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Abstract Existing bidirectional model transformation (BX) languages are
mainly state-based: model alignment is hidden inside update propagating
procedures, and model deltas are implicit. Weaving alignment with update
propagation complicates the latter and makes it less predictable and
less manageable. We propose to separate concerns and consider two
distinct operations: delta discovery (alignment) and delta propagation.
This architecture has several technological advantages, but requires a
corresponding theoretical support.

The goal of the paper is to develop a delta-based algebraic framework
for the case of asymmetric BX, where one model is a view of the other. In
this framework, model spaces are categories (nodes are models and arrows
are composable deltas), and delta propagation procedures are mappings
between them. We call the corresponding algebras delta lenses, prove
their several basic properties, and explore their relationships with ordinary
lenses — well-known algebraic models for state-based asymmetric BX.

Keywords Model transformation, Bidirectional transformations, Lenses

1 Introduction

A bidirectional transformation (BX) synchronizes two models by propagating updates
between them. An important class of BXs is when one of the models, say, B, is a
view to the other, A, which abstracts away some information from A; we thus have
a many-to-one relationship between the states of the models. That is, states of B
are deterministically computed from A-states, but different A-states can have the
same B-view. We call such BX asymmetric. The symmetric case of many-to-many
relationship between states of the models is more complicated and considered in
another paper [DXC+11].

Several asymmetric BX systems synchronizing different kinds of models have been
developed [FGM+07, BFP+08, XLH+07, MHN+07, ACS09]. As a rule, they are
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provided with algebraic models specifying behavior of propagating procedures. Indeed,
understanding behavior of synchronization tools, particularly implementing BXs, is
important for the user, who needs precise specifications in order to avoid surprises
after automatic synchronization is done. Many algebraic models are variants of an
algebraic structure called a lens [FGM+07].

A basic lens synchronizing a source model A and a view model B consists of two
operations: unary get that computes (gets) the view, and binary put that computes
the updated source if the view is updated (puts the view update back),

B = get (A) and A′ = put (B′, A), (1)

where unprimed letters denote original, and primed ones updated, states of the models.
To simplify terminology, below we will often say model for a model state.

The intended behavior of a lens is specified by a number of equational laws the
two operations must satisfy, e.g., get (put (B′, A)) = B′. The more laws are stated,
and the more transparent their semantics is, the more predictable is BX’s behavior for
the user.

Lenses, together with most of the existing BX tools, are state-based : propagation
procedures take states of models before and after updates as the input, and do not
require the information about how updates were actually done (normally recorded in
edit logs). Loose coupling between synchronizers and applications provided by this
architecture is an essential technological advantage [FGK+07]. However, it comes at a
price.

Problems of the state-based synchronization. To propagate changes from
model B′ to model A, the tool must first align the two models, that is, map elements
in B′ to the corresponding elements in A, detect changed elements in B′, and then
update the respective elements in A. However, model alignment (also often called
model differencing) is an expensive and complex operation. It is based on fine-grained
heuristics, and depends on objects being aligned and some contextual information
[XS05, TBWK07, LGJ07, AAAN+08]. Weaving model alignment with update
propagation causes two types of problems in the use of synchronization tools.

The first one is related to interfaces. As neither heuristics is absolutely reliable,
the user may want to control the alignment process, for example, choose an alignment
strategy, pick-up a heuristics, or correct an automatically discovered delta. However,
controlling alignment is impossible with state-based interfaces.

The problems of the second type are about semantics of synchronization procedures
and their predictability. Complexities of alignment woven into update propagation
significantly complicate the latter and make it less predictable. Even for simple string-
based structures, operation put shows not quite manageable behavior [BFP+08],
especially if reordering is involved; it is the more so for complex structures as models.
Specifically, in the paper we will show that state-based BXs for model synchronization
suffer from two serious problems:

(P1) ill-formed sequential composition of transformations, and
(P2) lack of reasonable laws regulating compatibility of update propagation with

update composition.
Solutions: Deltas to the rescue. In the center of our approach is the notion

of (intermodel) delta — a specification of commonalities and differences between two
models. To achieve better modularity and separate concerns, we decompose update
propagation into two operations: computing deltas (model alignment or differencing
dif ), and propagating deltas (dput ). In more detail, since alignment between the



source and the view is provided by the view definition, all that we need to align models
B′ and A is delta ∆BB′ between B and B′. Then a pure update propagation operation
dput takes the delta and computes the updated source A′ together with its alignment
to the original source via delta ∆AA′ :

A′ = ∆AA′(A), where ∆AA′ = dput (∆BB′ , A) and ∆BB′ = difY (B,B′), (2)

where Y is a parameter denoting an alignment strategy Y, and ∆AA′(A) denotes
application of the delta to the initial state. Synchronization architecture described by
delta-based schema (2) has the following advantages over state-based schema (1).

1. Schema (2) is more flexible and can be adjusted to quite different user’s needs.

• If the user wants to control alignment and its results (the main mode of
the architecture), then separation of delta discovery and propagation does
allow the user to do that (e.g., the user can correct the results of automatic
alignment ∆BB′ , and pass to dput an improved delta ∆!

BB′).

• Otherwise, the original state-based interface can be recovered by fixing a
strategy Y and reconstructing put by composing difY and dput . Thus,
schema (2) subsumes (1).

• Finally, if the synchronizer can be tightly coupled with the application,
deltas can be obtained by recording the user operations within the applica-
tions; alignment is not needed and operation difY is skipped.

2. Deltas produced by update propagation dput can be passed to the input of
other BX thus reducing the amount of expensive alignment invocations, and
simultaneously ensuring correct composition (thus solving problem (P1)).

3. We will show that operation dput enjoys a cleaner and more manageable
algebraic theory than put , and problem (P2) can be significantly alleviated.

Technical goals of the paper. Synchronization architecture (2) converts update
propagation into delta propagation, and changes the underlying algebraic framework.
The main goal of the paper is to build a simple algebraic model of delta propagation
in the asymmetric case, and specify its properties.

Making deltas explicit essentially changes the specification framework: model spaces
become graphs whose nodes are models and arrows are deltas. Moreover, a fundamental
feature of model deltas is their sequential compositionality, which enjoys associativity
and units (identical deltas); it means that model spaces are categories rather than
just graphs. In addition, operations of update propagation map identity deltas (idle
updates) into identity deltas, and may be compatible with delta composition, that is,
exhibit functorial properties well-known in category theory. Thus, category theory
provides a natural mathematical foundation for delta-based model synchronization,
and a secondary goal of the paper is to demonstrate adequacy and convenience of the
categorical framework. We do not assume any knowledge of category theory from the
reader and explain all categorical concepts we use.

The content. In Section 2 we illustrate two major deficiencies (P1,P2) of the
state-based update propagation with simple examples. Section 3 shows how these
deficiencies can be fixed or alleviated by introducing deltas into the framework; we
also discuss possible implementation of deltas. In Section 4 we formalize the ideas
of Section 3: we introduce delta lenses and prove their basic properties, particularly,
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specifying their relations to state-based lenses.1 Related work is discussed in Section 5,
and Section 6 concludes. In Appendix we show how delta lenses can be applied to
specifying synchronization of structured strings, and describe their relation to matching
lenses.

