
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011

Online at http://www.jot.fm.

From UML 2 Sequence Diagrams to
State Machines by Graph

Transformation
Roy Grønmoa Birger Møller-Pedersenb

a. SINTEF Information and Communication Technology, Oslo, Norway
b. Department of Informatics, University of Oslo, Norway

Abstract Algebraic graph transformation has been promoted by several
authors as a means to specify model transformations. This paper explores
how we can specify graph transformation-based rules for a classical problem
of transforming from sequence diagrams to state machines. The specifica-
tion of the transformation rules is based on the concrete syntax of sequence
diagrams and state machines. We introduce tailored transformation sup-
port for sequence diagrams and a novel graphical operator to match and
transform combined fragments.

Keywords Graph transformation; Model transformation; UML; sequence
diagram; state machine

1 Introduction
Although sequence diagrams and state machines are used in different phases and
are made with different diagram types, there is a great deal of overlap between the
two specifications. The behavior defined by the sequence diagrams should also be
recognized as behavior by the state machines.

There has been a lot of efforts to transform from sequence diagram-like specification
languages to state-based languages (e.g. [KGSB99, WS00, ZHJ04, Sun07]). None of
the previous approaches takes full advantage of the combined fragments that were
introduced in UML 2.

The combined fragments in UML 2 includes possibilities to model conditional
behavior (alt operator) and loops (loop operator), and these can have guard expres-
sions and be arbitrarily nested. A combined fragment is displayed with a rectangle
that spans the involved lifelines, an operator type shown in the top left corner of the
rectangle, and dashed horizontal lines as operand separators in cases with multiple
operands.

In this paper we specify a transformation from sequence diagrams to state machines
where the specified rules are based on the concrete syntax of sequence diagrams

Roy Grønmo, Birger Møller-Pedersen. From UML 2 Sequence Diagrams to State Machines by Graph
Transformation. In Journal of Object Technology, vol. 10, 2011, pages 8:1–22.
doi:10.5381/jot.2011.10.1.a8

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a8
http://dx.doi.org/10.5381/jot.2011.10.1.a8

2 · Grønmo and Møller-Pedersen

and state machines. Our approach differs from the traditional model and graph
transformation approaches, where transformations are specified in relation to the
abstract syntax. We claim that concrete syntax-based rules are more user-friendly
since the specifier does not need to have knowledge of the metamodels and the
associated abstract syntax. This is particularly useful for sequence diagrams where
the abstract syntax is complicated and quite different from the concrete syntax.

We introduce a fragment operator that allows us to specify the matching and
transformation of combined fragments with an unknown number of operands. Our
rules are mapped to traditional graph transformation rules and the transformation
takes place in the AGG tool [Tae03].

The remainder of this paper is structured as follows. In Section 2 we briefly intro-
duce sequence diagrams, state machines, and the notion of a trace-based refinement
theory; Section 3 describes a possible modeling process that starts with sequence
diagrams and evolves to state machines; Section 4 describes preliminaries on graph
transformation; Section 5 explains how we can define transformation rules based on
the concrete syntax of sequence diagrams and state machines; Section 6 presents the
specialized transformation formalism for sequence diagrams and our set of transforma-
tion rules from sequence diagrams to state machines; Section 7 compares our approach
with related work; and finally Section 8 concludes the paper.

2 Sequence Diagrams, State Machines and Refinement
Figure 1 shows a sequence diagram and a corresponding state machine to represent
the behavior of the second lifeline object (GasPump) in the sequence diagram. The
sequence diagram has two lifelines with the types User and GasPump, and two messages
with the signals insertCard and requestPin. A lifeline, visualized with a rectangle
and a dashed line below, represents an interacting entity on which events take place
in an order from top to bottom on the dashed line. Each message is represented by
two events, a send event (at the source of the message arrow) and a receive event (at
the target of the message arrow).

In this paper we only use sequence diagrams with asynchronous messages, although
our transformation apparatus works for both synchronous and asynchronous messages.
Asynchronous messages fits nicely with the event-based nature of state machines,
unlike sequence diagrams with synchronous messages that have a procedural nature.
We omit the optional rectangles to visualize when a lifeline is active, since these are
more relevant for synchronous messages.

A state machine, consistent with the GasPump lifeline, has an initial state with a
transition leading to the state named Idle. The Idle state has one outgoing transition,
with insertCard as its trigger and requestPin as its effect, going to the final state.

The semantics of a sequence diagram can be described as a set of positive traces

Consistency between SD and SMConsistency between SD and SM

insertCard

:User :GasPump

insertCard

GasPump

Idle
insertCard
/ requestPin;requestPin

Figure 1 – Consistency between sequence diagram and state machine

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 3

and a set of negative traces [RHS05]. Positive traces define valid behavior and
negative traces define invalid behavior, while all other traces are defined as incon-
clusive. In the sequence diagram of Figure 1, there is exactly one positive trace:
〈send insertCard, receive insertCard, send requestPin, receive requestPin〉

Negative traces are described by special operators (e.g. neg), which are not used
in the diagram of Figure 1. Hence, all other traces than the single positive trace, are
inconclusive.

The leftmost part of Figure 2 shows a graphical notation of the universe of traces,
where a circle is divided into positive, inconclusive and negative traces. In reality
there are infinitely many inconclusive traces for the sequence diagrams, and infinitely
many negative traces for the state machines.

RefinementRefinement

positive

linconclusive

negative

positive negative narrowinguniverse of traces positive
supplementing

negative
supplementing

narrowing

Figure 2 – Universe of traces and refinement

The rest of Figure 2 shows the three kinds of sequence diagram refinement that are
defined by STAIRS [RHS06]. (1) positive supplementing. A previously undescribed
scenario is described as positive behavior. (2) negative supplementing. A previously
undescribed scenario is described as negative behavior. (3) narrowing. Some previously
described positive behavior is described as negative behavior.

The set of sequence diagrams describing a system will normally have a non-empty set
of inconclusive traces, which we call a partial specification. An actual implementation
may choose to implement the inconclusive traces as either positive or negative. A
state machine on the other hand, has no inconclusive traces and is thus a complete
specification.

Since the set of sequence diagrams is only a partial specification, the automatically
produced state machines are only intended to be a good starting point for a manual
refinement. This makes it important that the produced state machines are readable.

3 A Modeling Process from Sequence Diagrams to
State Machines

In Figure 3 we show our recommended modeling process of four steps, starting with
the early phase of simple sequence diagrams and ending with the final state machines
that can be used to generate Java code [HMP00]. One column shows the refinement
types that are typical for each step. The artefact result of each step is described in the
third and fourth column. For each artefact we also show the universe of traces in the
last column to illustrate how the sizes of the three trace sets (positive, inconclusive,
negative) typically evolve throughout the modeling process.

Step 1 - Initial modeling. Scenarios can easily be described with intuitive
and simple diagrams showing example executions in the to-be-implemented system.
These initial sequence diagrams should not be too detailed and they should use few
or no combined fragments, since this could be counterproductive in the idea and
brainstorming phase. Similar behavior may occur in several diagrams. This step can

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

4 · Grønmo and Møller-Pedersen

Step Refinement Artefact Result Artefact
Description

Universe
of Traces

1
L3 L4L1 L2

c
d b

a

• simple diagrams
• duplicated behavior
across diagrams

supplementing

2
merging,
detailing,

L3 L4

a
b

alt

L1 L2

c

d

loop

alt

• detailed diagrams
• duplicated behavior
is merged into a
i l di2 g,

narrowing
b

x
y

z

w

single diagram
• combined fragments ”SD contract”

negative

3
no inconclusive
behaviorsd2sm transformation

• initial
state machine

negat ve
supplementing

4

f

detailing,
positive
supplementing

• executable
state machine

wrt. SD contract

Figure 3 – Modeling process from sequence diagrams to state machines

be seen as a positive and negative supplementing, since prior to the modeling all traces
are inconclusive.

