
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

A Rewriting Logic Semantics for ATL

Javier Troyaa Antonio Vallecilloa

a. GISUM/Atenea Research Group. Universidad de Málaga, Spain.

Abstract As the complexity of model transformation (MT) grows, the
need to rely on formal semantics of MT languages becomes a critical issue.
Formal semantics provide precise specifications of the expected behavior
of transformations, allowing users to understand them and to use them
properly, and MT tool builders to develop correct MT engines, compilers,
etc. In addition, formal semantics allow modelers to reason about the MTs
and to prove their correctness, something specially important in case of
large and complex MTs (with, e.g., hundreds or thousands of rules) for
which manual debugging is no longer possible. In this paper we give a
formal semantics of the ATL 3.0 model transformation language using
rewriting logic and Maude, which allows addressing these issues. Such
formalization provides additional benefits, such as enabling the simulation
of the specifications or giving access to the Maude toolkit to reason about
them.

Keywords ATL; Maude; Model Transformation; semantics.

1 Introduction

Model transformations (MT) are at the heart of Model-Driven Engineering, and pro-
vide the essential mechanisms for manipulating and transforming models. As the
complexity of model transformations grows, the need to rely on formal semantics
of MT languages also increases. Formal semantics provide precise specifications of
the expected behavior of the transformations, which are crucial for users to be able
to understand and use model transformations properly, and for tool builders to de-
velop correct model transformation engines, compilers, optimizers, debuggers, etc.
Furthermore, MT programmers need to know the expected behavior of the rules and
transformations they write, in order to reason about them and prove their correctness.
This is specially important in case of large and complex MTs (with, e.g., hundreds or
thousands of rules) for which manual debugging is no longer possible. For instance, in
the case of rule-based model transformation languages, proving that the specifications
are confluent and terminating is required. Also, looking for non-triggered rules may
help detecting potential design problems in large MT systems.

ATL [JABK08] is one of the most popular and widely used model transformation
languages. As usual in the community, the ATL language has been described in an
intuitive and informal manner, by means of definitions of its main features in natural

Javier Troya, Antonio Vallecillo. A Rewriting Logic Semantics for ATL. In Journal of Object
Technology, vol. 10, 2011, pages 5:1–29. doi:10.5381/jot.2011.10.1.a5

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a5
http://dx.doi.org/10.5381/jot.2011.10.1.a5
http://dx.doi.org/10.5381/jot.2011.10.1.a5

2 · Javier Troya, Antonio Vallecillo

Figure 1 – ATL model transformation schema.

language. However, this lack of rigorous description can easily lead to imprecisions
and misunderstandings that might hinder the proper usage and analysis of the lan-
guage, and the development of correct and interoperable tools. The other reference
implementation of ATL is available as metamodels for the language and its virtual
machine, and as a compiler from the language to the virtual machine and an inter-
preter for the virtual machine. The problem of this kind of implementation is that it
is not abstract enough to provide meaningful semantics, and in an implementation-
independent manner.

In this paper we investigate the use of rewriting logic [Mes92], and its implementa-
tion in Maude [CDE+07], for giving semantics to ATL. The use of Maude as a target
semantic domain brings very interesting benefits, because it enables the simulation of
the ATL specifications and the formal analysis of the ATL programs. In this sense,
we provide a more abstract encoding than the ATL current implementation, together
with an alternative specification of the transformations that can be simulated and
analyzed for correctness.

This paper is an extension of the one presented in the ICMT’10 conference [TV10a].
Here we deal with all new features of ATL version 3.0, and in particular we formal-
ize the ATL refining mode — in addition to the ATL default execution semantics.
Furthermore, we discuss some improvements in the Maude representation of the ATL
rules to obtain better performance when simulating the ATL specifications. New ATL
examples are also shown in this paper.

The structure of the document is as follows. After this introduction, sections 2
and 3 provide an introduction to ATL and Maude, respectively. Then, section 4
presents how ATL language constructs can be encoded in Maude, and section 5 de-
scribes the current tool support. Finally, section 6 compares our work with other
related proposals, and section 7 draws some conclusions and outlines some future
research activities.