2 Problems of State-based BXs

Recall that we use the terms “a model” and “a state of the model” interchangeably.

2.1 Background: Lenses, model synchronization, and deltas

We first remind the basic motivation and definition of lenses. Lenses are an asymmetric
BX framework: in the pair of models being synchronized, one model (the view) is
determined by the other (the source). We have a set of source models A, a set of
view models B, and two propagation functions between them, get and put , whose
arities are shown in Fig. 1a. Function get takes a source model A∈A and computes
its view B∈B. Function put takes an updated view model B′∈B and the original
source A∈A and computes an updated source A′∈A.

Definition 1 (adapted from [FGM+07]). A well-behaved (wb) lens is a tuple l =
(A,B, get ,put ) with A and B sets called the source and the view space of the lens,
and get : A→ B and put : B×A→ A are functions such that the laws GetPut and
PutGet in Fig. 1b hold for any A ∈ A and B′ ∈ B. (We write A.get and put (B,A)
for the values of get and put to ease readability.) We write l : A � B for a lens l
with the source space A and the view space B.

A wb lens is called very well-behaved, if for any A ∈ A, B′, B′′ ∈ B the PutPut law
holds as well.

A:A B:B
:get

:put
B':BA':A

(a) Operations

(GetPut) A = put (A.get , A)
(PutGet) (put (B′, A)).get = B′

(PutPut) put (B′′,put (B′, A))
= put (B′′, A)

(b) Equational laws

Figure 1 – Lens operations and laws

In Fig. 1 and below, we use the following
notation. Given a function f : X → Y , we call a
pair (x, y) with y=f(x) an application instance
of f and write (x, y):f or x • :f- y. For a bi-
nary f : X1×X2 → Y , an application instance is
a triple (x1, x2, y) with y=f(x1, x2); we will de-
note it by an arrow with two tails with bullets.
Thus, tuples (A,B) and (B,A,A′) in Fig. 1 are
application instances of operations get and put
resp.

Figure 2 shows a transformation instance in
the lens framework. The source model specifies
Person-objects with their first and last names and birth dates. Each person belongs to
a department, which has a department name. Function get extracts a view containing
the persons from the “Marketing” department and omits their birth dates. The put
function maps view updates back to the source.

Note the change from Melinda French (p1) in state B to Melinda Gates (p1′) in
state B′. This change can be interpreted as the result of two different updates:

(u1) person p1 is renamed, or
(u2) person p1 is deleted from the model and another person p1′ is inserted.

1In our conference paper for ICMT’10, delta lenses were called update-based or u-lenses



:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Department
Name=Marketing

:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

:Department
Name=Technical

p1:Person
FirstName=Melinda
LastName=French

p2:Person
FirstName=Bill

LastName=Clinton

:Department
Name=Technical

:Department
Name=Marketing

state A'u1

state B

state B'

p1→p1'
p2→p2'

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01 p1':Person

FirstName=Melinda
LastName=Gates

p2':Person
FirstName=Bill

LastName=Clinton

:put

:Person
FirstName=Melinda
LastName=Gates

Birth= 1965-01-01

state A

:get

p1→⊥
p2→p2'?b1 b2

:Department
Name=Technical

:Department
Name=Marketing

state A'u2

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

:Person
FirstName=Melinda
LastName=Gates
Birth= Unkown

?

Figure 2 – Deltas do matter
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These updates can be specified by a partially defined mapping b : B ⇒ B′ from
elements of model B to those of B′. For update (u1), mapping b is defined by setting
b = b1 = {p1 • - p′1, p2 • - p′2}; for update (u2), b = b2 = {p1 • - ⊥, p2 • - p′2}
with symbol ⊥ meaning undefined. We call such mappings deltas from B to B′.

A reasonable put -function should translate update (u1) into renaming of Melinda
French in the source, whereas (u2) is translated into deletion of Melinda French from
the source followed by insertion of a new person Melinda Gates with attribute Birth
set to Unknown. Thus, the results of translation A′ should be different, A′u1 6= A′u2,
despite the same argument states (B′, A). The difference may be more serious than
just in the attribute values. Suppose that the model also specifies Cars to be owned by
Persons, and in the source model there was a Car object with a single owner Melinda
French. Then the backward translation of update (u2) must remove this Car-object
as well, and models A′u1 and A′u2 will have different sets of objects.

Thus, in order to compute the updated source correctly, update propagation
operation put must include delta discovery, i.e., discover an update mapping b : B ⇒ B′

in some or another way. However, apart of compromised modularity discussed in
the introduction, hiding delta discovery inside operation put creates two problems
discussed in the next two subsections.

2.2 Problem (P1): ill-formed sequential composition

Compositionality is at the heart of lenses’ applications to practical problems. Writing
correct bidirectional transformation for complex views is laborious and error-prone.
To manage the problem, a complex view is decomposed into a sequence of simple
components, say, model B = Bn is a view of Bn−1, which is a view of Bn−2,..., which
is a view of B0 = A, such that for each component view a correct lens can be found
in a repository. A lens-based language provides the programmer with a number of
operators of lens composition. Sequential composition is one of the most important
operators, and a fundamental result states that sequential composition of wb lenses is
also wb.

Definition 2 (Lens’ composition [FGM+07]). Given lenses l : A � C and k : C � B,
their sequential composition (l; k) : A � B is defined as follows. For any A ∈ A,
A.get (l;k) = A.get l.getk, and for any pair (B′, A) ∈ B×A, put (l;k)(B′, A) = put l(C ′, A)
where C ′ stands for putk(B′, A.get l).

Theorem 1 ([FGM+07]). Sequential composition (l; k) is a (very) well-behaved lens
as soon as both lenses l and k are such.

For example, transformation in Fig. 2 can be implemented by composing two
transformations as shown in Figure 3. The first one (transformation l) removes
attribute Birth, and the second one (transformation k) extracts a list of persons from
Marketing department. In the backward propagation, both transformations have to
rely on model alignment to recover updates from models. Suppose both procedures
use keys (sets of objects attributes providing their unique identification): put l uses
the key {FirstName, LastName}, and putk uses a smaller key {FirstName}, which,
nevertheless, works well for the Marketing Department.