Step 2 - Detailed modeling. Combined fragments are used to manually merge
similar behavior from multiple diagrams into a single diagram. The advantage is that
this all happens in the context of the well-known sequence diagrams with no need to
clutter the sequence diagrams with other expressions, nor a need to master another
description language. An existing tool can be used to check that the modified sequence
diagrams are refinements of the previous sequence diagrams [Lun07].

The merging into a single diagram can always be achieved by using enough combined
fragments. For convenience, unrelated scenarios involving the same lifeline can be
kept in several diagrams, followed by a transformation that merges all lifelines into
the same diagram. This transformation can introduce one outermost alt operator
with one operand for each of the unrelated scenarios.

In this step, we typically add some guards to alternative behavior operands and
detail previous diagrams, which means that we perform a narrowing. The step 2 artefact
represents a contract (named ’SD contract’ in the figure) which an implementation
must fulfill. We interpret all the positive traces as mandatory behavior which must be
implemented, while the negative traces describe prohibited behavior.

Step 3 - Generate State Machine. Our automated generation sd2sm, in step
3, makes a state machine that accepts all positive traces from the sequence diagrams.
Inconclusive traces are not implemented, and these traces become negative. Hence,
step 3 performs a negative supplementing.

Step 4 - Refine State Machine. In step 4, the modeler refines the generated
state machines so that they are detailed enough to express a full implementation.
Furthermore, the modeler may also freely increase the number of implemented traces,
but restricted to those that are inconclusive in the SD contract (positive supplementing).
Any modification of the state machines should be checked to see if the modification

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 5

represents a breach of contract. Brændshøi has implemented an automated tool
that checks if a state machine is a ’proper implementation’ of a set of sequence
diagrams [Bræ08].

The rest of the paper focuses on our transformation rules to support step 3.

4 Preliminary: Algebraic Graph Transformation
We provide the known formal foundation of algebraic graph transformation [LEO06].

Definition 1 (Graph and Graph Morphism) A graph G = (GN , GE , src, trg)
consists of a set GN of nodes, a set GE of edges, two mappings src, trg : GE → GN ,
assigning to each edge e ∈ GE a source node src(e) ∈ GN and target node trg(e) ∈ GN .

A graph morphism f : G1 → G2 from one graph to another, with Gi = (GE,i, GN,i,
srci, trgi), (i = 1, 2), is a pair f = (fE : GE,1 → GE,2, fN : GN,1 → GN,2) of
mappings, such that fN ◦ src1 = src2 ◦ fE and fN ◦ trg1 = trg2 ◦ fE (preserve source
and target). A graph morphism f : G1 → G2 is injective if fN and fE are injective
mappings.

Only injective graph morphisms will be relevant in this paper.

Definition 2 (Rule) A graph transformation rule p : L l← I
r→ R consists of three

graphs L(LHS), I(Interface) and R(RHS) and a pair of injective graph morphisms
l : I → L and r : I → R.

Definition 3 (Match and Dangling Condition) Given a graph G and a rule
p : L l← I

r→ R. Then an occurrence of L in G, i.e. an injective graph morphism
m : L→ G, is called match.

The function isMatch : L×G× (L→ G)→ Bool returns true if and only if L→ G
is a match of L in G. A match m for rule p satisfies the dangling condition if no
node in m(L \ l(I)) is incident to an edge in G \m(L \ l(I)).

Definition 4 (Derivation Step) Given a graph G, a graph transformation rule
p : L l← I

r→ R, and a match m : L → G, then there exists a derivation step from
the graph G to the graph H if and only if the dangling condition is satisfied. H is
constructed as follows:

1. Remove the image of the non-interface elements of L in G, i.e. H ′ = G \m(L \
l(I)).

2. Add the non-interface elements of R into H, i.e. H = H ′ ∪ (R \ r(I)).

A negative application condition [LEO06] is an extension of the LHS which prevents
matches from being applied in a derivation step.

Definition 5 (Negative Application Condition (NAC)) A NAC for a graph
transformation rule L l← I

r→ R, is defined by a pair of injective graph morphisms:
L

s← NI t→ N , where N is the negative graph, and NI defines the interface graph
between L and N .

A match m : L → G satisfies the NAC if and only if there does not exist an
injective graph morphism n : N → G which preserves the NI interface mappings, i.e.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

6 · Grønmo and Møller-Pedersen

for all nodes v in NI we have nN (tN (v)) = mN (sN (v)) and for all edges e in NI we
have nE(tE(v)) = mE(sE(e)).

A rule can have an arbitrary number of NACs, and a derivation step can only be
applied if a match satisfies all the NACs of the matched rule.

In addition to the above, we adopt the theory of typed attributed graphs [HKT02],
where graphs are extended by assigning types to nodes and edges, and by assigning a
set of named attributes to each node type. A graph morphism must now also preserve
the node and edge types, and the attribute values.

In the graph transformation rules throughout this paper we only explicitly display
the LHS and the RHS graphs, while the interface graph is given by shared identifiers
of elements in the LHS and the RHS/NACs.

A collection operator [GKMP09] can be used in a rule to match and transform a set
of similar subgraphs in one step. This is also possible with so-called rule amalgamation
[Tae96]. We will use the collection operator since it provides a notation that can
be integrated into a single rule. With rule amalgamation, there will be one subrule
to capture the rule part outside of all subgraphs, and one elementary rule for each
subgraph to be matched and transformed.

A dotted frame is used to visualize a collection operator, where all the contained
nodes and edges are placed inside the frame. A shared identifier of a collection operator
in the LHS and the RHS/NACs denotes a collection operator in the interface graph.
The identifier and cardinality of a collection operator is visualized next to the collection
operators dotted frame. There can be multiple collection operators, but two collection
operators must be specified such that they cannot match the same nodes or edges.

The set of all collection operators in a rule p : L l← I
r→ R is referred to as Collp.

We use ψ to denote a function that maps each collection operator, in a rule p, to
a number within its cardinality range, i.e. ψ : Collp → (N = {0, 1, 2, . . .}), where
∀c ∈ Collp : ψ(c) ∈ [c.min, c.max].

We let pψ : Lψ l← Iψ
r→ Rψ denote the collection free rule where each collection

operator c in p is replaced by ψ(c) number of collection content copies. In these copies
all the copied elements/attributes get fresh identifiers/variables respectively, while the
interface elements between the pointcut and the advice are maintained.

The minimal configuration of ψ, denoted ψ−, for which we can find a match for
a rule is when ∀c ∈ Collp : ψ(c) = c.min. In the matching process we look for a
match of the collection free rule pψ− . Then, each collection operator match and the
ψ is extended as much as possible to achieve a complete match. This results in a
dynamically built rule pψ with a match upon which we can try to apply a derivation
step according to Definition 4.

5 Our Transformation Rules are Specified
in the Concrete Syntax

The concrete syntax of a diagram type uses a tailored visualization with icons and
rendering rules depending on the element types. To improve the usability for the graph
transformation designer, we define the transformation rules upon concrete syntax.
A clear benefit for the user is that the specification of the rules does not require
knowledge of the often complicated metamodels of the involved source and target
languages.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 7

Our approach is depicted in Figure 4. The source model sequence diagram, the
sequence diagram to state machine rules (SD2SM) and the resulting state machine
are all represented in the concrete syntax. The matching and transformation of the
sequence diagram part of the concrete syntax-based rules is formally defined in Section
6.3. The mapping from concrete syntax to abstract syntax-based rules ensures that the
formal definitions from Section 6.3 are preserved by the resulting graph transformation
rules which are formally defined in Section 4.