2 Transformations with ATL

ATL is a hybrid model transformation language containing a mixture of declarative
and imperative constructs. ATL transformations are unidirectional, operating on
read-only source models and producing write-only target models (Fig. 1). During the
execution of a transformation, source models may be navigated but changes are not
allowed. Target models cannot be navigated.

ATL modules define the transformations. A module contains a mandatory header

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 3

(a) Source metamodel. (b) Target metamodel.

Figure 2 – Metamodels used in the example transformation.

section, an import section, and a number of helpers and transformation rules. The
header section provides the name of the transformation module and declares the source
and target models (which are typed by their metamodels). Helpers and transformation
rules are the constructs used to specify the transformation functionality.

Declarative ATL rules are called matched rules and lazy rules. Lazy rules are
like matched rules, but are only applied when called by another rule. They both
specify relations between source patterns and target patterns. The source pattern
of a rule specifies a set of source types and an optional guard given as a Boolean
expression in OCL. A source pattern is evaluated to a set of matches in source models.
The target pattern is composed of a set of elements. Each of these elements specifies
a target type from the target metamodel and a set of bindings. A binding refers to a
feature of the type (i.e., an attribute, a reference or an association end) and specifies
an expression whose value is used to initialize the feature. Lazy rules can be called
several times using a collect construct. Unique lazy rules are a special kind of lazy
rules that always return the same target element for a given source element. The
target element is retrieved by navigating the internal traceability links, as in normal
rules. Non-unique lazy rules do not navigate the traceability links but create new
target elements in each execution.

In some cases, complex transformation algorithms may be required, and it may
be difficult to specify them in a declarative way. For this reason ATL provides two
imperative constructs: called rules and action blocks. A called rule is a rule called
by others like a procedure. An action block is a sequence of imperative statements
and can be used instead of or in combination with a target pattern in matched or
called rules. The imperative statements in ATL are the usual constructs for attribute
assignment and control flow: conditions and loops.

ATL also provides the resolveTemp operation for dealing with complex transfor-
mations. This operation allows to refer to any of the target model elements generated
from a given source model element: resolveTemp(srcObj,targetPatternName). The first
argument is the source model element, and the second is a string with the name of
the target pattern element. This operation can be called from the target pattern and
imperative sections of any matched or called rule.

ATL has two execution modes, the normal (default) execution mode and the refin-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

4 · Javier Troya, Antonio Vallecillo

ing one. In the former, the ATL developer has to specify, either by matched or called
rules, the way to generate each of the expected target model elements. This execu-
tion mode suits to most ATL transformations where source and target metamodels
are different. Using the refining mode, ATL developers can define transformations
that modify the source model to obtain the target model, since both models conform
to the same metamodel. This mode is further explained in section 2.1.

In order to illustrate our proposal for the ATL default execution mode we will
use the example of JavaSource2Table model transformation [Ecl10], whose code is
shown below. It has two matched rules, two lazy rules and two helpers. The complete
description of this example and its encoding in Maude can be found in the technical
report [TBV10]. Although the ATL rules are mostly self-explanatory, readers not
fluent in ATL can also consult [JABK08, TV10b] for more details and examples.

module JavaSource2Table;
create OUT : Table from IN : JavaSource;

helper def: allMethodDefs : Sequence(JavaSource!MethodDefinition) =
JavaSource!MethodDefinition.allInstances()
−> sortedBy(e | e.class.name + ’_’ + e.name)
−> asSequence() ;

helper context JavaSource!MethodDefinition
def : computeContent(col : JavaSource!MethodDefinition) : String =
self.invocations −> select(i | i.method.name = col.name and

i.method.class.name = col.class.name) −>size();
rule Main {

from s : JavaSource!JavaSource
to t : Table!Table (

rows <− Sequence{first_row, thisModule.allMethodDefs−>
collect(e | thisModule.resolveTemp(e, ’row’)) }