However, sequential composition of these transformations can be incorrect. Sup-
pose Melinda French has married and become Melinda Gates in state B′ in Fig. 3.
Transformation k will successfully discover this update, and modify the last name of
Melinda to Gates in model C ′. However, when transformation l compares C and C ′, it



:getl :getk

:putl :putk

:Department
Name=Marketing

:Department
Name=Technical

:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

state A

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

:Department
Name=Marketing

:Person
FirstName=Bill

LastName=Gates

:Department
Name=Technical

state C

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

state B

:Person
FirstName=Melinda
LastName=Gates

:Person
FirstName=Bill

LastName=Clinton

state B'

:Department
Name=Marketing

:Department
Name=Technical

:Person
FirstName=Melinda
LastName=Gates

Birth=Unkown

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

state A'

:Person
FirstName=Melinda
LastName=Gates

:Person
FirstName=Bill

LastName=Clinton

:Department
Name=Marketing

:Person
FirstName=Bill

LastName=Gates

:Department
Name=Technical

state C'

Figure 3 – Incorrect sequential composition of state-based BXs

will consider Melinda Gates as a new person because her last name is different. Then
put l will delete Melinda French in the source model A and insert a new person with
an unknown birthday thus coming to state A′.

A

C ′A′

C

A C
:getl

l
B

B′

B

Δl Δk

difYl (C, C ′) ≠
 

dif Yk (C, C ′) 

:getk

:putk:putl

k

Figure 4 – Schema of ill-formed sequen-
tial composition of state-based BXs

The result is wrong because the update
produced by transformation k and the up-
date discovered by transformation l are dif-
ferent, and hence the two transformations
should not be composed. The situation is
schematically specified in Fig. 4, where semi-
round block arrows denote deltas produced
by the respective BXs. The schema suggests
a fundamental requirement for sequential
composition of BX: two transformations are
composable only when they coordinate on
both states and deltas. However, this re-
quirement is never specified (and is difficult
to specify) in the state-based frameworks
because deltas are not explicit. We need a
different algebraic model, in which deltas are explicit and occur into inputs and outputs
of the operations.

2.3 Problem (P2): over-restrictive state-based PutPutlaw

The most controversial law of the basic lens framework is PutPut (Fig. 1b). It says that
an updated view state B′′ leads to the same updated source A′′ regardless of whether
the update is performed in one step from B to B′′ or with a pair of smaller steps
B−B′−B′′ through an intermediate state B′. This seems to be a natural requirement
for a reasonable backward propagation put , but many practically interesting BXs fail
to satisfy the law.
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:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

:Person

FirstName=Bill
LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Bill

LastName=Clinton

:Person
FirstName=Melinda
LastName=French

Birth=Unknown

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

state Bstate A

state B'state A'

state B''state A''

:put

:get

:put

(a) (b) 

:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

:Person
FirstName=Melinda
LastName=French

:Person
FirstName=Bill

LastName=Clinton

state Bstate A

state B''state A''

:get

:put

Figure 5 – Violation of state-based PutPut



:getl :getk

:dputl :dputk

d1:Department
Name=Marketing

d2:Department
Name=Technical

p1:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

p2:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

p3:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

state A

p1:Person
FirstName=Melinda
LastName=French

p2:Person
FirstName=Bill

LastName=Clinton

d1:Department
Name=Marketing

p3:Person
FirstName=Bill

LastName=Gates

d2:Department
Name=Technical

state C

p1:Person
FirstName=Melinda
LastName=French

p2:Person
FirstName=Bill

LastName=Clinton

state B

p1:Person
FirstName=Melinda
LastName=Gates

p2:Person
FirstName=Bill

LastName=Clinton

state B'

d1:Department
Name=Marketing

d2:Department
Name=Technical

p1:Person
FirstName=Melinda
LastName=Gates
Birth=1965-01-01

p2:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

p3:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

state A'

p1:Person
FirstName=Melinda
LastName=Gates

p2:Person
FirstName=Bill

LastName=Clinton

d1:Department
Name=Marketing

p3:Person
FirstName=Bill

LastName=Gates

d2:Department
Name=Technical

state C'

a p1→p1  d1→d1
p2→p2  d2→d2
p3→p3

p1→p1  d1→d1
p2→p2  d2→d2
p3→p3

p1→p1
p2→p2
p3→p3

c b

Figure 6 – Fixing sequential BX composition via deltas

Consider our running example. Suppose that in a view B (Fig. 5) the user deletes
Melinda French and comes to state B′. The put -function deletes Melinda in the source
as well and results in state A′. If later the user inserts back exactly the same person
into the view (state B′′), the put -function will insert this new person in the source
and set attribute Birth to Unknown (state A′′ in the figure); indeed, the birthdate of
Melinda was lost in state A′ and cannot be recovered in A′′. However, since the states
B and B′′ are equal, GetPut-law prescribes the states A and A′′ be also equal. Hence,
put (B′′, A) 6= put (B′, A) and PutPut-law fails for a quite reasonable transformation.
Yet removing PutPut from the list of laws is also not a good solution because it frees
BXs from any obligations to respect somehow update composition.

3 BXs based on delta propagation

3.1 Fixing the problems by deltas

Figure 6 demonstrates how the problem of state-based BX sequential composition can
be fixed with the delta-propagation framework. In more detail, we require that deltas
occur into both the input and the output of the backward propagation procedure dput .
Then two BXs are composed by passing the delta produced by the first BX to the
input of the second. Delta discovery is only required for the very first transformation
in the chain.

In a similar way, making deltas explicit allows us to fix violation of PutPut-law
in the example of Fig. 5. We present operation put as sequential composition of
two operations, difY and dput , where difY computes deltas (with a fixed alignment
strategy Y ), and dput propagates them as we discussed above.

Let b = difY (B,B′), b′ = difY (B′, B′′) be two deltas shown in Fig. 7. Formally,
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b:dput

:get

p1→⊥
p2→p2'a

p1:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

p2:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

state A

q1: Person
FirstName=Melinda
LastName=French

q2: Person
FirstName=Bill

LastName=Clinton

state B

p2':Person

FirstName=Bill
LastName=Clinton
Birth=1945-01-01

state A'

q2': Person
FirstName=Bill

LastName=Clinton
state B'

  p1'':Person
FirstName=Melinda
LastName=French

Birth=Unknown

p2'':Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

state A''

q1'': Person
FirstName=Melinda
LastName=French

q2'': Person
FirstName=Bill

LastName=Clinton

state B''

:dput

q1→⊥
q2→q2'

p2'→p2''a' b'q2'→q2''

q1→⊥
q2→q2'‘

p1→⊥
p2→p2'‘

a;a' b;b'

Figure 7 – Fixing PutPut via deltas

by specifying deltas by mappings, we have b = {q1 • - ⊥, q2 • - q′2} and b′ =
{q′2 • - q′′2}. Now we consider the PutPut requirements separately for difY and
dput . For delta propagation dput , PutPut-law should require preservation of delta
composition:

dput (b; b′, A) = dput (b, A);dput (b′, A′) (3)

that is, if we first propagate b and then propagate b′, we should get the same
result as if we propagate the composed delta b; b′. And indeed, this constraint
holds in the example: if a = dput (b, A) = {p1 • - ⊥, p2 • - p′2} and a′ =
dput (b′, A′) = {p′2 • - p′′2}, then sequential composition a; a′ = {p2 • - p′′2} is
exactly dput (b; b′, A), where b; b′ = {q2 • - q′′2}. Note that b; b′ is different from the
identity update {q1 • - q′′1 , q2 • - q′′2} (indeed, information that objects q1 and q′′1
are the same is beyond updates b and b′). Hence, update a; a′ is also not identity.

