPW01], i.e. writing e.g.
C means C1 . . . Cn, for some n ≥ 1. This also applies to binary arguments, such that
C f means C1 f1 . . . Cn fn. We use • to denote the empty list. In the following, the
meta variables C and D range over class names; R ranges over role names; G and T can
be both class and role names; f ranges over field names; m ranges over method names;
x ranges over variable names; t ranges over terms; v and w range over values; CL
ranges over class declarations; RL ranges over role declarations; M ranges over method
declarations; and E ranges over evaluation contexts.

Section 3.1 describes the syntax, section 3.2 the notion of subtyping we use,
section 3.3 the auxiliary functions, section 3.4 the small-step semantics, section 3.5
the typing rules, and section 3.6 gives the soundness proof of the calculus.

3.1 Syntax

As Lifted Java is an extension of FJ the basic syntax is the same, with the following
exceptions: a new class definition for roles has been added, called RL; a new object
creation term replaces the standard object creation term to accommodate our objects
with more structure; the value is replaced by the new object creation term; and terms
for each of the operations lifting and lowering have been added. The complete syntax
can be seen in Table 1.

In the new class definition RL the playedBy clause is added to the definition of
regular classes. Using this class definition results in defining a role class that has the
class given by playedBy clause as its base class, and the role provided in the extends
clause as its supertype. Note that RL does not specify fields, a consequence of the fact
that roles cannot have state.

The new object creation term is used to instantiate classes. It is a record that,
when fully evaluated, describes an object. From left to right it consists of a base class

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

8 · M. D. Ingesman & E. Ernst

Extends
class G2 extends G1 ...

G2 <: G1

Reflexive

G <: G

Transitive
G3 <: G2 G2 <: G1

G3 <: G1

Figure 6 – Subtyping

instance, a list of role instances, and a label set to the class name of the currently
active object. As long as roles do not have state, the list of role instances in the tuple
can in fact be simplified, and so we replace it by a list of roles. As mentioned in
section 2 this tuple can be viewed as a cloud containing a base class and any number
of roles floating around it. The list of role names is only used in the evaluation rules
for lifting; rules that may also modify the list of role names if the object is lifted into
a role not in the list.

The term lift(t, R) lifts the term t to the role R. Similarly the term lower(t) lowers
the term t to the base class instance in the object cloud. The term lift-proc(t, R) is
not intended to be used by the programmer; it is an intermediate step in the dynamic
semantics of the lifting operation. However, the soundness result shows that using
it is in fact harmless. As will be described in more detail in section 3.4, the term
lift(t, R) is evaluated to the term lift-proc(t, R).

We use the standard notion of evaluation contexts to describe the parts of a term
that have yet to be evaluated. We have chosen a left-to-right evaluation order for this
calculus because languages using the features of this calculus are imperative, and lazy
evaluation would not be relevant in those languages. Also, the proof still works when
the evaluation order is different or even non-deterministic.

For the programmer this syntax amounts to more work compared to that of OT/J.
We have chosen this approach in order to prioritise a simple calculus with simple proofs
rather than simple programs, as is common when working with calculi. In particular
we use explicit lifting and lowering operations; this differs from OT/J where lifting and
lowering is typically performed implicitly, with the compiler inserting the appropriate
method calls. Thus we assume that the preprocessing step that inserts calls to the
lifting and lowering operations has been run. Furthermore, accessing members of a
roles base class does not happen through a base link, but rather by lowering the object
first and accessing the field on the resulting object; and lifting an already lifted object
to a new role can only be done by lowering the object first.

3.2 Subtyping

Figure 6 shows the subtyping relation we use. It is the standard definition of subtyping
where the extends clause on classes and roles defines the direct subtyping relation
with a reflexive and transitive closure.

3.3 Auxiliaries

Apart from the evaluation rules for roles, lifting, and lowering, the small-step semantics
of Lifted Java need two new auxiliary functions defining the behaviour of the playedBy
relation. The function fields is the auxiliary function from FJ [IPW01] and will thus
not be described; however, the two functions mtype and mbody for lookup of a method’s
type and body have been combined to one function called method. In the following we

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 9

PlayedBy
class R2 extends R1 playedBy C {M}

playedBy(R2, C)

PlayedByWide
D <: C playedBy(R, C)

playedByWide(R, D)

Figure 7 – The playedBy relations.

class T2 extends T1 . . . {. . . ; M} G m(G x) { return e; } ∈ M
method(m, T2) = G x.e : G

class T2 extends T1 . . . {. . . ; M} m /∈ M
method(m, T2) = method(m, T1)

Figure 8 – The method function.

will first describe these auxiliary functions, then the evaluation rules, and finally the
typing rules.

Before we proceed with defining the new auxiliary functions, we give the definition
of the flexible invariant on the types of objects in a cloud. As presented in section 2.2
the cloud has the following structure: the base object has a specific type C, and the
role objects have role types R1 . . . Rk that are playedBy classes C1 . . . Cj , respectively.
The intuitively simplest invariant would then be to require that Ci = C for all i or that
Ci is the most specific supertype of C that plays a role which is Ri, but as noted in
subsection 2.2 a more flexible invariant is required to ensure type safety, i.e., where it
is just required that Ci is a supertype of C.