),
first_row : Table!Row (cells <−

Sequence{first_col, thisModule.allMethodDefs
−> collect (e | thisModule.getContentFirstRow(e))}),

first_col : Table!Cell (content <− ’’)
}
rule MethodDefinition {

from m : JavaSource!MethodDefinition
to row : Table!Row (cells <− Sequence{title_cel, thisModule.allMethodDefs −>

collect (e | thisModule.getComputeContent(m, e))}),
title_cel : Table!Cell (content <− m.class.name + ’.’ + m.name

}
lazy rule getContentFirstRow {

from m : JavaSource!MethodDefinition
to c : Table!Cell (content <− m.class.name + ’.’ + m.name)
}
lazy rule getComputeContent{

from m1 : JavaSource!MethodDefinition,
m2 : JavaSource!MethodDefinition

to c : Table!Cell (content <− m1.computeContent(m2).toString())
}

The input model we have used in our transformations examples contains a Java-
Source with two ClassDeclarations. It is shown in Fig. 3. Its corresponding target
model when the JavaSource2Table transformation is applied over it is the Table model

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 5

Figure 3 – JavaSource input model.

Figure 4 – Table target model.

shown in Fig. 4. A visual explanation of how the transformation works is shown in
Fig. 5.

2.1 ATL Refining Mode

ATL also defines another execution mode, in case the transformation modifies the
source model. This is the ATL refining mode, in which the transformation defines the
elements that should be changed and how. The rest of the elements in the model are
implicitly copied by the ATL engine without modifications.

In the 2004 version of ATL, the copying was performed implicitly only for con-
tained elements of copied elements, and it was mandatory to specify all bindings.
The effort of copying some elements of a transformation, while modifying others, was
reduced in the next version of the ATL language in 2006, which introduced some
changes to the refining mode. In this new version every element stays unchanged if
it is not explicitly matched by any of the transformation rules. However, the 2006
version did not provide support for the deletion of elements. The new ATL 2010
compiler implements a full in-place strategy, where elements can be deleted by the
rules, and also reverse bindings for the first output pattern element are supported.
Transformations in this mode are performed in two steps. In the first step, the trans-
formation engine executes the rules which, as a result, produce a set of changes that
is temporarily stored. In the second step, this set of changes is applied directly on
the source model. Deletion is possible using the “drop” keyword in the to pattern.

Let us illustrate this execution mode using the well-known example of the Pub-
lic2Private transformation, which makes all public attributes of a UML model private.
Getters and setters are also created appropriately, as shown below.

module Public2Private;
create OUT : UML refining IN : UML;

helper context String def : toU1Case : String =
self.substring(1,1).toUpper() + self.substring(2,self.size());

rule Property {
from publicAttribute :

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

6 · Javier Troya, Antonio Vallecillo

Figure 5 – Visual explanation of the transformation.

UML!Property (publicAttribute.visibility = #public)
to privateAttribute :

UML!Property (visibility <− #private),
getter : UML!Operation (name <− ’get’+publicAttribute.name.toU1Case,
class <− publicAttribute.refImmediateComposite(),
type <− publicAttribute.type),

setter : UML!Operation (name <− ’set’+publicAttribute.name.toU1Case,
class <− publicAttribute.refImmediateComposite(),
ownedParameter <− setterParam),

setterParam : UML!Parameter (name <− publicAttribute.name,
type <− publicAttribute.type) }

Detailed information about this transformation can be found in [Ecl10]. The
reference metamodel is a simplification of the UML metamodel with only the relevant
information for this example, and is shown in Fig. 6.

3 Rewriting Logic and Maude

Maude [CDE+07] is a high-level language and a high-performance interpreter in the
OBJ algebraic specification family that supports membership equational logic [BJM00]
and rewriting logic [Mes92] specification and programming of systems. Thus, Maude
integrates an equational style of functional programming with rewriting logic com-
putation. We informally describe in this section those Maude’s features necessary
for understanding the paper; the interested reader is referred to [CDE+07] for more
details.