For differencing operation difY , PutPut would require

difY (B,B′′) = difY (B,B′);difY (B′, B′′). (4)

However, this is an evidently misleading requirement. For two identical models, B
and B′′, it is quite reasonable that difY returns the identity update distinct from
b; b′. Thus, although PutPut-law holds for delta propagation dput , PutPut fails for
the state-based propagation put because it fails for differencing difY .



p1:Person
FirstName=Melinda
LastName=French
Birth=1965-01-01

p2:Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

d1:Department
Name=Marketing

p3:Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

d2:Department
Name=Technical

q1:Person
FirstName=Melinda
LastName=French

q2:Person
FirstName=Bill

LastName=Clinton

d2':Department
Name=Technical

d1':Department
Name=Marketing

state A'

state B

state B'

q1→⊥
q2→q2'

p2':Person
FirstName=Bill

LastName=Clinton
Birth=1945-01-01

p3':Person
FirstName=Bill

LastName=Gates
Birth=1955-01-01

q1':Person
FirstName=Melinda
LastName=Gates

q2':Person
FirstName=Bill

LastName=Clinton

p1':Person
FirstName=Melinda
LastName=Gates
Birth= 1965-01-01

state A

:get

:get

p1→⊥ d1→d1'
p2→p2'  d2→d2'
p3→p3'

a

:dget b

Figure 8 – Forward update propagation

3.2 Forward delta propagation

The PutGet law (see Fig. 1b) is crucial for specifying semantics of state-based lenses: it
states that backward update propagation must be consistent with the view definition.
In the delta-based framework, we must formulate a similar law for operation dput
and require that if delta a : A→ A′ is the result of backward propagation of delta
b : B → B′, a = dput (b, A), then dget (a) = b, where dget denotes operation of
forward delta propagation, and is often derivable from the view definition.

Figure 8 illustrates how to derive dget in our example. Note that each object qi in
the view can be traced back to the corresponding object pi = back (qi) in the source
(i = 1, 2), and we define b(qi) = q′i iff back (q′i) = a(pi). This is a general idea: when
we execute a (forward) transformation program (the view definition), normally we
not only get a view but also a set of traceability links between objects in the view
and those in the source [Jou05, XLH+07], which allow us to propagate deltas and
derive function dget . The mechanism works well for so called monotonic views (see
[Dis09] for details), and it is known from the relational database theory that views
defined by Select-Project-Join queries are monotonic. This class of queries covers
many practically important cases, and we thus have a simple forward propagation
mechanism for a wide class of transformations on relational-like data. However, there
are situations in which dget cannot be derived from the view definition. For example,
this is often the case for complex views on graph-based hierarchical data; nevertheless,
a reasonable operation dget can be still specified separately in addition to the view
definition [AMR+98].

3.3 Implementation of deltas

So far we have considered deltas as partially defined mappings between models. Given
such a mapping a : A→ A′, those elements of A for which a is undefined are considered
to be deleted, elements of A′ beyond the range of a are those newly created, and
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if an A-element is preserved but one or more of its attributes change their values,
the element is modified. Thus, the mapping representation allows us to restore the
changes unambiguously, but it is very uneconomic. Indeed, normally updates only
involve small parts of models, and hence update mappings would be mostly identities
with much of information duplicated. We will consider two practically implementable
representation of deltas.

Overriding. A reasonable idea is to specify directly what is changed in model A.
Such changes can be often seen as a new small model ∆A so that the updated model
is A′ = A

−→∪ ∆A, where
−→∪ denotes a non-commutative overriding union (o-union)

operation. It works as follows: fresh elements from ∆A are added to A, whereas
elements from A ∩∆A are overridden by ∆A; if an element from A is to be deleted, it
occurs in ∆A and is labeled with a special “killing” value ⊥ (or Null). Thus, a pair
a = (A,∆A) uniquely determines the updated model A′ and we may write a : A→ A′;
we will call this representation of deltas overriding. It is easy to see that the mapping
and the overriding representations of deltas are mutually convertible.

Overriding representation is well-known in the database literature on the incre-
mental view maintenance [GM95]. A typical instance of overriding in the model
transformation area is the approach used in Beanbag [XHZ+09]. Models are converted
into dictionaries. For example, model B in Fig. 2 can be represented as the following
dictionary.

{p1 -> {fName -> Melinda,
lName -> French},

p2 -> {fName -> Bill,
lName -> Clinton}}

The outermost dictionary maps the IDs of the objects to the objects themselves,
which are also represented as dictionaries. A dictionary of an object maps the property
names to the property values.

Updates are also encoded by dictionaries. For example, update (u1) renaming
Melinda French into Melinda Gates is represented by the following dictionary.

{p1 -> {lName -> French}}

Update u2 that deletes Melinda French and inserts Melinda Gates is given by
dictionary:

{p1 -> Null,
p1’-> {fName -> Melinda,

lName -> Gates}}

Thus, a delta is a pair of dictionaries b = (B,∆B) representing the source model
and the update resp. To obtain the updated model B′ = B

−→∪ ∆B , we simply override
the corresponding mappings in B with those in ∆B . Importantly, so defined o-union
is associative.

Overriding delta representations can be sequentially composed. Having a : A→ A′

with A′ = A
−→∪ ∆A, and a′ : A′ → A′′ with A′′ = A′

−→∪ ∆A′ , we define a; a′ =
(A,∆A

−→∪ ∆A′). Since

A
−→∪ (∆A

−→∪ ∆A′) = (A
−→∪ ∆A)

−→∪ ∆A′ = A′
−→∪ ∆A′ = A′′,



delta a; a′ is indeed a delta from A to A′′ as required. This composition is associative
(since o-union is associative), and the empty delta ∅ is the neutral unit:

(A,∅); a = a = a; (A′,∅)

because ∅ −→∪ ∆A = ∆A = ∆A
−→∪ ∅.

Forward propagation of overriding deltas takes the following form. A source delta
a : A→ A′ with A′ = A

−→∪ ∆A is propagated into view delta b = dget (a) : B → B′,
where B = get (A) and B′ = B

−→∪ ∆B with ∆B being the result of propagating ∆A to
the view side. We want this propagation to be compatible with the view definition
(be forward correct), and so require B′ = get (A).

In many practically interesting cases, we can treat ∆B and ∆A as models and
directly use get to produce ∆B from ∆A: ∆B = get (∆A). Then forward correct-
ness amounts to distributivity of view computation wrt. o-union: get (A

−→∪ ∆A) =
get (A)

−→∪ get (∆A), and operation dget is derived from the view definition. In more
complex cases of non-distributive views, we may still assume that a correct delta prop-
agation operation is defined separately and augments the view definition; a discussion
and references can be found in [ESRM06]. Backward delta propagation is defined
separately from the view definition anyway.