As with algebraic graph transformation, our rules use a LHS, a RHS, and an implicit
interface model defined by identifiers which are displayed next to its corresponding
element. The LHS and the RHS can both be a mix of sequence diagrams and state
machines, and our transformation rules use an ordinary graph edge to link a lifeline to
a state.

Our rules are automatically transformed into traditional abstract syntax rules,
where we have a tailored support for (1) the parent state relation, (2) the ordering of
occurrences on a lifeline, and (3) combined fragments.

All states and transitions in a state machine model, except the outermost state,
have a parent state. Together with the dangling condition, this means that we cannot
delete a state or a transition without also matching the parent state. Furthermore,
new states and transitions must also get the proper parent state. For convenience, we
include an implicit parent state around the whole LHS and the RHS state machine
models.

Except for the implicit parent state, the state machine part of our rule models
can basically use the same abstract syntax representation as ordinary state machine
models. The matching and transformation of the state machine part of the rules can
be directly understood by translating the state machines into abstract syntax. This
makes the state machine support quite trivial in our approach. For this reason we do
not have an equivalent version of Section 6.3 for state machines.

For the sequence diagram part of our rules, however, we introduce a fragment
operator and tailored matching and transformation definitions. This special treatment
of sequence diagrams is incorporated into the mapping to abstract syntax rules, such
that ultimately plain algebraic graph transformation is used.

Overview of SD2SM
transformation approach

Source Model
Sequence Diagram

SD2SM
Rules

Target Model
State Machine

concrete
syntax

Source Graph
Sequence Diagram

SD2SM
Rules

abstract
syntax

Target Graph
State Machineg

input input output

Graph
Transformation

Tool
(e.g. AGG)

mapping

2

(g)

Figure 4 – Relationship between concrete syntax and abstract syntax

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

8 · Grønmo and Møller-Pedersen

6 Transformation of Sequence Diagrams
Figure 5 shows our simplified metamodel for UML 2 sequence diagrams. A sequence
diagram is represented by a set of lifelines. A lifeline has a top-down ordered sequence
of occurrences.

An occurrence can be one of five kinds (event, combinedFragment, start, end,
arbEvt), where only events or combined fragments conceptually occur on an ordinary
sequence diagram lifeline. The meta occurrence of kind start shall be the very first
occurrence on a lifeline, and the meta occurrence of kind end shall be the very last
occurrence on a lifeline. These meta occurrences enables us to easily specify the
replacement of a subsequence of occurrences on a lifeline.

Finally, an occurrence of kind arbEvt represents the lifeline symbol called arbitrary
events, which was previously introduced in [GSMPK08]. This symbol allows matches
to have an arbitrary number of occurrences in the symbol’s position. Generally, the
symbol can be placed anywhere on a lifeline. In this paper we restrict the usage to at
most one symbol per lifeline and if used it shall be placed as the very first occurrence
on the lifeline. This restriction is sufficient for our transformation from sequence
diagrams to state machines, and allows us to focus on the contributions of this paper.

A message consists of a send event and a receive event, which are normally placed
on two different lifelines. A combined fragment spans over many lifelines and it has
one or more operands. A combined fragment with operator opt, loop or neg contains
exactly one operand, while for other operators (e.g. alt, par) it contains an arbitrary
number of operands.

Each operand has a guard attribute and spans over a subset of the lifelines which its
combined fragment spans over. An operand lifeline has a partOf relation to indicate
to which lifeline it belongs.

As our example we will use the sequence diagram (Figure 6), named GasPump, that
describes a gas pump scenario. A user inserts a payment card (insertCard). The gas
pump requests the pin code from the user (requestPin) and the user enters the pin
code (pinCode). A bank validates the pin code (validate and result), and an alt
operator models the two possible outcomes: 1) valid pin code: The user is informed to
start fuel (startFuel) and the user indicates end of fueling by hanging up the gas
pump (hangUp), or 2) invalid pin code: The user is informed that the entered pin
code is invalid (invalidPin). In both cases, the scenario ends by ejecting the card
(cardOut).

Figure 6a shows the sequence diagram in the well-known concrete syntax, while
Figure 6b shows a possible abstract syntax of the same diagram according to the
metamodel we have defined above. A few metamodel properties are shortened for

Type Graph (Metamodel)Type Graph (Metamodel)

Occurence
kind: {event,combinedFragment,start,end,arbEvt}

occs
{ordered}

*
1

partOf
0..1

Lifeline
type: String

MessageFragmentOperand

fragm 1..*

0..1

send receive
0..1 0..1

1 1ll*

0..1

*
type: String

1..* 1
cfoperand msg msg

g
signal: String

g
type: {alt,loop,...}

p
guard: String operand

{compartment}

Figure 5 – A simplified metamodel for UML 2 sequence diagrams

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 9

brevity: fragm = combinedFragment, sig = signal, and rec = receive. Even though
the sequence diagram is fairly simple, the abstract syntax diagram is complicated. For
a modeler it is obviously preferable to model sequence diagrams by using a standard
sequence diagram editor that allows working in concrete syntax rather than in abstract

:User :GasPump :Bank
insertCard

requestPin

pinCodep
validate

result(pinOK)

alt
startFuel

hangUp

[pinOK]

invalidPin
[! pinOK]

cardOut

(a) Concrete syntax

1: Lifeline
type=”User”

2: Lifeline
type=”GasPump”

40: Lifeline
type=”Bank”

partOf

partOf

partOf

partOf

type User type GasPump type Bank

4: Occurence
kind=”start”

first

5: Occurence

next

17: Occurence
kind=”start”

first

18: Occurence

next

11: Messaged

41: Occurence
kind=”start”

first

42: Occurence

next

33: Message d5: Occurence
kind=”event”

6: Occurence
kind=”event”

first

first

18: Occurence
kind=”event”

19: Occurence
kind=”event”

first

first

11: Message
sig=”insertCard”

send rec

12: Message
sig=”requestPin”

rec send

42: Occurence
kind=”event”

43: Occurence
kind=”event”

first

first

33: Message
sig=”validate”

rec send

34: Message
sig=”result(pinOK)”

send rec

7: Occurence
kind=”event”

8: Occurence
kind=”fragm”

first

20: Occurence
kind=”event”

21: Occurence
kind=”fragm”

first

13: Message
sig=”pinCode”

send rec

14: Fragment
sig=”insertCard”

fragm fragm

44: Occurence
kind=”end”

9: Occurence
kind=”event”

first

10: Occurence

first

22: Occurence
kind=”event”

first

23: Occurence

first

15: Message
sig=”cardOut”

rec send
45: Operand
guard=”pinOK”

35: Lifeline 48: Lifeline

operand

operand ll ll

kind=”end” kind=”end”16: Operand
guard=”! pinOK”

24: Lifeline 29: Lifeline

25: Occurence

first

30: Occurence

first

36: Occurence
kind=”start”

first

37: Occurence

next

49: Occurence
kind=”start”

first

50: Occurence

next

ll ll

46: Messagerec send
kind=”start”

26: Occurence
kind=”event”

next

first

kind=”start”

31: Occurence
kind=”event”

next

first

kind=”event”

38: Occurence
kind=”event”

first

first

kind=”event”

51: Occurence
kind=”event”

first

first

28: Message
sig=”invalidPin”

rec send

g
sig=”startFuel”

rec send

47: Message
sig=”hangUp”

send rec

27: Occurence
kind=”end”

32: Occurence
kind=”end”

39: Occurence
kind=”end”

52: Occurence
kind=”end”

(b) Abstract syntax

Figure 6 – The GasPump model

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

10 · Grønmo and Møller-Pedersen

syntax. In this paper we will show that concrete syntax can have the same benefit
with respect to the specification of graph transformation rules.