Rewriting logic is a logic of change that can naturally deal with state and with
highly nondeterministic concurrent computations. A system is axiomatized in rewrit-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 7

Figure 6 – Metamodel used in the Public2Private transformation.

ing logic by a rewrite theory R = (Σ,E ,R), where (Σ,E) is an equational theory
describing its set of states as the algebraic data type TΣ/E associated to the initial
algebra (Σ,E), and R is a collection of rewrite rules. Maude’s underlying equational
logic is membership equational logic [BJM00], a Horn logic whose atomic sentences
are equalities t = t ′ and membership assertions of the form t : S , stating that a term
t has sort S . Such a logic extends order-sorted equational logic, and supports sorts,
subsort relations, subsort overloading of operators, and definition of partial functions
with equationally defined domains.

Rewrite rules, which are written crl [l] : t => t ′ if Cond , with l the rule label, t
and t ′ terms, and Cond a condition, describe the local, concurrent transitions that
are possible in the system, i.e., when a part of the system state fits the pattern t , then
it can be replaced by the corresponding instantiation of t ′. The guard Cond acts as
a blocking precondition, in the sense that a conditional rule can be fired only if its
condition holds.

A condition is written EqCond1 /\ ... /\ EqCondn where each of the EqCondi
is either an ordinary equation t = t ′, a matching equation t := t ′, a sort constraint
t : s, or a term t of sort Bool, abbreviating the equation t = true. In the execution
of a matching equation t := t ′, the variables of the term t , which may not appear in
the left hand side of the corresponding conditional equation, become instantiated by
matching the term t against the canonical form of the bounded subject term t ′.

4 Encoding ATL in Maude

To give a formal semantics to ATL using rewriting logic, we provide a representation
of the ATL constructs and of their behavior in Maude. We start by defining how
the models and metamodels handled by ATL can be encoded in Maude, and then
we provide the semantics of matched rules, lazy rules, unique lazy rules, helpers,
imperative sections, the resolveTemp function and the refining execution mode. One
of the benefits of such an encoding is that it is systematic and can be automated,
something we are currently implementing using ATL transformations (between the
ATL and Maude metamodels).

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

8 · Javier Troya, Antonio Vallecillo

Figure 7 – Elements of a relation R(M ,N).

4.1 Characterizing Model Transformations

In our view, a model transformation is just an algorithmic specification (let it be
declarative or operational) associated to a relation R ⊆ MMS×MMT defined between
two metamodels which allows to obtain a target model MT conforming to MMT

from a source model MS that conforms to metamodel MMS [Ste07]. In the most
general case, a model transformation can be defined between multiple source and
target metamodels. In this case MMS and MMT represent sets of metamodels.

The idea supporting our proposal considers that model transformations combine
two different aspects: structure and behavior. The former aspect defines the struc-
tural relation R that should hold between source and target models, whilst the latter
describes how the specific source model elements are transformed into target model
elements. This separation allows differentiating between the relation that the model
transformation ensures from the algorithm it actually uses to compute the target
model.

Thus, to represent the structural aspects of a transformation we will use three
models: the source model MS , the target model MT that the transformation builds,
and the relation R(MS ,MT) between the two. R(MS ,MT) is also called the trace
model, that specifies how the elements of MS and MT are consistently related by
R. Please note that each element ri of R(MS ,MT) = {r1, ..., rk} ⊆ P(MS) × P(MT)
relates a set of elements of MS with a set of elements of MT (see Fig. 7).

The behavioral aspects of an ATL transformation (i.e., how the transformation
progressively builds the target model elements from the source model, and the traces
between them) is defined using the different kinds of rules (matched, lazy, unique
lazy); their possible combinations and direct invocation from other rules, and the
final imperative algorithms that can be invoked after each rule.

4.2 Encoding Models and Metamodels in Maude

We will follow the representation of models and metamodels introduced in [RVD09],
which is inspired by the Maude representation of object-oriented systems. We repre-
sent models in Maude as structures of sort @Model of the form mm{obj1 obj2 ... objN },
where mm is the name of the metamodel and obji are the objects of the model. An
object is a record-like structure < o : c | a1 : v1, ..., an : vn > (of sort @Object), where
o is the object identifier (of sort Oid), c is the class the object belongs to (of sort

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 9

@Class), and ai : vi are attribute-value pairs (of sort @StructuralFeatureInstance).
Given the appropriate definitions for all classes, attributes and references in its

corresponding metamodel (as we shall see below), the following Maude term describes
the input model shown in section 2.