Operational representation. Another typical way to implement deltas is to
present them operationally as sequences of edit operations [CRP07], and some differ-
encing tools work in this mode [AP03, AAAN+08].

A typical set of operations include:

• create(o) Create an object with ID o.

• delete(o) Delete an object with ID o.

• change(o, p, v) Change property p of object o to value v.

Accordingly, a delta is a pair a = (A, s) where A is a model and s is a sequence of
operation instances to be applied to A. An operation instance is an operation from
the above list, whose formal parameters are bound by elements from A; the result is
an updated model A′ = s(A) and we may write s : A→ A′.

Operationally represented deltas can be sequentially composed by concatenating
their edit sequences. Having a = (A, s) with A′ = s(A), and a′ = (A′, s′) with
A′′ = s′(A′), we define a; a′ = (A, s′′) where s′′ = s; s′. It is easy to see that
s′′(A) = (s; s′)(A) = s′(s(A)) = s′(A′) = A′′, so that we indeed have sequential
composition. It is associative with the empty sequence e being the unit.

An advantage of the operational representation is that we can easily add domain-
specific operations. For example, if the model is a sequence of objects, we may add
an operation move as an abbreviation of a sequence of property change operations.
Operations like dget and dput could treat move in a special way to improve perfor-
mance. On the other hand, operational representation always require an independent
implementation of delta propagation, since we cannot directly apply get to a sequence
of edit operations.

4 Delta lenses: Delta-based BX, algebraically

In this section we specify delta-based constructions described above in an abstract
formal way. In Section 4.1 we define model spaces as categories, thus summarizing

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki. From State- to Delta-Based Bidirectional Model
Transformations: the Asymmetric Case. In Journal of Object Technology, vol. 10, 2011, pages 6:1–25.
doi:10.5381/jot.2011.10.1.a6

http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.5381/jot.2011.10.1.a6


our preceding discussion of delta implementation. Then we define BX based on delta
propagation (Section 4.2) and their sequential composition (Section 4.3). In Section
4.4 we show that state-based lenses can be indeed presented as delta lenses equipped
with a model differencing operation. Section 4.4 is a brief discussion of the delta lens
formalism.

4.1 Abstract deltas: Models spaces as categories

In our examples, we have considered concrete representations of models and deltas.
Now we abstract away their internal structure, and make them indivisible nodes
and arrows resp. Our discussion of deltas in Section 3.3 shows that irrespectively of
representation, deltas have the following properties.

1. A delta has a source model and a target model.
2. There may be multiple deltas between two models.
3. There is a delta between any two models conforming to the same metamodel.
4. Deltas can be composed sequentially: given deltas a : A→ A′ and a′ : A′ → A′′,

their composition, delta (a; a′) : A→ A′′, is uniquely defined.
5. For any model A, there is a special identity delta idA : A→ A specifying an idle

(empty) update of model A resulting in the identity alignment of A to itself.

Hence, a model universe appears as a graph (points 1,2) with composable arrows
(4), which is connected (3) and reflexive (5) — see Background box below for precise
definitions (where we write “a set X of widgets” instead of “a set X of abstract elements
called widgets”). Moreover, discussion in Section 3.2 suggests to require composition
to be associative with identity loops being its neutral units. All these requirements
can be concisely summarized as follows.

Definition 3. A model space is a connected category A, whose nodes are called
models and arrows are (model) deltas. (See the Background box for the definition of
category.) Sometimes we will call deltas updates.

Background: Graphs. A graph G consists of a set of nodes G0 and a set of
arrows G1 together with two functions ∂s : G1 → G0 and ∂t : G1 → G0. For an
arrow a∈G1, we write a : A→ A′ if ∂sa = A and ∂ta = A′ and call nodes A the
source and A′ the target of a. A graph is connected, if for any pair of nodes A,A′

there is at least one arrow a : A→ A′.
A reflexive graph is additionally equipped with operation id : G0 → G12 that

assigns to each node A a special arrow idA : A→ A called identity.

Background: Categories. A category is a reflexive graph with well-behaved
composition of arrows. In detail, a category is a pair C=(|C|, ; ) with |C| a reflexive
graph and ; a binary operation of arrow composition, which assigns to arrows
a : A→ A′ and a′′ : A′ → A′′ an arrow a; a′ : A→ A′′ such that the following two
laws hold: a; (a′; a′′) = (a; a′); a′′ for any triple of composable arrows (Associativity),
and idA; a = a = a; idA′ (Neutrality) of identity wrt. composition.

We write A∈C for a node A∈|C|0, and a∈C for an arrow a∈|C|1.

4.2 Delta lenses

In the state-based framework, model spaces are sets and a view is a function between
these sets. In the delta-based framework, model spaces are graphs, and a view definition



put

A

A′

:get0

:put

:get0

:get1

B

B′

ba

B0

B1

get0
A0

A1
get1

∂s ,∂t∂s ,∂t

(a)

(b)

Equational laws
(GetInc) ∂x(a.get1) = (∂xa).get0, x = s, t

(1)(PutInc1) put(b, A) is defined iff A.get0 = ∂sb
(PutInc2) ∂sput(b, A) = A

(GetId) idA.get1 = idB with B
def
= A.get0 (2)

(PutId) idA = put(idB , A) with B
def
= A.get0

(PutGet) (put(b, A)).get1 = b (3)
(GetGet) (a; a′).get1 = (a.get1); (a′.get1) (4)(PutPut) put(b; b′, A) = put(b, A); put(b′, A′)

with A′
def
= ∂tput(b, A)

Figure 9 – Delta lens operations and laws. Diagram (a) specifies arities of functions in-
volved, and (b) presents general application instances. Laws (1),(2) and (4) require
preservation of incidence relationships, identity deltas and delta composition resp.; law
(3) is backward correctness of update propagation.

provides two components: a function on nodes get : A0 → B0 computing views of
source models, and a function on arrows dget : A1 → B1 translating deltas in the
source space (in whatever representation) to deltas in the view space (in the same
representation; cf. our discussion in Section 3.3).

Evidently, the pair (get ,dget ) should preserve the incidence between models and
updates (as prescribed by GetInc-law in Fig. 9), and hence constitute a graph morphism
get : A→ B (see the Background box) with get0 = get and get1 = dget . Note that
for overriding deltas, this requirement amounts to forward correctness discussed in
Section 3.3.

Another reasonable requirement is that identity deltas (idle updates) on the source
are mapped to identity deltas on the view as prescribed by (GetId-law) in Fig. 9, group
(2). In other words, forward update translation get is required to be a semi-functor.
Background: Graph morphisms. Let A and B be graphs. A graph morphism
g : A→ B is a pair of functions g i : Ai → Bi, (i=0,1) that preserves the incidence
relations between nodes and arrows: ∂xf1(a)=f0(∂xa), x = s, t.

Background: Functors. Let A and B be categories. A semi-functor f : A→ B
is a graph morphism f : |A| → |B| that preserves identities: f1(idA) = idf0(A).