The auxiliary functions are defined in Figure 7 and Figure 8. The rule PlayedBy
is used to determine whether a role is playedBy a given base class, i.e. playedBy(R, C)
holds if and only if the playedBy clause of the role definition of R mentions the
class name C. Alone this rule is insufficient for a sound approach to translation
polymorphism, as discussed in section 2. Thus, we define the rule PlayedByWide
which is the formal definition of the flexible invariant on the playedBy relation. It
is similar to the PlayedBy rule except that it takes sub-typing into account, i.e.
playedByWide(R, C) holds if and only if the playedBy clause of R mentions a super
type of C.

Lookup of method declarations is done using the rule Method, which is a combina-
tion of the separate method body (mbody) and method type (mtype) lookup functions
found in [IPW01]. It is a quadruple, written G x.e : G, of a sequence of arguments with
their types G x, a body expression e, and a return type G.

3.4 Evaluation

The small-step semantics of Lifted Java are shown in Figure 9. The evaluation rules
extend those of FJ to include evaluation of the terms lift(t, R), lift-proc(t, R),
lower(t), and evaluation contexts.

Lifting the value v to the role R is done using three rules. The rule E-Lift is
responsible for choosing an arbitrary role among the valid target roles (see Figure 2

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

10 · M. D. Ingesman & E. Ernst

E-Invk
method(m, G) = T x.e : G0

[new C(v), R, G].m(w)
→ [w/x, [new C(v), R, G]/this]e

E-Field
fields(C) = G f

[new C(v), R, C].fi → vi

E-Lift
R2 <: R1 playedByWide(R2, C)

lift([new C(v), R, C], R1)
→ lift-proc([new C(v), R, C], R2)

E-Lift-New
R /∈ R

lift-proc([new C(v), R, C], R)
→ [new C(v), R ++ R, R]

E-Lower

lower([new C(v), R, R])
→ [new C(v), R, C]

E-Lift-Old
R ∈ R

lift-proc([new C(v), R, C], R)
→ [new C(v), R, R]

E-Context
e→ e′

E[e]→ E[e′]

Figure 9 – The evaluation rules for Lifted Java

for an example), i.e. it is required that R is in fact a role and that R is playedBy
the currently active class object or a supertype of it. Both facts are checked by
playedByWide. This rule is required for the semantics to be general enough to describe
the desired language design space. The rules E-Lift-Old and E-Lift-New apply
depending on whether the selected role is in the cloud of v or not. In the first case
only the name of the currently active instance is updated (E-Lift-Old), and in the
second case the role instance is also added to the cloud of v (E-Lift-New).

Lowering the value v is taken care of by a single rule, E-Lower, that only requires
that the name of the currently active object of v is a role. It would be straightforward
to make it possible to lower a regular class to itself and still maintain soundness, as
long as the typing rule for lowering also allows typing of a lower expression where
the active object is the base object. However, to maintain a simple calculus we have
decided that lowering should not be smarter than lifting.

The rule E-Context for evaluation contexts provides the necessary evaluation of
subexpressions.

For an example of a chain of reductions in this semantics, consider the hierarchy
consisting of a single class B and two roles R1 and R2 both played by B, where R2 extends
R1. The following chain of reductions fully evaluates the expression lift(aB, R1):

lift([new B(), •, B], R1)
→ lift-proc([new B(), •, B], R1) [E-Lift]
→ [new B(), [R1], R1] [E-Lift-New]

However, given the non-deterministic nature of the semantics there is another
possible chain of reductions for this example:

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 11

T-Var

Γ ` x : Γ(x)

T-Invk
Γ ` e : T method(m, T1) = G2 x.e : T2

Γ ` e : G1 G1 <: G2
Γ ` e.m(e) : T2

T-Field
Γ ` e : C fields(C) = G f

Γ ` e.fi : Gi

T-Lift
Γ ` e : C playedByWide(R, C)

Γ ` lift(e, R) : R

T-Lift-Proc
Γ ` e : C playedByWide(R, C)

Γ ` lift-proc(e, R) : R

T-Lower
Γ ` e : R playedBy(R, C)

Γ ` lower(e) : C

T-New
fields(C) = G1 f Γ ` e : G2

G2 <: G1 (playedByWide(G, C) ∧ G ∈ R) ∨ G = C
Γ ` [new C(e), R, G] : G

Figure 10 – Typing rules for Lifted Java

lift([new B(), •, B], R1)
→ lift-proc([new B(), •, B], R2) [E-Lift]
→ [new B(), [R2], R2] [E-Lift-New]

3.5 Typing

The typing rules of Lifted Java can be seen in Figure 10 and the wellformedness
rules in Figure 11. The FJ typing rules are extended to include well-formedness for
roles, typing of the lift(t, R) term, typing of the lift-proc(t, R) term, and typing
of the lower(t) term. Furthermore, the typing rule of the new object creation term is
updated.

The typing rule for object creation terms, T-New, states that the type of an object
is always the class corresponding to the active instance. This can be either the base
class C or one of the role classes Ri in the cloud. In order for the rule to apply it is
required that the arguments to the constructor of the base class have the correct types,
and that the currently active instance is either a role playedBy a super type of C or
that it is C.