@javasourcemm@ {
< ’s : JavaSource@javasourcemm |

classes@JavaSource@javasourcemm : Sequence[’c1 ; ’c2] >
< ’c1 : ClassDeclaration@javasourcemm |

name@NamedElement@javasourcemm : "FirstClass" #
methods@ClassDeclaration@javasourcemm : Sequence[’m1 ; ’m2] >

< ’m1 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "fc_m1" #
invocations@MethodDefinition@javasourcemm : null #
class@MethodDefinition@javasourcemm : ’c1 >

< ’m2 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "fc_m2" #
invocations@MethodDefinition@javasourcemm : Sequence [’i1 ; ’i1] #
class@MethodDefinition@javasourcemm : ’c1 >

< ’i1 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m1 >

< ’c2 : ClassDeclaration@javasourcemm |
name@NamedElement@javasourcemm : "SecondClass" #
methods@ClassDeclaration@javasourcemm : Sequence [’m3 ; ’m4] >

< ’m3 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "sc_m1" #
invocations@MethodDefinition@javasourcemm : ’i2 #
class@MethodDefinition@javasourcemm : ’c2 >

< ’i2 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m1 >

< ’m4 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "sc_m2" #
invocations@MethodDefinition@javasourcemm : ’i3 #
class@MethodDefinition@javasourcemm : ’c2 >

< ’i3 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m3 >

}

Note that quoted identifiers are used as object identifiers; references are encoded as
object attributes by means of object identifiers; and OCL collections (Set, OrderedSet,
Sequence, and Bag) are supported by means of mOdCL [RD08].

Metamodels are encoded using a sort for every metamodel element: sort @Class
for classes, sort @Attribute for attributes, sort @Reference for references, etc. Thus,
a metamodel is represented by declaring a constant of the corresponding sort for
each metamodel element. Thus, each class is represented by a constant of a sort
named after the class. This sort, which will be declared as subsort of sort @Class,
is defined to support class inheritance through Maude’s order-sorted type structure.
Other properties of metamodel elements, such as whether a class is abstract or not,
the opposite of a reference (to represent bidirectional associations), or attributes and
reference types, are expressed by means of Maude equations. Classes, attributes and
references are qualified with their containers’ names, so that classes with the same
name belonging to different packages, as well as attributes and references of different
classes, are distinguished. See [RVD09] for further details.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

10 · Javier Troya, Antonio Vallecillo

4.3 Modeling ATL default execution mode

In this subsection all the features of the ATL default execution mode are described.
For a more detailed explanation of all the examples shown in this subsection please
refer to the extended technical report [TBV10].

4.3.1 Matched rules.

Each ATL matched rule is represented by a Maude rewrite rule that describes how
the target model elements are created from the source model elements identified in
the left-hand side of the rule (that represents the “to” pattern of the ATL rule). The
general form of such rewrite rules is as follows:

crl [rulename] :
Sequence[

(@SourceMm@ { ... OBJSET@ }) ;
(@TraceMm@ { ... OBJSETT@ }) ;
(@TargetMm@ { OBJSETTT@ })]

=> Sequence[
(@SourceMm@ { ... OBJSET@ }) ;
(@TraceMm@ { ... OBJSETT@}) ;
(@TargetMm@ { ... OBJSETTT@ })]

if ...
/\ not alreadyExecuted(..., "rulename", @TraceMm@ { OBJSETT@ }) .

The two sides of the Maude rule contain the three models that capture the state of
the transformation (see 4.1): the source, the trace and the target models.1 It specifies
how the state of the ATL model transformation changes as result of such rule.

The triggering of Maude and ATL rules is similar: a rule is triggered if the pattern
specified by the rule is found, and the guard condition holds. In addition to the specific
rule conditions, in the Maude representation we also check (using the alreadyExecuted
operation) that the same ATL rule has not been triggered with the same elements.