A semi-functor is called a functor if composition is also preserved: f 1(a; a′) =
f 1(a); f 1(a′).

Backward update translation is given by a function put : B1×A0 → A1, which
takes a delta in the view space and produces a delta in the source. Similarly to ordinary
lenses, it also takes the initial state of the source model as its second argument to
recover information missing in the view. Examples of put can be found in Section 3
(where it was denoted by dput ).

The backward translation must satisfy the following three technical laws ensuring
that the formal model is adequate to the intuition.

Law (PutInc1). Applying put to a view update b : B → B′ and a source A, we
assume that B is the view of A, i.e., A.get0 = B as prescribed by PutInc1-law in
Fig. 9. Thus, though function put is partially defined, this partiality is technical and
ensures right incidence between deltas and models: this gives us the “only if” half of
the law PutInc1. On the other hand, we require that for any pair (b, A) that satisfies
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the required incidence, the backward translation is defined, which gives us the “if”
half of the law. In this sense, PutInc1 is analogous to Totality requirement in the lens
framework [FGM+07].

Law (PutInc2) says that the result of put(b, A) is to be an update of model A.
Law (PutId) requires that identity deltas (idle updates) in the view space are

translated into identity deltas (idle updates) in the source.
Five laws introduced above (groups (1) and (2) in Fig. 9) state the most basic

properties of get and put operations, which ensure that the formal model is adequate
to its intended meaning. The other three laws specified in Fig. 9 provide more ad-
vanced properties of update propagation, which further constrain the transformational
behavior.

The PutGet-law ensures the correctness of backward propagation. It is similar to
the corresponding state-based law in Fig. 1, but is defined on deltas rather than states.
The incidence laws allow us to deduce PutGet for states from PutGet for deltas. Note
that we do not require GetPut-law on deltas because some information contained in
delta a : A→ A′ is missing from its view get1(a) and cannot be recovered from a’s
source A. As for the state-based law GetPut, its actual meaning is identity preservation
given by ours PutId-law.

Finally, GetGet and PutPut laws state compatibility of update propagation with
update composition.

Definition 4 (delta lens). A delta lens is a tuple l = (A,B, get, put), in which A and
B are model spaces (i.e., connected categories) called the source and the target of
the lens, get : A→ B is a graph morphism providing B-views of A-models and their
deltas, and put : B1×A0 → A1 is a function translating view deltas back to the source
so that laws PutInc1 and PutInc2 in Fig. 9 are respected.

A delta lens is called well-behaved (we will write wb) if it also satisfies GetId, PutId
and PutGet laws. Particularly, GetId means that get is a semi-functor.

A wb delta lens is called very well-behaved if it satisfies GetGet and PutPut laws.
Particularly, GetGet makes get a functor.

We will write l : A � B for a delta lens with source A and target B, and denote
the functions by getl and putl. We will often write d-lens for delta lens.

Remark. The terminology adopted in the definition above is chosen in parallel with
state-based lenses. A slight difference is that the latter are simply pairs of functions
without additional conditions while delta lens’ get and put without incidence laws do
not make sense. Therefore we have included them into the very notion of delta lens.

4.3 Sequential composition of delta lenses

As we discussed in Section 2.2, sequential composition of lenses is crucial for their
practical applications. In the present section we will define sequential composition
of d-lenses and prove that composition of two (very) wb d-lenses is also a (very) wb
d-lens.
Background: Functor composition. Given two semi-functors between categories,
f : A→ B and g : B→ C, their composition f;g : A→ C is defined componentwise
via function composition: (f;g)i = f i; g i, i = 0, 1. Evidently, f;g is a semi-functor
again. Moreover, if f and g are functors, their composition is also a functor (the
proof is straightforward).



Definition 5. Let l : A � B and k : B � C be two d-lenses. Their sequential com-
position is a d-lens (l; k) : A � C defined as follows. Forward propagation of (l; k) is
sequential composition of semi-functors, get(l;k) def

= getl; getk

Backward propagation is defined as follows. Let c : C → C ′ be an update in space
C, and A ∈ A a model such that A.get(l;k)0 = C, that is, B.getk0 = C with B denoting
A.getl0. Then put(l;k)(c, A) = putl(b, A) with b = putk(c,B).

Theorem 2. Sequential composition of two (very) wb d-lenses is also a (very) wb
d-lens as soon as the components are such.

A •
:getl- B •

:getk- C

:putl⇐ :putk⇐

A′
?
• - B′

?
• - C ′

?

:putl⇐ :putk⇐

A′′
?
• - B′′

?
• - C ′′

?

Proof. The get-part of the theorem is evident:
sequential composition of semi-functors (func-
tors) is a semi-functor (functor). The put-part
needs just an accurate unraveling of Definition 5
and straightforward checking of the laws. The in-
set diagram explains it all (dashed vertical arrows
denote deltas computed by put-operations, and
horizontal arrows show view computation).

Another important result is that sequential composition of d-lenses is associative.
It directly follows from associativity of function composition. Also, for any space A,
there is the identity d-lens idA : A � A whose get and put functions are identities and
hence idA is neutral wrt. lens composition. These two facts can be concisely stated as
follows.

Theorem 3. Collection of model spaces as nodes and d-lenses as arrows is a category.
We denote it by DLens.

In addition, Theorem 2 together with the fact that any identity d-lens is trivially
very wb imply the following.

Corollary 4. Collections of spaces as nodes and (very) wb d-lenses as arrows form
categories DLenswb (DLensvwb), respectively. Thus, we have inclusions DLensvwb ⊂
DLenswb ⊂ DLens of categories of d-lenses.

4.4 S-lenses = D-lenses + Differencing

If an alignment strategy Y is fixed, model differencing difY becomes a binary operation
that takes two models (from the same model space) and returns their delta.

Definition 6. Differencing over a model space B is a binary operation
dif : B0×B0 → B1 satisfying the incidence law DifInc in Fig. 10. It is called well-
behaved (wb) if the DifId-law holds.

B

B′

b:dif (DifInc) ∂sdif (B,B′) = B, ∂tdif (B,B′) = B′

(DifId) dif (B,B) = idB

Figure 10 – Differencing operation and its laws
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Definition 7 (dd-lenses). A d-lens with differencing (dd-lens) is a pair ` = (l,dif )
with l=(get, put): A � B an d-lens and dif a differencing operation over B. A dd-lens
is called well-behaved (wb) if both d-lens l and operation dif are wb. A dd-lens is very
wb if, an addition, l is very wb.

Theorem 5. Any well-behaved dd-lens ` gives rise to a well-behaved s-lens `0.

Proof. Given a dd-lens `=(get, put,dif ): A � B, we define an s-lens `0: A0 � B0

as follows. For any models A ∈ A0 and B′ ∈ B0, we set A.get`0 def
= A.get`0 and

put`0(B′, A)
def
= ∂tput`(dif`(B,B′), A) where B = A.get`0. It is easy to check that

s-lens laws in Fig. 1b (page 4) follow from the differencing laws in Fig. 10 and d-lens
laws in Fig. 9. In more detail, given the incidence laws for differencing and d-lenses,
laws DifId and d-lens PutId imply s-lens GetPut, and d-lens PutGet ensures s-lens
PutGet.