6.1 Fragment Operator
In the transformation rules (e.g. the Alt rule shown later) there is a need to match
a combined fragment with an unknown number of operands, and to keep only the
operand parts in the RHS of a rule. In the standard concrete syntax of sequence
diagrams it is not straightforward to distinguish between the combined fragment
operator itself and its operands. A similar challenge applies to state regions of state
machines, which are also displayed in separate compartments of a state. We call such
relations for a compartment relation and indicate this by the tag {compartment} in
the metamodel (Figure 5).

For relations that are tagged as compartment in the metamodel, we provide a new
graphical element in the rules. For sequence diagrams we call this element a fragment
operator. It is displayed as an ordinary combined fragment rectangle with a set of
rectangles labeled ’operand’ inside to denote the fragment operands. The fragment
operator has a clear border between itself and its operands, as opposed to the syntax
of ordinary sequence diagrams.

Multiple operands are expressed by explicitly drawing several compartment operands,
or by placing a collection operator around a compartment operand as illustrated by
the rule in Figure 7a. Notice that the rule in concrete syntax is very concise compared
to the relatively complicated corresponding rule in abstract syntax (Figure 7b).

The semantics of the rule can be explained as follows. A match shall have a
combined fragment of type alt as the first occurrence on some lifeline identified by
id=1. The abstract syntax rule ensures this by requiring that the combined fragment
is the first occurrence after the meta-occurrence start on a lifeline with identifier 1.
The NAC introduced in the abstract syntax requires that a lifeline specified in the
concrete syntax is not part of an operand. Such a fixed NAC is introduced for all LHS
lifelines so that we can only match a lifeline which is not part of another lifeline.

The collection operators with ids c2 and c3 are introduced by the mapping to
abstract syntax rule, and they allow a matching combined fragment to span across
lifelines not specified by the concrete syntax rule. Furthermore, these collection
operators enables us to delete the combined fragment even though some of its lifelines
are not explicitly matched by the concrete syntax rule.

When the combined fragment operator is removed, and its operands are kept, the
ll edge to the part lifelines with identifier id=5 is removed, and these lifelines are no
longer prevented from matches by the generated fixed NACs in the abstract syntax
rules.

Notice our notation partLL(id=1) in Figure 7a, which is used to identify a RHS
lifeline. This will retrieve the lifeline that corresponds to the lifeline with id=1 within
the particular operand. Figure 7b shows the abstract syntax version of the rule, where
the partLL lifeline has a partOf relation to the id=1 lifeline. The effect of this rule is
the same as when we leave out the partLL lifeline. However, the partLL notation is
useful for rules that need to update a partLL lifeline, such as we will se later for all
our rules that use the fragment operator (Alt, Loop, Par, and Opt). There the lifeline
gets a relation to a corresponding state in a state machine.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 11

abstract syntax

LHS
Of

id=c3

6: Occurrence
next

Occurence

id=c2
1: Lifeline

first
next

1..*
*

fragm

concrete syntax

id 1
LHS

partOf

5: Lifeline3: Occurence
kind=”start”

next
Occurence Fragment

t ” lt”

7:Occurence
next

Operand

ll

operand 1 *fragm

fragm

alt

id=1

operand

4:Occurence
next

kind=”fragm” type=”alt”
p

guard=guard
p

id=c1
1..g

1..*

operand

id=c1

[?guard]

8: Lifeline
ll

id=1 id=c1

RHS

NAC

operand

1: Lifeline Operandll

RHS

partLL(id=1)

id=c36: Occurrence
t

id=c2
1: Lifeline

3: Occurence
kind=”start”

first
8: Lifeline

5: Lifeline
next

7:Occurence4:Occurence
next

(a) Concrete syntax

abstract syntax

6: Occurrence
next

id=c2

concrete syntax
y

id 1
LHS

LHS
partOf

id=c3

5: Lifeline

next
Occurence

1: Lifeline

3: Occurence
kind=”start”

first

t
7:Occurence

next

ll

1..*
*

fragm
alt

id=1

operand

next

next
Occurence
kind=”fragm”

Fragment
type=”alt”

Operand
guard=guard

ll

operand
id=c1
1..*fragm

1..*

operand

id=c1

[?guard]

4:Occurence

id=1 id=c1

RHS

NAC

8: Lifeline
ll

operand

1: Lifeline Operandll

RHS

partLL(id=1)

id=c36: Occurrence
t

id=c2
1: Lifeline

3: Occurence
kind=”start”

first
8: Lifeline

partOf

5: Lifeline
next

7:Occurence4:Occurence
next

(b) Abstract syntax

Figure 7 – Mapping a rule with the fragment operator from concrete to abstract syntax

6.2 Transformation Rules
In this section we present the transformation rules, and we show how the rules gradually
transform from a sequence diagram into state machines. We will use the model in
Figure 6a as the input model of the transformation.

Each lifeline corresponds to a state machine. When producing a state machine, it
is sufficient to look at the single corresponding lifeline with its events and how these
events are structured within the combined fragments. A prerequisite to this claim is
that each lifeline occurs only in one sequence diagram, which is ensured by introducing
the combined fragments in step 2 of the method described in Section 2.

The intermediate models in the transformation process contains sequence diagrams,
state machines and helper edges (abstract syntax edges) with type name state to link
a lifeline to its current position in the corresponding state machine.

The transformation process takes a lifeline type as input so that we can produce a
state machine for that lifeline. A rule called InitSM (Figure 8a) simply adds a new
state machine with the same name as the given lifeline type and adds an initial state
with a transition leading to a state called Idle. The rule adds the edge of type state
from the lifeline to the Idle state. A NAC ensures that the InitSM rule is applied
exactly once. The intermediate GasPump model after applying the InitSM rule is
seen in Figure 8b.

The transformation rules then proceed by matching the top-most occurrence on
the lifeline, adding corresponding behavior to the state machine and removing the
treated occurrence from the lifeline. Removing an occurrence normally means that we
need to delete an occurrence also from another lifeline, e.g. removing the send event
from a lifeline can only be done if we also remove the receive event of the message.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

12 · Grønmo and Møller-Pedersen

InitSMInitSM
⇒

GasPump

state

?L = GasPump
(input parameter) Idle

p
:User :GasPump

insertCard

requestPin

:Bank

In
it
SM

id=1
state:?L

id=1
LHS NAC

requestPin

pinCode
validate

result(pinOK)

alt
startFuel

[pinOK]

result(pinOK)

id=1

?L

RHS
hangUp

[! pinOK]

Idle:?L
id 1

state invalidPin

cardOut

(a) Rule: InitSM

InitSMInitSM
⇒

GasPump
state

?L = GasPump
(input parameter) Idle

p
:User :GasPump

insertCard

requestPin

:Bank

In
it
SM

id=1
state:?L

id=1
LHS NAC

requestPin

pinCode
validate

result(pinOK)

alt
startFuel

[pinOK]

result(pinOK)

id=1

?L

RHS
hangUp

[! pinOK]

Idle:?L
id 1

state invalidPin

cardOut

(b) Model after applying InitSM

Figure 8 – GasPump: The InitSM rule creates the state machine.

A top-most ’occurrence’ is either a combined fragment or an event which is part of
a message. The rule Receive (Figure 9a) pops a receive event (and its corresponding
send event from another lifeline), adds a state which now becomes the current state,
and adds a transition with trigger labeled by the message name. The transition goes
from the previous current state to the new current state. We use an arbEvt symbol
to indicate that the matched send event does not need to be the very first occurrence
on its lifeline. The rule Send (Figure 9b) pops a send event (and its corresponding
receive event from another lifeline) and adds a corresponding effect on the incoming
transition to the current state.

The model in Figure 9c shows the result after applying the rule sequence <Receive,
Send, Receive, Send, Receive>. We have omitted the Bank lifeline from this model
and the following models in this transformation, since it has no more events.