An additional Maude rule, called Init, starts the transformation. It creates the
initial state of the model transformation, and initializes the target and trace models:

rl [Init] :
Sequence[(@ClassMm@ { OBJSET@ })]
=> Sequence[

(@ClassMm@ { OBJSET@ }) ;
(@TraceMm@ { < ’CNT : Counter@CounterMm | value@Counter@CounterMm : 1 > }) ;
(@RelationalMm@ { none })] .

The traces stored in the trace model are also objects, of class Trace@TraceMm,
whose attributes are: two sequences (srcEl@TraceMm and trgEl@TraceMm) with the
sets of identifiers of the elements of the source and target models related by the
trace; the rule name (rlName@TraceMm); and a reference to the source and target
metamodels: srcMdl@TraceMm and trgMdl@TraceMm.

The trace model also contains a special object, of class Counter@CounterMm, whose
integer attribute is used as a counter for assigning fresh identifiers to the newly cre-
ated elements and traces. As an example, consider the MethodDefinition rule shown
in section 2. An excerpt of its Maude implementation is shown below. From this ex-
cerpt, everything related to the call of the lazy rule has been removed for clarification

1For simplicity, in this paper we will show examples where the transformation deals only with
one input model. ATL can handle more than one, but the treatment in Maude is analogous—it is
just a matter of including more models in the specification of the relation.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 11

purposes. The whole implementation is shown and fully explained in the technical
report [TBV10].

crl[MethodDefinition] :
Sequence[

(@JavaSourcemm@ { < M@ : MethodDefinition@javasourcemm | SFS > OBJSET@ }) ;
(@TraceMm@ {
< CNT@ : Counter@CounterMm | value@Counter@CounterMm : VALUE@CNT@ >
OBJSETT@ }) ;

(@Tablemm@ { OBJSETTT@ })]
=> Sequence[

(@JavaSourcemm@ { < M@ : MethodDefinition@javasourcemm | SFS > OBJSET@ }) ;
(@TraceMm@ {
< CNT@ : Counter@CounterMm | value@Counter@CounterMm : VALUE@CNT@ + 3 >
< TR@ : Trace@TraceMm | srcEl@TraceMm : Sequence[M@] #
trgEl@TraceMm : Sequence[R@ ; TC@] # rlName@TraceMm : "MethodDefinition" #
srcMdl@TraceMm : "JavaSource" # trgMdl@TraceMm : "Table" > OBJSETT@}) ;

(@Tablemm@ { < R@ : Row@tablemm | cells@Row@tablemm :
<< Sequence [TC@] −> union ... >> >

< TC@ : Cell@tablemm | content@Cell@tablemm : << M@ .
class@MethodDefinition@javasourcemm . name@NamedElement@javasourcemm +
"." + M@ . name@NamedElement@javasourcemm ; JAVASOURCEMODEL@ >> >

OBJSETTT@ })]
if JAVASOURCEMODEL@ := @JavaSourcemm@ { < M@ : MethodDefinition@javasourcemm |

SFS > OBJSET@ }
/\ TR@ := newId(VALUE@CNT@) /\ R@ := newId(VALUE@CNT@ + 1)
/\ TC@ := newId(VALUE@CNT@ + 2) /\
/\ not alreadyExecuted(Sequence[M@],"MethodDefinition",@TraceMm@ { OBJSETT@ }).

This rule is applied over instances of class MethodDefinition, as specified in the
left hand side of the Maude rule. The rule guard guarantees that the rule has not
been already applied over the same elements. The guard is also used to define some
variables used by the rule (JAVASOURCEMODEL@, TR@, R@ and TC@).

After the application of the rule, the state of the system is changed: the source
model is left unmodified (ATL does not allow modifying the source models); a new
trace (TR@) is added to the trace model; the value of the counter object is updated;
and two new elements (R@ and TC@) are created in the target model. We allow the
evaluation of OCL expressions using mOdCL [RD08] by enclosing them in double
angle brackets (<< ... >>).