The theorem shows that we do not loose expressiveness with unweaving propagation
and differencing: an s-lens behavior can be recovered from a respectively restricted
behavior of the component d-lens and dif . Note also that s-lens GetPut is ensured by
PutId, and hence is an identity propagation law rather than an invertibility requirement
similar to PutGet.

Theorem 6. Any very well-behaved dd-lens satisfies the following conditional version
of the state-based PutPut.

Let Difdif and Putput denote the following ternary predicates over model states:
Difdif (B,B′, B′′) iff dif (B,B′);dif (B′, B′′) = dif (B,B′′), and Putput (A,B′, B′′)
iff s-lens PutPut holds for (A,B′, B′′) (see Fig. 1). Then for all A∈A, B′, B′′∈B the
following holds :
(PutPutcond) if Difdif (A.get0, B′, B′′) then Putput (A,B′, B′′)

Proof. Given Difdif (B,B′, B′′) with B = A.get, d-lens PutPut together with
incidence laws provide Putput (A,B′, B′′).

Note that like s-lens PutPut, law PutPutcond is also formulated for states but is
weaker: it requires Putput not for all triples (A,B′B′′) but only for those satisfying
the Difdif −premise. Hence, a BX that fails to satisfy the ordinary PutPut, may still
satisfy the conditional PutPutcond (like in our example in section 3.1).

Unfortunately, in some situations, PutPut may fail even for delta propagation.
To see that, we modify example considered in Fig. 5 in the following way. Suppose
that the view also shows Persons’ birth years. When putting the updated year back,
function put uses the month and the day of the month in the original source to restore
the whole birthdate. Now, if a Person’s birthdate is 1984-02-29, changing the year to
a non-leap one, say, 1985, in state B′ will be propagated back to the date 1985-?-?
in state A′. Changing the year in the view back to 1984 in state B′′ gives us the
identity update b′′=b; b′=idB : B → B (as B = B′′) to be propagated back into identity
a′′=idA : A→ A (as A = A′′). However, update a′ : A′ → A′′ cannot restore the lost
date 02-29 and hence a; a′ 6= a′′. We leave this problem for future work.

4.5 Towards richer delta frameworks

We will outline several possible extensions of the delta lens framework, which we
consider to be potentially useful theoretically or practically.

The abstract categorical foundations of delta lenses make them a really flexible
algebraic model: abstract deltas (arrows between models) can be interpreted as



overriding deltas, or as edit logs, or as mappings between models. In Section 3.3 we
outlined these interpretations in a semi-formal way; with precise formal definitions of
overriding and edit-log deltas, these interpretations could be specified formally and
proven to be formal refinements of the abstract delta lens theory. New important
laws specific for a particular implementation may emerge in this way (for example,
distributivity of view computation wrt. overriding deltas). We may also consider
richer deltas that allow merging and splitting objects; their mapping representations
then become binary relations rather than partially defined injections considered in the
paper. Delta lenses may be also applicable to specifying synchronization of structured
strings with reordering allowed. Appendix presents a first step in this direction; more
could be done by rearranging the formalism of matching lenses in delta terms.

The delta framework can be extended with traceability mappings between the view
and the source. Then propagation operations (forward and backward) take an (update)
delta and a traceability mapping as their input, and produce a delta on the other side
and an updated traceability mapping. The four operands are modeled by arrows and
form a square (called a tile); composition of propagation operations then amounts to
tiling (i.e., fitting tiles together by their sides) in the vertical and horizontal dimensions.
This setting gives rise to a general tile algebra framework for model synchronization
described and discussed in [Dis09]. Particularly, tiling of the asymmetric BX amounts
to so called double categories [Dis11], which compactly encode complex compositional
properties. On the other hand, applying the delta-centered approach to symmetric
BX gives rise to an essentially different, and much richer, tile-based world [DXC+11].

Finally, we have also shown that model spaces as nodes and delta lenses as
arrows themselves form a category. Hence, important constructions (combinators) on
delta-lenses (e.g., parallel composition) should be readily defined by using standard
categorical means. A rich set of combinators would support design of a programming
language for writing delta-based asymmetric BX.

5 Related Work

A well-known idea is to use incremental model transformations operating with updates
to speed up synchronization, e.g., [GW09]. However, semantics of these approaches
is state-based and updates are only considered as an auxiliary technological means.
Ráth et al. [RVV09] propose change-driven model transformations that map updates
to updates, but they only concern uni-directional transformations, consider updates
only operationally, and do not provide a formal framework.

Some researchers motivated by practical needs have realized the limitation of the
state-based approach and introduced update modeling constructs into their frameworks.
Xiong et al. enrich a state-based framework with updates to deal with situations where
both models are modified at the same time [XLH+07, XSHT11]. Foster et al. augment
basic lenses with a key-based mechanism to manage alignment of sets of strings,
coming to the notion of dictionary lens [BFP+08]. However, even in these richer (and
more complex) frameworks updates are still second-class entities. Transformations
still produce only states of models, and the transformation composition problem
persists. This problem is attacked in the framework of matching lenses [BCF+10],
whose relation to delta lenses is discussed in Appendix. Note also that matching lenses
assume that the chunk structure is fixed and the view function get cannot add, delete,
or reorder chunks; hence the construct is not directly applicable to the area of model
transformations, in which filtering objects is common for view creation.
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On the theoretical side, a different delta-based algebraic model of asymmetric BX
is proposed in [Dis09], in which traceability mappings explicitly occur in the inputs
and outputs of operations; the paper also includes view (transformation) definitions
into the framework, which are modeled as mappings between metamodels. Close to
the present paper is work by Johnson and Rosebrugh, who consider the view update
problem in the database context and employ category theory (see [JR08] and reference
therein). For them, updates are also arrows, a model space is a category and a view is
a functor. However, in contrast to the lens-based frameworks including ours, in which
models are points without internal structure, for Johnson and Rosebrugh models are
functors from a category considered as a database schema to the category of sets and
functions. This setting is too detailed for our goals, complicates the machinery and
makes it heavily categorical. Also, while we are interested in the laws of composition
(of transformations and within a single transformation via PutPut), they focus on
conditions ensuring existence of a unique update policy for a given view. Further,
they do not consider relations between the update-based and state-based frameworks,
which are our main concern in the paper.