The rule Alt in Figure 10a pops an alt fragment and makes the current state into
a composite state by adding internal behavior: an initial state, an Idle state and a
final state. For each alt operand we make an inner composite state.

We produce a transition from the Idle state to each inner composite state, where
the transition guard is equal to the corresponding alt operand guard. The Alt
rule uses the fragment operator to detach each alt operand from its alt operator.
The operand part lifeline corresponding to the GasPump lifeline is referred to by the
partLL(id=1). An edge of type state is added from the part lifeline to the Idle
state of the inner composite state. Notice how the collection operator allows us to
express the treatment of multiple operands. In the RHS, the partLL(id=1) lifeline,
the operand and the inner composite state are all inside the collection operator. This
means that we get one occurrence of all these elements for each alt operand.

Finally the original lifeline (referred to by id=1) where we popped the alt operator,
gets a new state as its current state. The old current state gets a transition leading to

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 13

LHS RHS
Re

ce
iv
e

state id=2
state

id=3

?m

id=2 Receive,Send,
Receive,Send,Receive

⇒

id=1

?m
id=1

id=3
newName() GasPump

:User :GasPump

Se
nd

id=3 /?action

Idle

insertCard
/ requestPin;id=2id=1

LHS alt
startFuel

[pinOK]

state
id=3

id=4 S1

pinCode
/ validate;

?m

invalidPin

hangUp

[! pinOK]

id=3
/ if ?action = null
then ?m
else ?action

S2

/ validate;

result(pinOK)id=2id=1

RHS
cardOut

state
id=4

else ?action
+ ”; ” + ?m

result(pinOK)

S3

id=2id=1
state

(a) Rule: Receive

LHS RHS

Re
ce

iv
e

state id=2

state

id=3

?m

id=2id=1

?m
id=1

id=3
state

newName()

Se
nd

id=3 /?action

Receive,Send,
Receive,Send,Receive

GasPump

⇒

id=2id=1

LHS

state
id=3

id=4
Idle

S1

insertCard
/ requestPin;?m

alt

:User :GasPump

[pinOK]
state

id=3
/ if ?action = null
then ?m
else ?action

S1

S2

pinCode
/ validate;

id=2id=1

alt
startFuel

i lidPi

hangUp

[pinOK]

[! pinOK]

RHS

state
id=4

else ?action
+ ”; ” + ?m

S2
result(pinOK)

S3

id=2id=1 invalidPin

cardOut

(b) Rule: Send

LHS RHS

Re
ce

iv
e

state id=2

state

id=3

?m

id=2 Receive,Send,
Receive,Send,Receive

⇒

id=1

?m
id=1

id=3
state

newName() GasPump

:User :GasPump

Se
nd

id=3 /?action

Idle

insertCard
/ requestPin;id=2id=1

LHS alt
startFuel

[pinOK]

state
id=3

id=4 S1

pinCode
/ validate;

?m

invalidPin

hangUp

[! pinOK]

id=3
/ if ?action = null
then ?m
else ?action

S2

/ validate;

result(pinOK)id=2id=1

RHS
cardOut

state
id=4

else ?action
+ ”; ” + ?m

result(pinOK)

S3

id=2id=1
state

(c) Model after applying Receive and Send rules

Figure 9 – GasPump: Applying Send and Receive rules

the new current state.
The model in Figure 10b shows the result after applying the Alt rule. Notice that

we now have three sequence diagrams with state links to the state machine. Two of
these are for the alt operands, and the third is for the remaining part of the sequence
diagram after the original alt operator.

When we have mapped and removed all events from a lifeline, then we use a rule
called FinalState (Figure 11a). The rule replaces the current state (indicated by the
state edge) by a finalnode. Furthermore, the state edge and the lifeline is deleted.
The dangling condition ensures that the rule only can be applied when there are no
events left on the lifeline.

Figure 11b shows the intermediate model after applying three Send rules, one
Receive rule and then three FinalState rules. The Send and Receive rules will
consume all remaining messages on the three sequence diagrams. The FinalState
rule can then be applied to remove all these three sequence diagrams.

We have now reached a state machine corresponding to the GasPump lifeline. It is
possible to optimize the produced state machine by flattening some of the composite
states. For our example we need three flattening rules which are shown in Figure 12a-c.
The FlattenIntoChoice rule flattens the composite state holding all the internal
choices corresponding to the alt operands. We are able to flatten the state by
introducing a choice node with outgoing branches to the choices and finally a merge
node with incoming branches from all the choices. The FlattenSubState1 rule flattens
a composite state of only one transition, while the FlattenSubState2 rule flattens
a composite state which also holds internal states. By applying the three flattening
rules we produce a more readable and concise state machine in Figure 12d (called the
target model) than we had in Figure 11b.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

14 · Grønmo and Møller-Pedersen

Alt
LHS RHS

id=1stateid=2
id=2

[?guard]
id=1 state

1..* Idle
partLL(id=1)

LHS RHS

alt

1..*

[g]

newName()state

newName()Idle

operand id=3
[?guard] operand

id 3

p ()

Alt
⇒ G P

()
id=3

⇒ GasPump

S3
state

U G PIdle

insertCard
/ requestPin; [pinOK] [! pinOK]

Idle

:User :GasPump
invalidPin

S1 S4 S5

S6
Idle Idle

pinCode
/ validate;

:User :GasPump
cardOut

:User :GasPump
startFuel

state

stateS6

result(pinOK)
S2

hangUp

(a) Rule: Alt

Alt
LHS RHS

id=1stateid=2
id=2

[?guard]
id=1 state

1..* Idle
partLL(id=1)

LHS RHS

alt

1..*

[g]

newName()state

newName()Idle

operand id=3
[?guard] operand

id 3

p ()

Alt
⇒ G P

()
id=3

⇒ GasPump

S3
state

U G PIdle

insertCard
/ requestPin; [pinOK] [! pinOK]

Idle

:User :GasPump
invalidPin

S1 S4 S5

S6
Idle Idle

pinCode
/ validate;

:User :GasPump
cardOut

:User :GasPump
startFuel

state

stateS6

result(pinOK)
S2

hangUp

(b) Model after applying the Alt rule

Figure 10 – GasPump: Applying the Alt rule.

FinalState – layer 2
LHS RHS S4

S3

S5
[pinOK]

Idle
[! pinOK]

Idle
insertCard
/ requestPin;

state

id=1 id=1

Idle

S4 S5

/startFuel; /invalidPin;

h U

S1

/ requestPin;

pinCode
/ validate;

/cardOut;

hangUp

result(pinOK)
S2

Send3,Receive,FinalState3

⇒

GasPumpGasPump

S3

Idle
Idle

insertCard
/ requestPin; S4 S5

/i lidPi

[pinOK] [! pinOK]

S1

pinCode
/ validate;

Idle

/startFuel; /invalidPin;

hangUp

result(pinOK)
S2 /cardOut;

(a) Rule: FinalState

FinalState – layer 2
LHS RHS

state

id=1 id=1

Send3,Receive,FinalState3

⇒⇒

GasPump

S3

Idle

insertCard

S3

[pinOK] [! pinOK]
Idle

S1

insertCard
/ requestPin; S4 S5

/startFuel; /invalidPin;

S2

pinCode
/ validate;

Idle
hangUp

result(pinOK)
/cardOut;

(b) Model after applying the FinalState rule

Figure 11 – GasPump: Applying the FinalState rule.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 15

GasPump –
part 3p

Flatte id=1 id=1 id=1

Flatte

LHS RHS LHS RHS

enIntoChoic

id 1

[?guard]