The values assigned to the model element features in the bindings in the declarative
ATL are determined by the so-called resolution algorithm. If the value is a simple
value or an element from the target model then the value is used as is. If the value
is an element from the source model then the ATL engine tries to obtain a target
element by using the traces. If it is not possible to find such a target element then
the source element is used. This allows cross-model references and is an important
feature of ATL. This resolution algorithm is represented in Maude by one operation
called getTargetEl that, given an OCL expression which points to an (source or target)
element and the trace model, returns the appropriate element.

op getTargEl : OCL−Exp @Model −> OCL−Exp .
eq getTargEl(SRC@, @TraceMm@ { < TR@ : Trace@TraceMm | srcEl@TraceMm :
Sequence[SRC@;LO] # trgEl@TraceMm : Sequence[TRG@ ; LO]# SFS> OBJSET}) = TRG@.

eq getTargEl(SRC@, @TraceMm@ { OBJSET }) = SRC@ [owise] .

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

12 · Javier Troya, Antonio Vallecillo

Since the OCL expression may point to more than one element, the resolution
algorithm has to take all of them into account. This is the reason of the following
function:

op getTarget : Sequence @Model −> Sequence .
eq getTarget(Sequence[TR@ ; LO], @TraceMm@{OBJSET}) =
<< Sequence[getTargEl(TR@,@TraceMm@{OBJSET})] −>
union(getTarget(Sequence[LO],@TraceMm@{OBJSET})) >> .

eq getTarget(TR@, @TraceMm@ {OBJSET}) = getTargEl(TR@, @TraceMm@{OBJSET}) .
eq getTarget(Sequence[mt−ord], @TraceMm@ { OBJSET }) = Sequence[mt−ord] .

This function applies the getTargEl function to every element in the sequence, and
returns the sequence with all the elements retrieved by the getTargetEl function.

4.3.2 Lazy rules.

While matched rules are executed in non-deterministic order (as soon as their “to”
patterns are matched in the source model), lazy rules are executed only when they
are explicitly called by other rules. Thus, we have modeled lazy rules as Maude
operations, whose arguments are the parameters of the corresponding rule, and return
the set of elements that have changed or need to be created. In this way the operations
can model the invocation of ATL rules in a natural way.

Maude operations representing ATL lazy rules do not modify the trace model, this
is the responsibility of the Maude calling rule. For every invoked lazy rule a trace is
created. The name of the ATL rule recorded in the trace is not the name of the lazy
rule, but the name of the matched rule concatenated with “ ” and with the name of
the lazy rule. We represent them in this manner because a lazy rule can be invoked
by different calling rules, and in this way we know which matched rule called it.

Special care should be taken when lazy rules are called from a collect construct.
When lazy rules are not called from a collect, it is only necessary to write, in the
target model, the identifier of the first object created by the lazy rule when we want
to reference the objects it creates. But with lazy rules called from a collect we need
to reference the sequence of objects created by the lazy rule. To do this, we use an
auxiliary function, getOidsCollect, whose arguments are the ones of the lazy rule, the
identifier of the first element created by the lazy rule, and the number of objects
created in each iteration by the lazy rule. It returns a sequence with the identifiers
of the objects created by the lazy rule, in the same order.

4.3.3 Unique lazy rules.

This kind of rules deserve a special representation in Maude, because their behavior
is quite different from normal lazy rules. In this case, we need to check if the elements
created by the lazy rule are already there, otherwise they have to be created. If they
were already there, we need to get their identifiers. We also have to be careful with
the traces, since only one trace has to be added for the elements created by a unique
lazy rule.

4.3.4 Helpers.

Helpers are side-effect free functions that can be used by the transformation rules for
implementing the functionality. Helpers are normally described in OCL. Thus, they
are represented as Maude operations that make use of mOdCL for evaluating the OCL
expression of their body. For instance, the following Maude operation represents the
allMethodDefs helper shown in the ATL example in section 2:

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 13

op allMethodDefs : @Model −> Sequence .
eq allMethodDefs(JAVASOURCEMODEL@) =
<< MethodDefinition@javasourcemm . allInstances −>
sortedBy(ITER | << ITER . class@MethodDefinition@JavaSourceMM .
name@NamedElement@JavaSourceMM + "_" + ITER .
name@NamedElement@JavaSourceMM ; JAVASOURCEMODEL@ >>) ; JAVASOURCEMODEL@ >> .