6 Conclusion

The paper identifies several problems of state-based BXs caused by weaving alignment
and update propagation: poor modularity, incorrect sequential composition of trans-
formations, and ill-formed PutPut-law regulating interaction of update propagation
with update composition. It is shown that these problems can be managed if update
propagation procedures are decomposed into delta discovery (model diff) followed by
a pure delta propagation. Importantly, the latter inputs and outputs not only models
but also deltas between them. The corresponding algebraic framework of delta lenses
is developed, in which model spaces are categories, and propagation procedures are
mappings between them compatible with the categorical structure (arrow composition
and identity arrows). Delta lenses form a proper extension of the ordinary lens for-
malism: we have shown that behavior of state-based lenses can be recovered within
the delta lens framework. Nevertheless, delta lenses enjoy a semantically transparent,
and technically manageable, algebraic theory. Perhaps most importantly, delta lenses
support a modular architecture of BX tools, which can be adapted to different user’s
needs.
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A Appendix. Delta lenses vs. reordering

Several lens formalisms aim to specify synchronization of structured strings [BFP+08,
FPP08, BCF+10]. In many cases, a structured string can be considered as an (ordered)
sequence of chunks (substrings with a certain structure). Chunks can be added, deleted
or reordered. The get functions are supposed to work only inside the chunks, and do
not delete, add or reorder chunks.

To deal with this kind of data, Barbosa et al. developed a construct of matching
lens [BCF+10] aiming at separating alignment from update propagation. The construct
is fairly complex: a matching lens consists of several functions subjected to a mixed
set of state- and delta-based laws, which have (quoting the authors) “a somewhat
low-level and operational feeling” [BCF+10, p.5]. In this section, we will show that
the notion of matching lens can be readily simulated (and clarified) within the delta
lens framework.

We start by defining the domain of structured strings in our terms. Assuming the
space of chunks is defined as a model space (connected category) A, we build a new
model space/category A∗ of model sequences as follows.

Definition 8 (matching deltas). (i) A∗-objects are sequences A = (A1...An) of A-
objects. We define |A| to be the n-element set {1..n} of numbers lesser than n. In
[BCF+10], elements of |A| are called locations and objects Ai chunks.

|a|(i) • - A|a|(i)

i ∈ |A′|

|a|
•
6

• - A′i

ai
?

j ∈ |A′′|

|a′|
•
6

• - A′′j

a′j
?

Figure 11 – Matched deltas
and their composition

(ii) A A∗-arrow a : A→ A′ is a pair (|a|, a§) with
|a| : |A′| → |A| a partial function mapping locations to
locations, and a§ = (ai)i∈dom|a| a sequence of A-arrows
ai : A|a|(i) → A′i as shown by the upper square in Fig. 11.
The intuition is that updating a sequence of models
(chunks) consists of two parts. The first one (given by
function |a|) is reordering of chunks with, perhaps, adding
new chunks at locations for which |a| is not defined. The
second part (a§) is a sequence of deltas between the
chunks matched by |a|. We will call A∗-arrows matched
deltas.

If the model space is a thin connected category (see
Background box below), then the second component of a delta is trivial, and a
matching delta is actually given by function |a| matching locations. This is the
situation considered in [BCF+10].
Background: Thin categories. A category A is called thin if there is at most
one arrow a : A→ A′ for any given pair of nodes (A,A′). For example, a partially
ordered set (A,�) can be seen as a thin category, whose arrows are pairs (A,A′) for
which A � A′.
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For uniformity, and to simplify technicalities below, it is convenient to make function
|a| total and set |a|(i) = 0 when it is undefined. Correspondingly, for any sequence A
we assume |A| = {0, 1, .., n} and set A0 = Ω, where Ω denotes the minimally possible
(initial) model in space A (for example, one may think of the empty model or the
model with the only Root object); Background provides a precise definition. Hence,
if A′i is a new chunk (see the diagram above), then ai is a trivial delta ωA′

i
: Ω→ A′i.

Thus, a matched delta a : A→ A′ appears as a tuple (|a|, a1, .., a|A′|) in which some
components may be ω-arrows.
Background: Initial objects. Given a category A, an object Ω ∈ A0 is called
initial if for any object A ∈ A0 there is one and only one arrow ωA : Ω→ A

Theorem 7. Given a model spaceA, the universeA∗ of model sequences and matched
deltas is a category.

Proof. Composition of matching deltas a : A→ A′ and a′ : A′ → A′′ is defined as
shown by Fig. 11 with i = |a′|(j)), that is, |a; a′| def= |a|; |a′| and (a; a′)j

def
= (a|a′|(j)); (a′j).

It is associative because functional composition (of |a|’s) and delta composition in
A are such. Given an object A ∈ A∗, the identity matching delta idA is defined by
setting |idA| = id|A| and (idA)i = idAi . It is easy to see that it is indeed the identity
wrt. composition.

Definition 9 (matching delta lens). Let l = (get, put) : A � B be an delta lens. It
gives rise to a matching lens l∗ = (get∗, put∗) : A∗ � B∗ in the following way.

If A = (Ai)i∈|A| is an A∗-object, then |A.get∗| def= |A| and (A.get∗)i
def
= Ai.get for

each i ∈ |A|, which gives us a B∗-object of length |A|.
If a : A→ A′ is an A∗-arrow, then a.get∗ : A.get∗ → A′.get∗ is the following B∗-

arrow: |a.get∗| def= |a| : |A′| → |A| and for each i ∈ |A′|, (a.get∗)i
def
= ai.get. It is easy

to check that conditions of Definition 8(ii) are fulfilled, and hence a.get∗ is a correct
B∗-arrow.

A|b|(i) •
:get- B|b|(i) �• |b|(i) ∈ |B|

:put⇐

A′i

?
•

:get- B′i

bi
?
� • i ∈ |B|

|b|
•

6
If b : B → B′ is an arrow in B∗, and

A is an A∗-object such that A.get∗ = B,
then the matching delta put∗(b, A) : A→ A′

is defined as illustrated by the inset figure,
(where derived arrows are dashed), to wit:
(i) |put∗(b, A)| def= |b| : |B′| → |B| (which also
means that |A′| = |B′|); and (ii) (put∗(b, A))i

def
= put(bi, A|b|(i)) for each i ∈ |B′|. It is

easy to check that all incidence conditions are respected, and so l∗ is an delta lens
indeed.

Note that by condition (ii), the i-th component (chunk) of the source update
is computed by applying operation put∗ to the i-th delta of the view update and
|b|(i)-chunk of the source, that is, those chunk of the source that matched the i-th
chunk before the update. Since operations get∗ and put∗ are defined componentwise,
the following result is straightforward.

Theorem 8. Matching lens l∗ is (very) well-behaved as soon as lens l is such.

This theorem is a delta lens generalization of the Lowering lemma in [BCF+10].
In our definition of matching deltas and lenses, we have identified elements of

spaces A∗, B∗ with sequences of chunks. The notion of matching lens introduced in



[BCF+10] is more complicated: elements of the source and target spaces are sequences
plus some “framing” structure containing placeholders for chunks. They call this
additional structure of “model” A the skeleton of A. Let’s call a skeleton trivial, if it
coincides with a bare list of locations. It is easy to see that if model spaces are thin
categories, then our notion of matching delta lens coincides with matching lenses of
[BCF+10] with trivial skeletons.
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