1..*Idle
[?guard]

id=1

[?guard] id=1

enSubStatece [?guard]

id=2
id=2 ?trigger

/ ?effect
?trigger [?guard]
/ ?effect

e1

id=3 id=3 id=2
id=2

FlattenSubState2

?t i

LHS RHS

id=1

[?guard]

id=4

?trigger
/ ?effect

id=3

id=2 id=1

?trigger
[?guard]
/ ?effect

id=2

id=4

id=3

id 2

(a) Rule: FlattenIntoChoice

GasPump –
part 3p

Flatte id=1 id=1 id=1

Flatte

LHS RHS LHS RHS

enIntoChoic

id 1

[?guard]

1..*Idle
[?guard]

id=1

[?guard] id=1

enSubStatece [?guard]

id=2
id=2 ?trigger

/ ?effect
?trigger [?guard]
/ ?effect

e1

id=3 id=3 id=2
id=2

FlattenSubState2

?t i

LHS RHS

id=1

[?guard]

id=4

?trigger
/ ?effect

id=3

id=2 id=1

?trigger
[?guard]
/ ?effect

id=2

id=4

id=3

id 2

(b) Rule: FlattenSubState1

GasPump –
part 3p

Flatte id=1 id=1 id=1

Flatte

LHS RHS LHS RHS

enIntoChoic

id 1

[?guard]

1..*Idle
[?guard]

id=1

[?guard] id=1

enSubStatece [?guard]

id=2
id=2 ?trigger

/ ?effect
?trigger [?guard]
/ ?effect

e1

id=3 id=3 id=2
id=2

FlattenSubState2

?t i

LHS RHS

id=1

[?guard]

id=4

?trigger
/ ?effect

id=3

id=2 id=1

?trigger
[?guard]
/ ?effect

id=2

id=4

id=3

id 2

(c) Rule: FlattenSubState2

Target ModelTarget Model

FlattenIntoChoice, FlattenSubState1, FlattenSubState2
⇒

[pinOK]

GasPump

⇒

insertCard
/ requestPin;

S1Idle

pinCode
/ validate;

S2

/ startFuel;

[! pinOK]

S3 hangUp

/ cardOut;

result(pinOK)
[p]
/ invalidPin;

/ cardOut;

(d) Target Model

Figure 12 – GasPump: We reach the target model after applying the flattening rules.

The transformation produces one state machine per lifeline, and each state machine
is placed in a region within a combined outermost state machine. This means that all
the state machines are started in parallel.

We have also defined mapping rules for other sequence diagram operators that are
not used in the GasPump example. The Loop rule (Figure 13a) makes the current state
into a composite state with an idle state inside. The GasPump lifeline of the loop
operand gets a state-labeled edge to the idle state. Furthermore, the composite state
has a reflexive transition with the guard condition taken from the looping condition of
the loop operator. A transition with a negated loop guard leaves the composite state
into a newly created state, which becomes the current state of the remaining sequence
diagram (where the loop operator is removed).

The Par rule (Figure 13b) makes the current state into a composite state with
one region state machine for each par operand. These region state machines each
have an idle state that becomes the current state of the sequence diagram of the
corresponding par operand. A transition leaves the composite state into a newly
created state, which becomes the current state of the remaining sequence diagram

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

16 · Grønmo and Møller-Pedersen

Mapping additional operators
not in the GasPump example…

Loop –
layer 3

id=1

y

stateid=2 id=2
Idle [?guard]

LHS RHS

partLL(id=1)

loop [not ?guard]
id=1state

newName()

Idle [g]

stateoperand id=3
[?guard] operand id=3

partLL(id=1)

newName()

(a) Rule: LoopPar, Neg

id 1

Par –
layer 3

id 2 id 2

Par, Neg
LHS RHS

par

id=1stateid=2 id=2
id=1 state

state
region

partLL(id=1)

p

1..* id=3
1..* newName()Idleoperand

id=3operand

Neg – LHS RHS
id=1

Neg
layer 3

stateid=2 id=1stateid=2

LHS RHS

neg

(b) Rule: Par

OptOpt

Opt –

id=1

Opt
layer 3

id=2

id=2

LHS RHS

opt

id=1stateid=2

[?guard]

newName()

id=1 state

state

Idle

id 3

[not
?guard]

partLL(id=1)

()

newName()Idle

operand id=3
[?guard]

operand id=3

(c) Rule: opt

Par, Neg

id 1

Par –
layer 3

id 2 id 2

Par, Neg
LHS RHS

par

id=1stateid=2 id=2
id=1 state

state
region

partLL(id=1)

p

1..* id=3
1..* newName()Idleoperand

id=3operand

Neg – LHS RHS
id=1

Neg
layer 3

stateid=2 id=1stateid=2

LHS RHS

neg

(d) Rule: neg

Figure 13 – More rules to generate state machine from sequence diagrams

(where the par operator is removed).
The Opt rule (Figure 13c) can be seen as the Alt rule defined above where there is

only one operand, and where we also have the additional option of no behavior. The
current state is made into a composite state where the initial state goes directly to the
idle state. There are two outgoing transitions from this idle state: (1) a transition
with the negative condition of the opt guard leading to the final state, and (2) a
transition leading to a new composite state containing an idle state that becomes the

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 17

current state of the opt operand sequence diagram. A transition leaves the outermost
new composite state to a new state that becomes the current state for the remaining
sequence diagram (where the opt operator is removed).

The Neg rule (Figure 13d) is very simple. It simply removes the neg operator and
its content. This is because negative behavior shall not be implemented by the state
machine. The sequence diagram where all neg operators are ignored corresponds to
positive behavior that we map to behavior of the state machine.

The transformation rules are implemented in the graph transformation tool AGG.
The transformation is tested on some examples, including the GasPump example shown
in this paper, with success. The AGG tool only supports abstract syntax rules, and
we have manually translated from concrete syntax to abstract syntax rules. We have
also used multiple collection free rules to simulate each rule with collection operators
by following the algorithm defined in [GKMP09]. This paper defines semantics for
concrete syntax-based rules of sequence diagrams which can be used to automate the
translation to abstract syntax rules, as we have implemented previously for activity
models [GMP08].

In graph transformation, it is a well-known principle that we need to translate
the source model from concrete syntax to abstract syntax. When translating from
concrete syntax-based rules to abstract syntax-based rules, much of this translation
can be reused as described in Grønmo’s PhD thesis [Grø09]. For diagrams like activity
diagrams and state machines the translation can be almost entirely reused. As
mentioned above, we only add an implicit outermost parent state to the rules LHS
and RHS for the state machine abstract syntax.

The translation into abstract syntax for the sequence diagram part requires more
effort than for many typical modeling languages. This is because we need to handle
the ordering of events on a lifeline, distinguish between events that are the very first
on a lifeline vs. in any position on the lifeline, and support for the fragment operator.

6.3 Transformation of Sequence Diagrams Formalized
This section formalizes the matching and transformation of sequence diagrams. The
definitions use an injective mapping function, φ : L → M , to denote an injective
mapping from the LHS elements in L to elements in the source model M . The φ
mapping preserves the type of an element, and also all the attribute values that are
specified for a LHS element.

In the definitions below a lifeline has a sequence of occurrences, where an occurrence
is either an event or a combined fragment. Hence, we ignore the meta occurrences
start, end and arbEvt, except for checking if the arbEvt symbol is present on a
lifeline. First, we define a list of useful notation and helper definitions:

• s_ t denotes the concatenation of two (finite) sequences s and t

• Occur∗ denotes the set of all possible occurrence sequences

• l.hasArbEvt denotes if a lifeline l has the arbEvt symbol on top

• l.operand denotes the operand in which a lifeline l is a part and returns null if
l is an ordinary lifeline that is not part of an operand

• l.occs denotes the top-down sequence of occurrences of lifeline l

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

18 · Grønmo and Møller-Pedersen

• o.cf denotes the combined fragment of an occurrence o. If the occurrence is an
event, then the value is null

• MLL denotes the set of lifelines of a sequence diagram M

• MF denotes the set of combined fragments of a sequence diagram M

The definition below defines a match for a lifeline without an arbEvt symbol.