The rule T-Lift states that a lift(t, R) expression has the type of the role lifted
to. It is required that the type of the first argument plays the role R, or is a subtype
of a class that does. The rule T-Lift-Proc is similar, but for the lift-proc(t, R)
expression.

The T-Lower rule describes the requirements for typing the lower(t) term. It
states that the lower expression has the type of the base class of the currently active
instance, and thus requires that the type of the argument is a role. Like with the
evaluation rule for the lower(t) term it would be straightforward to allow the term
to be typed when the argument has the type of a regular class and still maintain
soundness, as long as the evaluation rule is also updated to allow evaluation of a lower

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

12 · M. D. Ingesman & E. Ernst

W-Method
this : T, x : G1 ` e0 : T0

T0 <: T1 class T extends T′...{...} canOverride(T′, m, T1)

T1 m(G1 x) { return e0; } is OK in T

W-Class
M OK in C

class C extends D{C G; f}M OK

W-Role
M is OK in R2

class C extends D{C G; f}m
class R2 extends R1 playedBy C {M} OK

W-Covariance
∀R1, R2, C1, C2 . playedBy(R1, C1) ∧ playedBy(R2, C2) ∧ R2 <: R1 ⇒ C2 <: C1

Figure 11 – Wellformedness rules

canOverride
canOverride(T, m, T1) := if method(m, T) = G2 x.e : T2 then T1 <: T2 and G1 = G2

Figure 12 – The canOverride predicate.

expression with a value where the active object is the base object.
The rule for role typing (W-Role) is similar to the rule for regular class typing

(W-Class), except for the fact that the class specified in the playedBy clause must
exist in the program. W-Method is the rule for method typing; the definition of the
canOverride predicate can be seen in Figure 12. Notice how this rule allows methods
on classes to have signatures that include roles.

Finally, we have an extra wellformedness criterion, W-Covariance. It specifies
that the playedBy relation must be covariant.

3.6 Safety Properties

Under the assumption that the program is well-formed, the following safety properties
hold for the calculus presented in the previous section:

Theorem A.1 (preservation). If • ` e : T and e→ e′ then there exists some T′ such
that • ` e′ : T′ and T′ <: T.

Theorem A.2 (progress). If • ` e : T then e is either a value or e→ e′ for some e′.

Corollary A.3 (type soundness). If • ` e : T and e →∗ e′ where e′ is a normal
form, then e′ is a value and • ` e′ : T′, where T′ <: T.

Corollary 3.3 follows easily from the preservation and progress theorems, following the
pattern introduced in [WF94]. The complete proof can be seen in Appendix A. The
Coq implementation available at [EI11] provides a lot of extra details and furthermore
provides confidence that the proof is correct.

Note that we have been able to simplify the proofs by assuming empty type
environments in the preservation theorem. The resulting property is still sufficient

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 13

to prove the standard type soundness result, which is expressed as Corollary 3.3.
Hence, the weaker preservation property is sufficient to show the desired soundness
result, and consequently the extra work required to show preservation with non-empty
environments would be superfluous. This technique was used by De Fraine et al. both
in their implementation of the A Calculus [DFES10] and in the implementation of
FJ [DF09] which we use as a basis.

4 Discussion

In this section we will discuss three things: our choices with regard to the semantics
of lifting and lowering; the case of unrestricted roles in object creation expressions as
mentioned in section 2.2; and the flexible invariant.

Lifting. In OT/J lifting is smart, i.e. it will produce a role with the dynamically
most specific type rather than the statically known type. This can lead to ambiguity,
the reason for which is that a base object might be lifted to a role that is extended
by two otherwise unrelated roles. If the object cloud of the base object does not
already contain a role of the requested type, such a role should now be created. In
this situation it is ambiguous which of the two unrelated roles is the most specific,
and thus which of them the smart lifting algorithm should select. In OT/J this causes
an exception at run-time, and it may happen in a piece of code that was compiled
without warnings or errors, possibly long before the two unrelated roles were written.

We have chosen a more general semantics for lifting whereby an arbitrary subtype
of the statically known role type is used, as long as it does not specify a more specific
type than that of the object being lifted in its playedBy relation. This captures every
possible choice of role, from the statically known role down to the most specific role(s).
Our soundness proof shows that this semantics is sound. Smart lifting, where the
most specific role is always chosen or an exception is raised, can thus be seen as a
special case of our semantics. We argue that there are many sound ways to remove the
ambiguity problem in this language design space, e.g.: always returning the statically
given role; the non-deterministic approach taken in our calculus; approaches based on
taking the most specific type that does not cause ambiguities; or using programmer
declared precedence are among the possible choices. It is a main contribution of this
work to clarify that this ambiguity problem can be solved by choosing any language
design within this language design space.

Subtyping among roles makes covariance of the playedBy relation a necessity, i.e.
when refining the playedBy clause in a subtype R2 of R1 the base of R2 must be a
subtype of the base of R1. This is the same situation as in OT/J. To see why the
covariance of the playedBy relation is necessary, consider the hierarchies in Figure 13.
Anywhere an R2 is expected an R3 can be passed in at runtime; if that code tries to
lower the R3 object and expects to be able to access members of a B2 instance, the
computation is unable to take another step.

Lifting and lowering is always explicit in our calculus, using the special functions
lift and lower, whereas they are generally added by the compiler in OT/J. This
means more work for programmers using our calculus, but since it would be easy to
add the necessary calls to these functions in a preprocessing step, there is no need to
have implicit lifting and lowering as part of the calculus. In fact the OT/J compiler
takes this approach, automatically inserting calls to lifting and lowering methods.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

14 · M. D. Ingesman & E. Ernst

B1

B2

B3

R1
pB

R2
pB

R3
pB

Figure 13 – A base and role hierarchy that breaks type safety by destroying the preserva-
tion property.

A

B

R1

pB

R2 pB

R3pB

J J

J

Figure 14 – The cloud as implemented in the model. J marks junk role names.

Flexible invariant. An interesting property of our calculus is that it employs a
flexible invariant for the types of objects in a cloud, and the soundness proof shows
that this is a safe thing to do. We introduced a widePlayedBy relation in the calculus
in order to express this invariant. The important fact to note is that almost any choice
of semantics for the lifting operation from the above-mentioned language design space
would require a more or less flexible invariant in the sense defined here.

Objects. From the calculus syntax in section 3.1, it is clear that there is no restriction
on the role names that can be in the object cloud of an object creation expression.
Programmers could therefore write programs that contain object creation expressions
including roles that do not have a widePlayedBy relation to the class of the base object,
let us call them junk roles. Intuitively this creates the problem that the cloud contains
roles that are not playedBy the given base object, not even via a superclass! Figure 14
illustrates this situation. It may seem dangerous to allow programs to run when some
objects contain junk roles, but this is in fact benign. The undeniable argument is that
the Coq soundness proof works for a formalisation that allows junk roles to exist; the
associated intuition is that these junk roles are unreachable because roles can only
come into play when being selected by a lifting operation—this will never happen for
a junk role.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 15

5 Related Work

The AspectJ language [KHH+01] was the first to introduce Aspect-Oriented Pro-
gramming [KLM+97] in a general purpose programming language. OT/J supports a
different style of AOP which is also quite powerful. However, aspects are at the other
end of OT/Js features compared to our focus on translation polymorphism, and thus
we will not treat them further.

CaesarJ [AGMO06] solves the same scenario as OT/J, i.e. non-invasive customi-
sation through addition instead of modification. The following are the similarities
that are relevant with respect to our work. Like in OT/J, virtual classes and family
polymorphism are added to the language. The equivalents to roles and base classes
are called wrappers and wrappees. To translate an object of a wrappee type to an
object of a type wrapping it (lifting), a wrapper constructor is called with the wrappee
object as an argument. The translation from wrapper to wrappee (lowering) is done
using an explicit wrappee link. We will not go into detail with CaesarJ, but simply
note that the model and observations in this paper apply to that language as well.

Expanders [WSM06] is a technique for statically scoped object adaptation that
bears some similarity to the roles of OT/J. Like OT/J it is implemented as an extension
to the Java language, called eJava. Both the concept of roles and that of expanders
provides the means to augment existing objects with new state and behaviour. There
are some differences however, as the following points illustrate. Unlike roles, expanders
cannot be instantiated explicitly. Roles can completely redefine methods of their base
while expanders cannot even override methods of the classes they augment (method
overloading is possible, however). Expanders provide explicit expanding only to deal
with multiple imported expanders specifying the same method. Otherwise, once an
expander is imported (used) in a context the compiler infers the places where object
expansion is necessary. In OT/J objects are lifted implicitly most of the time as
well, and like with expanders it is possible to declare places of explicit lifting. This is
not used to disambiguate however, but to specify methods that operate on roles but
require the caller to provide a base object. The expanders approach has been proven
sound using an extension of Featherweight Java called Featherweight eJava.

Wide classes [Ser99] is another concept that serves much of the same purpose as
the roles of OT/J. The analogous operations to lifting and lowering are called widening
and narrowing when dealing with wide classes. The main differences between these
concepts are: When lifting a base object to a role the new object is in another hierarchy
entirely, whereas when widening an object it is still in the same class hierarchy (it is
widened to one of its subtypes); and widening an object does not create a new object,
it simply adds fields and methods directly on the existing object. This last difference
also means that a widened object is the same as the object it was before, i.e. equality
is preserved, which is not the case for roles.

Finally, we should mention that even though lifting and lowering enables objects
to “change their class dynamically”, this is still very different from the large number
of mechanisms known from highly dynamic languages whereby classes are directly
modified. For instance, programming activities in Smalltalk [GR83] typically imply
modifications of classes and their instances, and import operations in Ruby and Python
may also change classes (known as ‘monkey patching’), e.g. [Ben08]. Although it is
statically typed, C# partial classes [Mic] are similar in that they can be considered
to be a class modification mechanism. Common to all these mechanisms is that they
allow classes to be modified or extended, but they do not allow objects to include
just some modifications, they must all in synchrony include all modifications. With

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

16 · M. D. Ingesman & E. Ernst

translation polymorphism two instances of the same class may have different sets
of roles at the same time, which makes this very different from a class modification
mechanism, even a highly dynamic one.

6 Future Work

For the calculus presented in this paper simplicity is a major feature, because it isolates
the core of translation polymorphism. A more elaborate model would be interesting to
explore in order to address the problems with ambiguity in smart lifting directly, for
instance demonstrating that a certain class of priority mechanisms could enable lifting
to produce a most specific role in some sense, and remain free of run-time errors.