Definition 6 (Lifeline match from top) The mapping φ is a lifeline match from
top if and only if φ maps the top-down occurrence sequence Ol of a LHS lifeline to
a continuous beginning subsequence of the corresponding source lifeline’s top-down
occurrence sequence Os. Formally,

LLMatch1
φ(Ol, Os)

def= ∃O ∈ Occur∗ : Os = φ(Ol)_O

The definition below defines a match for a lifeline with an arbEvt symbol.

Definition 7 (Lifeline match in an arbitrary position) This definition is equal
to the previous except that the match does not have to start from the beginning of the
source lifeline. Formally,

LLMatch∗φ(Ol, Os)
def= ∃Obeg, Oend ∈ Occur∗ : Os = Obeg _φ(Ol)_Oend

Definition 8 (Sequence diagram match) Given a LHS sequence diagram L and
a source sequence diagram S. The mapping φ : L→ S is a sequence diagram match if
and only if for all lifelines l ∈ LLL the following two conditions are satisfied: (1) l is
not mapped to a lifeline which is part of an operand, and (2) l is mapped to a lifeline
match. Formally,

sdMatchφ(L, S) def=
∀l ∈ LLL : φ(l).operand = null

∧ if l.hasArbEvt then LLMatch∗φ(l.occs, φ(l).occs)
else LLMatch1

φ(l.occs, φ(l).occs)

As pointed out in the previous section, we are allowed to delete combined fragments
even though all its spanning lifelines are not explicitly matched. Let Del denote the set
of to-be-deleted combined fragments, i.e. Del = {φ(f) | f ∈ (LF \l(IF))}. The function
delCF(O,Del) returns the occurrence sequence O where all combined fragments in
Del has been removed.

Definition 9 (Sequence diagram transformation step) Given a rule p : L l←
I

r→ R, a source sequence diagram S, and a mapping φ : L→ S, where sdMatchφ(L, S).
The rule p and the mapping φ define a transformation step from S to a target se-
quence diagram T , denoted S

pφ⇒ T . The lifelines of T , TLL, are the union of (1)
the transformed L lifelines (the occurrences given in an L lifeline are replaced by the
occurrences in the corresponding R lifeline (retrieved by the helper function getOccsR),
(2) all the new R lifelines, and (3) all the unmapped lifelines in S. For each lifeline
in the lifeline sets (1) and (3), we need to delete every occurrence that represents a
to-be-deleted combined fragment by using the function delCF . Formally,

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 19

let getOccsR(ll)
def= if ∃li ∈ ILL : l(li) = ll then r(li).occs else 〈〉

in S
pφ⇒ T

def= sdMatchφ(L, S) ∧
TLL = {lt | ll ∈ LLL ∧ ∃Obeg, Oend ∈ Occur∗ : (1)

φ(ll).occs = Obeg _φ(ll.occs)_Oend ∧
lt.occs = delCF(Obeg _ getOccsR(ll)_Oend,Del)}

∪ RLL \ r(ILL) (2)
∪ {ls | ls ∈ (SLL \ φ(LLL)) ∧ ls.occs = delCF(ls.occs,Del)} (3)

7 Related Work
Our methodology is quite similar to the one prescribed by Whittle and Schumann
[WS00] and Ziadi et al. [ZHJ04]. Whittle and Schumann need OCL expressions to
express similar behavior across multiple diagrams, while we and Ziadi et al. take
advantage of the combined fragments which were introduced in UML 2 after the work
of Whittle and Schumann.

Ziadi et al. [ZHJ04] define their transformation by pseudocode operating on
algebraic definitions of sequence diagrams and state machines, while our transformation
is based on graph transformation. Our support for guards in alt/loop and support
for par/opt/neg is new compared to their approach.

Harel et al. [HKP05] define a transformation from Live Sequence Charts to UML
state charts, which are described by traditional algorithms. Their focus is on the
transformation itself in contrast to our work that provide an improved way to specify
such transformations. While we simply ignore negative traces and produce a state
machine that does not recognize such behavior, their approach will analyze and detect
inconsistency such as defining the same trace as both positive and negative.

Sun [Sun07] specifies a transformation from state charts to state machines in the
AToM tool which like our approach takes advantage of combined fragments (alt and
loop). With our fragment operator and the collection operator, we can define the
transformation rules completely by graphical models. Sun, on the other hand, needs to
use relatively complicated textual pre- and post-conditions associated with the rules.

The MATA tool [WJE+09] and Klein et al. [KFJ07] are two promising sequence
diagram aspect proposals where transformation on sequence diagrams can be specified
based on the concrete syntax and where an occurrence sequence on a lifeline easily
can be replaced another occurrence sequence.

The MATA tool also has a way to match combined fragments in a sequence diagram
aspect language. However, it is too limited as a basis for the transformation from
sequence diagrams to state machines, since there is no way to match a combined
fragment with an unknown number of operands.

Klein et al. have no support for matching combined fragments. Furthermore, in
Klein et al. all matches are identified and treated at once which is not appropriate for
our transformation from sequence diagrams to state machines.

Hermann [Her05] uses algebraic graph transformation, restricted to abstract syntax,
to specify transformation rules for sequence diagrams. Without the collection operator
and the fragment operator, our transformation rules to state machines will be very
difficult to express.

We have not seen other proposals where it is easy to specify that an event or
a combined fragment has to be the very first occurrence on a lifeline. Although a

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a8

20 · Grønmo and Møller-Pedersen

bit cumbersome, it is expressible in other graph transformation approaches by using
several NACs.

Our previously defined semantics-based aspect language [GSMPK08] cannot be
used as a basis for the transformation from sequence diagrams to state machines,
since it is not structure preserving. The structure of combined fragments is utterly
important in order to generate readable state machines.

This paper contains some extensions from the conference paper [GMP10]: the
modeling process is now described in relation to a refinement theory, a more detailed
description of the transformation rules including some flattening rules to produce
more optimized state machines, and some details about the mapping from concrete to
abstract syntax-based rules.

8 Conclusions
We have shown how concrete syntax-based graph transformation rules can be used to
specify a transformation from sequence diagrams to state machines. These rules are
much more concise than traditional graph transformation rules which are specified in
abstract syntax.

It is a great advantage that the user can specify rules in the well known concrete
syntax of sequence diagrams instead of the complicated and less intuitive abstract
syntax version. On the other hand, in our approach we need to implement a translation
from concrete syntax to abstract syntax-based rules. The extent to which there is a
need for sequence diagram transformations in general decides if the implementation
effort pays off in practice.

We introduced a novel fragment operator that allows us to graphically specify the
matching and transformation of a combined fragment with an arbitrary number of
operands. Furthermore, we formalized a suitable way to handle the order of occurrences
on a lifeline, which is crucial when specifying transformations of sequence diagrams.

References
[Bræ08] Bjørn Brændshøi. Consistency Checking UML Interactions and State

Machines. Master’s thesis, Department of Informatics, University of
Oslo, 2008. Available from: http://urn.nb.no/URN:NBN:no-21036.

[GKMP09] Roy Grønmo, Stein Krogdahl, and Birger Møller-Pedersen. A Collection
Operator for Graph Transformation. In Int. Conf. on Model Transfor-
mation (ICMT). Springer, 2009. doi:10.1007/978-3-642-02408-5_6.

[GMP08] Roy Grønmo and Birger Møller-Pedersen. Aspect Diagrams for UML
Activity Models. In Applications of Graph Transformations with In-
dustrial Relevance, Third International Symposium, AGTIVE 2007,
Revised Selected and Invited Papers, volume 5088 of Lecture Notes in
Computer Science. Springer, 2008. doi:10.1007/978-3-540-89020-1_
23.