Adding mutable state as well as role state could provide a better view of the
interaction between roles and classes. Investigating how this calculus would fit as
an extension of Welterweight Java [OW10] could be interesting in this regard. Wel-
terweight Java is a minimal imperative and stateful calculus for Java-like languages.
[Sum09] notes that some extensions are only unsound in the presence of state. He
demonstrates this by extending Featherweight Generic Java [IPW01] with existential
types, showing that the extension is sound. Using a high-level example that further
extends Featherweight Generic Java with mutable state he then shows that existential
types with state is unsound. The standard argument is that an immutable calculus
in the style of Featherweight Java is useful for proving soundness of the type system
of mutable languages as well, and he only demonstrates that existential types are
unsound in the presence of state. Type-wise, our calculus is closer to plain Java with
no potential for mixing completely unrelated types like he does in his example with
existential types, and thus we believe the soundness proof of our calculus translates to
a calculus with mutable state as well.

7 Conclusion

Translation polymorphism, also known as lifting and lowering, is a language mechanism
which enables multiple objects, organised into pairs of base and role objects, to
act almost as if they were single objects supporting multiple unrelated interfaces.
This paper demonstrates for the first time that the core semantics of translation
polymorphism with role inheritance is provably type sound, and that there is in fact
an entire language design space of safe choices for this semantics. The results in this
paper were achieved by means of a very simple formal calculus that models lifting and
lowering independently of the advanced features that are typically present in languages
supporting translation polymorphism, such as virtual classes and family polymorphism.
The completeness and correctness of the soundness proof of this calculus has been
verified mechanically by means of the Coq proof assistant. Consequently, translation
polymorphism can now be considered safe.

A Lemmas and Theorems

In this appendix we present the full soundness proof of the calculus, using the same
notation as in the rest of this paper. The source code available at [EI11] is an
implementation of this proof using the Coq proof assistant and has a lot of extra
details.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 17

The following sections each contain a part of the soundness proof, keeping related
lemmas in the same section. As is usual for paper proofs we omit some details in
favour of conciseness and readability. The proofs contain the necessary details to
repeat them, e.g. which lemmas are used and whether it is a proof by induction. Each
lemma in this proof is annotated with the name of the corresponding lemma(s) in the
Coq code. When no proof is stated immediately following a lemma it means that the
proof is straightforward and uses no other lemmas. Most lemmas are also found in a
proof of FJ, their proofs adjusted to take into account the role hierarchy. The new
lemmas are A.5, A.7, A.10, and all lemmas in section A.4.

Lemma A.4 and A.5 are very similar; this is because they serve the same purpose
but for two different, yet similar, class hierarchies. It would be possible to state each
pair of lemmas as one lemma, but in order to avoid greater complexity we do not do
that. In the Coq model the lemmas that depend on these two lemmas are all split
in two even though their proofs are almost identical, so here we present them as a
single lemma and annotate them with the names of the corresponding two lemmas
in the Coq model. The Coq source is a machine verified version of this proof, and
we invite the reader interested in every little detail to download and explore the Coq
implementation.

The main difference between this proof and its Coq implementation, apart from
the fact that the implementation specifies everything in full detail, is in readability.
Coq imposes some extra work which is not interesting for the proof, but is a necessary
cost of working with the type system. One example of this is the subtyping relation
G2 <: G1 which in the coq source has three representations depending on whether G1
and G2 are class labels, role labels, or types, requiring a number of auxiliary conversion
and inversion lemmas. These extra lemmas and definitions make it harder to spot the
important details. Furthermore, because a Coq proof consists of a series of applications
of tactics that all operate on the current proof context, such a proof can be hard to
read and understand without using a tool like CoqIDE2 or ProofGeneral3 to step
through it interactively.

A.1 Uniqueness of Types

The following lemmas show that types in this calculus are unique. Lemma A.3 is the
most general result and although it is not used for proving type safety we present it
here because it is an interesting property by itself. Something to note about the Coq
model of the proof of A.1 is that it requires two separate lemmas, one for methods
on roles and one for methods on classes. This is because the method lookup function
method has to be split into two when modelled in Coq.

Lemma A.1. (method_fun, method_fun_r) If method(m, G) = Gi xi.ei : Gi for i ∈
{1, 2} then G1 x1.e1 : G1 = G2 x2.e2 : G2.

Proof . By induction in the proof of method(m, G) = G1 x1.e1 : G1 and case analysis in
the proof of method(m, G) = G2 x2.e2 : G2.

Lemma A.2. (fields_fun) If fields (C) = Ti xi for i ∈ {1, 2} then T1 x1 = T2 x2.

Proof . By induction in the proof of fields (C) = T1 x1 and inversion in the proof of
fields (C) = T2 x2. The fact that Object is not defined in the program in used to

2Bundled with the Coq proof assistant.
3Available at http://proofgeneral.inf.ed.ac.uk/

Journal of Object Technology, vol. 11, no. 1, 2012

http://proofgeneral.inf.ed.ac.uk/
http://dx.doi.org/10.5381/jot.2012.11.1.a2

18 · M. D. Ingesman & E. Ernst

establish a contradiction in two of the four resulting cases. The remaining two cases
are straightforward.