[GMP10] Roy Grønmo and Birger Møller-Pedersen. From sequence diagrams
to state machines by graph transformation. In Theory and Practice
of Model Transformations, Third International Conference, ICMT,
volume 6142 of Lecture Notes in Computer Science. Springer, 2010.
doi:10.1007/978-3-642-13688-7_7.

Journal of Object Technology, vol. 10, 2011

http://urn.nb.no/URN:NBN:no-21036
http://dx.doi.org/10.1007/978-3-642-02408-5_6
http://dx.doi.org/10.1007/978-3-540-89020-1_23
http://dx.doi.org/10.1007/978-3-540-89020-1_23
http://dx.doi.org/10.1007/978-3-642-13688-7_7
http://dx.doi.org/10.5381/jot.2011.10.1.a8

From UML 2 Sequence Diagrams to State Machines by Graph Transformation · 21

[Grø09] Roy Grønmo. Using Concrete Syntax in Graph-based Model Transfor-
mations. PhD thesis, Dept. of Informatics, University of Oslo, 2009.
Available from: http://urn.nb.no/URN:NBN:no-24448.

[GSMPK08] Roy Grønmo, Fredrik Sørensen, Birger Møller-Pedersen, and Stein
Krogdahl. A Semantics-based Aspect Language for Interactions with
the Arbitrary Events Symbol. In European Conference on Model Driven
Architecture – Foundations and Applications (ECMDA). Springer,
2008. doi:10.1007/978-3-540-69100-6_18.

[Her05] Frank Hermann. Typed Attributed Graph Grammar for Syntax Di-
rected Editing of UML Sequence Diagrams. Diploma thesis. Master’s
thesis, Technical University of Berlin, Department for Computer Sci-
ence, 2005.

[HKP05] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis Revisited:
Generating Statechart Models from Scenario-Based Requirements. In
Formal Methods in Software and Systems Modeling, volume 3393 of
Lecture Notes in Computer Science. Springer, 2005. doi:10.1007/
b106390.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Con-
fluence of Typed Attributed Graph Transformation Systems. In
Graph Transformation, First Int. Conf., ICGT, 2002. doi:10.1007/
3-540-45832-8_14.

[HMP00] Øystein Haugen and Birger Møller-Pedersen. JavaFrame: Framework
for Java-enabled modelling. In Ericsson Conference on software Engi-
neering (ECSE), 2000. Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.107.4635.

[KFJ07] Jacques Klein, Franck Fleurey, and Jean-Marc Jézéquel. Weaving
multiple aspects in sequence diagrams. Trans. on Aspect Oriented
Software Development, 3, 2007. doi:10.1007/978-3-540-75162-5_7.

[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From
MSCs to Statecharts. In International Workshop on Distributed and
Parallel Embedded Systems, 1999. Available from: http://citeseer.
ist.psu.edu/viewdoc/summary?doi=10.1.1.113.4291.

[LEO06] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict Detection
for Graph Transformation with Negative Application Conditions. In
Graph Transformations, Third Int. Conf., ICGT, Lecture Notes in
Computer Science. Springer, 2006. doi:10.1007/11841883_6.

[Lun07] Mass Soldal Lund. Operational analysis of sequence diagram specifi-
cations. PhD thesis, Dept. of Informatics, University of Oslo, 2007.
Available from: http://urn.nb.no/URN:NBN:no-18776.

[RHS05] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining
UML interactions with underspecification and nondeterminism. Nordic
Journal of Computing, 2(12), 2005. Available from: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.98.6181.

[RHS06] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. The
Pragmatics of STAIRS. In Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, volume 4111 of

Journal of Object Technology, vol. 10, 2011

http://urn.nb.no/URN:NBN:no-24448
http://dx.doi.org/10.1007/978-3-540-69100-6_18
http://dx.doi.org/10.1007/b106390
http://dx.doi.org/10.1007/b106390
http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1007/3-540-45832-8_14
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.4635
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.4635
http://dx.doi.org/10.1007/978-3-540-75162-5_7
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.4291
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.4291
http://dx.doi.org/10.1007/11841883_6
http://urn.nb.no/URN:NBN:no-18776
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.6181
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.6181
http://dx.doi.org/10.5381/jot.2011.10.1.a8

22 · Grønmo and Møller-Pedersen

Lecture Notes in Computer Science, pages 88–114. Springer, 2006.
doi:10.1007/11804192_5.

[Sun07] Ximeng Sun. A Model-Driven Approach to Scenario-Based Re-
quirements Engineering. Master’s thesis, School of Comp. Sci-
ence, McGill Univ., Montreal, Canada, 2007. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.3035.

[Tae96] Gabriele Taentzer. Parallel and Distributed Graph Transformation.
Formal Description and Application to Communication-Based Systems.
PhD thesis, Technische Universität Berlin, 1996.

[Tae03] Gabriele Taentzer. AGG: A Graph Transformation Environment for
Modeling and Validation of Software. In Applications of Graph Trans-
formations with Industrial Relevance, Second International Workshop
(AGTIVE), 2003. doi:10.1007/b98116.

[WJE+09] Jon Whittle, Praveen Jayaraman, Ahmed Elkhodary, Ana Mor-
eira, and João Araújo. MATA: A Unified Approach for Compos-
ing UML Aspect Models based on Graph Transformation. Trans-
actions on Aspect-Oriented Software Development VI. Special Is-
sue on Aspects and Model-Driven Engineering, 5560, 2009. doi:
10.1007/978-3-642-03764-1_6.

[WS00] Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In The 22nd international conference on Software engineering
(ICSE), 2000. doi:10.1145/337180.337217.

[ZHJ04] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Revisiting
statechart synthesis with an algebraic approach. In 26th Interna-
tional Conference on Software Engineering (ICSE). IEEE Computer
Society, 2004. Available from: http://csdl.computer.org/comp/
proceedings/icse/2004/2163/00/21630242abs.htm.

About the authors
Roy Grønmo is a research scientist at SINTEF. He holds a doctor degree in
Computer science at the University of Oslo. His main research topics are model-
driven development, model and graph transformation, service-oriented modeling
and aspect-oriented modeling. Contact him at roy.gronmo@sintef.no, or visit
http://folk.uio.no/roygr.

Birger Møller-Pedersen is professor at University of Oslo. He has worked with
object orientation, from various implementations of SIMULA to the design of BETA. He
was a key person in adding object-orientation to ITU SDL (standardized 1992). With
Ericsson he contributed to UML2.0 within OMG. Contact him at birger@ifi.uio.no.

Acknowledgments The work reported in this paper has been funded by The
Research Council of Norway, grant no. 167172/V30 (the SWAT project), and by the
DiVA project grant no. 215412 (EU FP7 STREP).

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/11804192_5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.3035
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.3035
http://dx.doi.org/10.1007/b98116
http://dx.doi.org/10.1007/978-3-642-03764-1_6
http://dx.doi.org/10.1007/978-3-642-03764-1_6
http://dx.doi.org/10.1145/337180.337217
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630242abs.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630242abs.htm
mailto:roy.gronmo@sintef.no
http://folk.uio.no/roygr
mailto:birger@ifi.uio.no
http://dx.doi.org/10.5381/jot.2011.10.1.a8

	Introduction
	Sequence Diagrams, State Machines and Refinement
	A Modeling Process from Sequence Diagrams to State Machines
	Preliminary: Algebraic Graph Transformation
	Our Transformation Rules are Specified in the Concrete Syntax
	Transformation of Sequence Diagrams
	Fragment Operator
	Transformation Rules
	Transformation of Sequence Diagrams Formalized

	Related Work
	Conclusions
	Bibliography
	About the authors