Lemma A.3. (typing_fun) If Γ ` e : T and Γ ` e : T′ then T = T′.

Proof . By induction in the typing derivation Γ ` e : T and inversion in the typing
derivation Γ ` e : T′. This results in ten cases, two of which deserve extra attention:

Case 1: Two field accesses. This uses A.2.
Case 2: Two methods. This uses A.1.

A.2 Wellformedness

These lemmas define various relations between the wellformedness rules.

Lemma A.4. (ok_class_meth) If class D extends C {D f; M} is OK and T m(T x)
{return e;} ∈ M then m is OK in D.

Lemma A.5. (ok_role_meth) If class R2 extends R1 playedBy B {M} is OK and
T m(T x) {return e;} ∈ M then m is OK i R2.

Lemma A.6. (ok_ctable_class) If CT is not circular and CT(C) = class C extends
D {G f; M} then class C extends D {G f; M} is OK.

Lemma A.7. (ok_rtable_role) If RT is not circular and RT(R2) = class R2 extends
R1 playedBy C {M} then class R2 extends R1 playedBy C {M} is OK.

Lemma A.8. (method_implies_typing, method_implies_typing_role) If G m (G′
x)

{return e;} is OK in G2 then there exists a G1 such that G2<:G1 and Γ, this : G1 `
e : G.

Proof . By induction in the proof of G m (G′
x) {return e;} is OK in G2, resulting

in two cases. The first case uses A.4 and A.5. The second case uses the transitivity
and extends properties of the subtyping relation.

Lemma A.9. (sub_implies_dom) If R2<:R1 and R1 ∈ dom RT then R2 ∈ dom RT.

Lemma A.10. (in_RT_implies_playedBy) If R ∈ dom RT then there exists a C such
that playedBy(R, C).

Proof . Straightforward, observing that the playedBy relation is part of the role
table.

A.3 Preservation of Properties in Subtypes

These are lemmas establishing that a type is replaceable with any of its subtypes.

Lemma A.11. (sub_field) If D <: C and G g ∈ fields (C) then G g ∈ fields (D).

Lemma A.12. (gt_field) If Γ ` e : G2 where G2 <: G1 and G3 f ∈ fields (G1) then
Γ ` e.f : G3.

Proof . Uses A.11.

Lemma A.13. (gt_sub) If Γ ` e : G2 where G2 <: G1 then Γ ` e : G1.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 19

Lemma A.14. (sub_fields) If D <: C and fields (C) = G1 f then there exists G2 g

such that fields (D) = G1 f; G2 g.

Proof . Straightforward proof by induction in the subtyping derivation D <: C.

Lemma A.15. (sub_mtype, sub_mtype_r) If T2 <: T1 and G1 m(G x) {return e1;}
is OK in T1 then there exists a G2 where G2 <: G1 and there exists an e2 such that G2
m(G x) {return e2;} is OK in T2.

Proof . By induction in the subtyping derivation T2 <: T1. The reflexive and transitive
cases are straightforward. The extends case is split into two sub cases:

Case: m is a method on D. Uses A.4 and A.5.
Case: m is not a method on D. Straightforward.

Lemma A.16. (gt_meth, gt_meth_r) If Γ ` e0 : G2 where G2 <: G1, G3 m(G3 x)
{return e1;} is OK in G1, and G4 < G3, then Γ ` e0.m (e) : G4 where Γ ` e : G4 and
G4 <: G3.

Proof . Uses A.13 and A.15.

A.4 Properties Using Covariance of PlayedBy

The assumption that the playedBy relation is covariant allows us to infer some necessary
information about the interaction between classes and roles.

Lemma A.17. (covariant_extraction) If playedBy(R1, C1), playedBy(R2, C2), and
R2 <: R1, then C2 <: C1.

Proof . Using A.7 and the assumption that the playedBy relation is covariant.

Lemma A.18. (infer_playedBy) If playedBy(R1, C1) and R2 <: R1 then there exists
a C2 such that C2 <: C1 and playedBy(R2, C2).

Proof . By induction in the subtyping relation R2 <: R1. The reflexive case is straight-
forward.

Case: Transitive. Uses A.7, A.17, A.9 and A.10.
Case: Extends. Uses A.17.

A.5 Term Substitutivity

A lemma showing that substituting sub-expressions in an expression preserves subtyp-
ing.

Lemma A.19. (term_substitutivity) If G1 x ` e : G1 and Γ ` d : G2 where G2 <: G1
then Γ ` e

[
x→ d

]
: G2 for some G2 where G2 <: G1.

Proof . The proof builds on a mutual induction result which states that if Γ ` d : G2
and G1 x ` Z :τ then Γ ` Z

[
x→ d

]
:τ ′ where Z stands for an expression or a list of

expressions, and τ and τ ′ stand for types or lists of types where the latter is a (list of)
subtype(s) of the former. The interesting cases are shown here:

Case: Field lookup. Uses A.12.
Case: Method invocation. Uses A.16.
Case: Lowering. Uses A.18.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a2

20 · M. D. Ingesman & E. Ernst

A.6 Type Soundness

The following lemmas and theorems combine the lemmas from the previous sections
to prove the type safety of the calculus.

Lemma A.20. (preservation_over_ec) If we have an evaluation context E, • `
E [e] : G1 and the implication • ` e : G1 → • ` e : G2 then • ` E [e′] : G2 where G2 <: G1.

Proof . By case analysis in the evaluation context derivations followed by inversion in
the typing derivation • ` E [e] : G1.

Case: Fields. Uses A.12.
Case: Methods. Uses A.16.
Case: Lowering. Uses A.18.

Theorem A.1. (preservation) If • ` e : T and e→ e′ then there exists some T′ such
that • ` e′ : T′ and T′ <: T.

Proof . By induction in the evaluation derivations e→ e′. Most cases are straightfor-
ward, except the following:

Case: Methods. Uses A.1, A.8, A.19 and lemma A.13.
Case: Evaluation Contexts. Uses A.20.

Theorem A.2. (progress) If • ` e : T then e is either a value or e→ e′ for some e′.

Proof . By induction in the typing derivation • ` e : G. Most of the resulting cases
are straightforward, except for the expressions lift(e, R) and lift-proc(e, R).

Case: lift(e, R). Split into two sub-cases depending on the type of e. Observe
that when the type is a role the proof is by contradiction because only base objects
can be lifted!

Case: lift-proc(e, R). Split into two sub-cases depending on whether R is in
the object cloud or not.

Corollary A.3. (safety) If Γ ` e : T and e→∗ e′ where e′ is a normal form, then e′

is a value and Γ ` e′ : T′ where T′ <: T.

Proof . Follows from theorem A.1 and theorem A.2.

References

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
An overview of CaesarJ. Transactions on Aspect-Oriented Software
Development I. LNCS, 3880:135–173, 2006.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development — Coq’Art: The Calculus of Inductive Construc-
tions, volume XXV of Texts in Theoretical Computer Science. Springer,
2004.

[Ben08] Edward Benson. The Art of Rails (Programmer to Programmer). Wrox
Press Ltd., Birmingham, UK, UK, 2008.

[DF09] Bruno De Fraine. Language Facilities for the Deployment of Reusable
Aspects. PhD thesis, Vrije Universiteit Brussel, 2009. Available at http:
//soft.vub.ac.be/soft/_media/members/brunodefraine/phd.pdf.

Journal of Object Technology, vol. 11, no. 1, 2012

http://soft.vub.ac.be/soft/_media/members/brunodefraine/phd.pdf
http://soft.vub.ac.be/soft/_media/members/brunodefraine/phd.pdf
http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 21

[DFES10] Bruno De Fraine, Erik Ernst, and Mario Südholt. Essential AOP: the
A calculus. In Proceedings of the 24th European conference on Object-
oriented programming, ECOOP’10, pages 101–125, Berlin, Heidelberg,
2010. Springer-Verlag.

[EI11] Erik Ernst and Matthias Diehn Ingesman. Coq source for Lifted Java,
2011. Available at http://users-cs.au.dk/mdi/liftedJavaCoq.tar.
gz.

[EOC06] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class
calculus. In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’06, pages
270–282, New York, NY, USA, 2006. ACM. Available from: http://doi.
acm.org/10.1145/1111037.1111062, doi:10.1145/1111037.1111062.

[Ern01] Erik Ernst. Family polymorphism. In Proceedings of the 15th European
Conference on Object-Oriented Programming, ECOOP ’01, pages 303–
326, London, UK, UK, 2001. Springer-Verlag. Available from: http:
//dl.acm.org/citation.cfm?id=646158.680013.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, The (3rd Edition) (Java (Addison-Wesley)).
Addison-Wesley Professional, 2005.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983.

[Her07] Stephan Herrmann. A precise model for contextual roles: The program-
ming language Object Teams/Java. Appl. Ontol., 2:181–207, 2007.

[HHM04] Stephan Herrmann, Christine Hundt, and Katharina Mehner. Trans-
lation polymorphism in Object Teams. Technical report, Technical
University Berlin, 2004.

[HHM10] Stephan Herrmann, Christine Hundt, and Marco Mosconi. OT/J Lan-
guage Definition, version 1.3 edition, 2010.

[IE11] Matthias Diehn Ingesman and Erik Ernst. Lifted java: a minimal calcu-
lus for translation polymorphism. In Proceedings of the 49th international
conference on Objects, models, components, patterns, TOOLS’11, pages
179–193, Berlin, Heidelberg, 2011. Springer-Verlag.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for java and gj. ACM Trans. Program.
Lang. Syst., 23(3):396–450, May 2001. Available from: http://doi.acm.
org/10.1145/503502.503505, doi:10.1145/503502.503505.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented Programming,
ECOOP ’01, pages 327–353, London, UK, UK, 2001. Springer-Verlag.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors,
ECOOP’97 — Object-Oriented Programming, volume 1241 of Lecture

Journal of Object Technology, vol. 11, no. 1, 2012

http://users-cs.au.dk/mdi/liftedJavaCoq.tar.gz
http://users-cs.au.dk/mdi/liftedJavaCoq.tar.gz
http://doi.acm.org/10.1145/1111037.1111062
http://doi.acm.org/10.1145/1111037.1111062
http://dx.doi.org/10.1145/1111037.1111062
http://dl.acm.org/citation.cfm?id=646158.680013
http://dl.acm.org/citation.cfm?id=646158.680013
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.5381/jot.2012.11.1.a2

22 · M. D. Ingesman & E. Ernst

Notes in Computer Science, pages 220–242. Springer Berlin / Heidel-
berg, 1997. Available from: http://dx.doi.org/10.1007/BFb0053381,
doi:10.1007/BFb0053381.

[Mic] Microsoft. Partial classes and methods (c] programming guide). http:
//msdn.microsoft.com/en-us/library/wa80x488(v=vs.110).aspx.

[ML98] Mira Mezini and Karl Lieberherr. Adaptive plug-and-play components
for evolutionary software development. In Proceedings of the 13th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’98, pages 97–116, New York, NY,
USA, 1998. ACM. Available from: http://doi.acm.org/10.1145/
286936.286950, doi:10.1145/286936.286950.

[MMP89] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful
mechanism in object-oriented programming. In Conference proceed-
ings on Object-oriented programming systems, languages and appli-
cations, OOPSLA ’89, pages 397–406, New York, NY, USA, 1989.
ACM. Available from: http://doi.acm.org/10.1145/74877.74919,
doi:10.1145/74877.74919.

[MSL00] Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integra-
tion with pluggable composite adapters. In Software Architectures and
Component Technology: The State of the Art in Research and Practice.
Kluwer Academic Publishers, 2000.

[Ost02] Klaus Ostermann. Dynamically composable collaborations with del-
egation layers. In Proceedings of the 16th European Conference on
Object-Oriented Programming, ECOOP ’02, pages 89–110, London, UK,
2002. Springer-Verlag.

[OW10] Johan Östlund and Tobias Wrigstad. Welterweight java. In Proceedings
of the 48th international conference on Objects, models, components,
patterns, TOOLS’10, pages 97–116, Berlin, Heidelberg, 2010. Springer-
Verlag.

[Ser99] Manuel Serrano. Wide classes. In Proceedings of the 13th European
Conference on Object-Oriented Programming, ECOOP ’99, pages 391–
415, London, UK, 1999. Springer-Verlag. Available from: http://dl.
acm.org/citation.cfm?id=646156.679848.

[Sum09] Alexander J. Summers. Modelling java requires state. In Proceed-
ings of the 11th International Workshop on Formal Techniques for
Java-like Programs, FTfJP ’09, pages 10:1–10:3, New York, NY, USA,
2009. ACM. Available from: http://doi.acm.org/10.1145/1557898.
1557908, doi:10.1145/1557898.1557908.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Inf. Comput., 115(1):38–94, November 1994. Available
from: http://dx.doi.org/10.1006/inco.1994.1093, doi:10.1006/
inco.1994.1093.

[WSM06] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically
scoped object adaptation with expanders. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, OOPSLA ’06, pages 37–56, New

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://msdn.microsoft.com/en-us/library/wa80x488(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/wa80x488(v=vs.110).aspx
http://doi.acm.org/10.1145/286936.286950
http://doi.acm.org/10.1145/286936.286950
http://dx.doi.org/10.1145/286936.286950
http://doi.acm.org/10.1145/74877.74919
http://dx.doi.org/10.1145/74877.74919
http://dl.acm.org/citation.cfm?id=646156.679848
http://dl.acm.org/citation.cfm?id=646156.679848
http://doi.acm.org/10.1145/1557898.1557908
http://doi.acm.org/10.1145/1557898.1557908
http://dx.doi.org/10.1145/1557898.1557908
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.5381/jot.2012.11.1.a2

Lifted Java · 23

York, NY, USA, 2006. ACM. Available from: http://doi.acm.org/10.
1145/1167473.1167477, doi:10.1145/1167473.1167477.

About the authors

Matthias Diehn Ingesman is a graduate student at Aarhus University, Denmark.
His primary scientific interests are in the area of programming languages research.
Contact him at mdi@cs.au.dk.

Erik Ernst is an associate professor at Aarhus University, Denmark. His primary
area of interest is programming language design, implementation, and static analysis.
He has introduced the notions of family polymorphism, propagating combination
(deep mixin composition), and generalized virtual classes, and contributed to the
introduction of genericity in Java and the foundational analysis of wildcarded types.
Contact him at eernst@cs.au.dk.

Acknowledgments We have received very constructive feedback from Stefan Her-
rmann, the creator of ObjectTeams/Java, who actually adjusted the language in light
of our results, and also from anonymous reviewers of this paper and earlier versions
thereof.

Journal of Object Technology, vol. 11, no. 1, 2012

http://doi.acm.org/10.1145/1167473.1167477
http://doi.acm.org/10.1145/1167473.1167477
http://dx.doi.org/10.1145/1167473.1167477
mailto:mdi@cs.au.dk
mailto:eernst@cs.au.dk
http://dx.doi.org/10.5381/jot.2012.11.1.a2

	Introduction
	The Model
	Example
	Objects

	Formal Definition of Lifted Java
	Syntax
	Subtyping
	Auxiliaries
	Evaluation
	Typing
	Safety Properties

	Discussion
	Related Work
	Future Work
	Conclusion
	Lemmas and Theorems
	Uniqueness of Types
	Wellformedness
	Preservation of Properties in Subtypes
	Properties Using Covariance of PlayedBy
	Term Substitutivity
	Type Soundness

	Bibliography
	About the authors