This helper receives the source model, JavaSource, as argument. It builds the sequence
of all method definitions in all existing classes. The sequence it returns, of type
MethodDefinition, is ordered according to their class name and method name.

4.3.5 The imperative section.

We represent the imperative section of rules using a data type called Instr that we have
defined for representing the different instructions that are possible within a do block.
We implement four types of instructions: assignments (=), conditional branches (if),
loops (for) and called rules. In the following piece of Maude code we show how Instr
type and the sequence of instructions (InstrSequ) are defined:

sort Instr InstrSequ .
subsort Instr < InstrSequ .
op none : −> InstrSequ [ctor] .
op _ˆ_ : Instr InstrSequ −> InstrSequ [ctor id: none] .
op Assign : Oid @StructuralFeature OCL−Exp −> Instr [ctor] .
op If : Bool InstrSequ InstrSequ −> Instr [ctor] .
---Instructions for loops

op For : Sequence InstrSequ −> Instr [ctor] .
op AssignAttFor : @StructuralFeature @StructuralFeature @Model OCL−Exp

−> Instr [ctor] .
op IfFor : String @StructuralFeature OCL−Exp @Model InstrSequ InstrSequ

−> Instr [ctor] .
---Instruction for our called rule

op NewTable : Int String −> Instr [ctor] .

Thus, the same instruction is used for assignments and conditional instructions.
A new instruction is needed for each called rule (the NewTable rule in this case).

The ATL imperative section, which is within a do block, is encapsulated in Maude
by a function called do which receives as arguments the set of objects created by the
declarative part of the rule, and the sequence of instructions to be applied over those
objects. It returns the sequence of objects resulting from applying the instructions:

op do : Set{@Object} InstrSequ −> Set{@Object} .
eq do(OBJSET@, none) = OBJSET@ .
eq do(OBJSET@, Assign(O@, SF@, EXP@) ˆ INSTR@) =

do(doAssign(OBJSET@, O@, SF@, EXP@), INSTR@) .
eq do(OBJSET@, If(COND@, INSTR1@, INSTR2@) ˆ INSTR@) =
if COND@ then do(OBJSET@, INSTR1@ ˆ INSTR@)
else do(OBJSET@, INSTR2@ ˆ INSTR@)
fi .
---For each called rule, AddColumn in this case

eq do(OBJSET@, doNewTable(VALUE@CNT@, NAME) ˆ INSTR@) =
do(doNewTable(OBJSET@, VALUE@CNT@, NAME), INSTR@) .

We see that the function is recursive, so it applies the instructions one by one, in
the same order as they appear in the ATL do block. When the function finds an Assign
instruction, it applies the doAssign operation. When it finds an If instruction, it checks

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

14 · Javier Troya, Antonio Vallecillo

wether the condition is satisfied or not, applying a different sequence of instructions
in each case. With regard to called rule instructions, the Maude do operation applies
them as they appear. The doAssign and doNewTable operations are the following:

op doAssign : Set{@Object} Oid @StructuralFeature OCL−Exp −> Set{@Object} .
eq doAssign(< O@ : CL@ | SF@ : TYPE@ # SFS > OBJSET@, O@, SF@, EXP@) =

< O@ : CL@ | SF@ : EXP@ # SFS > OBJSET@ .

op doNewTable : Set{@Object} Int String −> Set{@Object} .
eq doNewTable(OBJSET@, VALUE@CNT@, NAME) =
< newId(VALUE@CNT@) : Table@tablemm | rows@Table@tablemm : newId(VALUE@CNT@+1) >
< newId(VALUE@CNT@ + 1) : Row@tablemm|cells@Row@tablemm : newId(VALUE@CNT@+2) >
< newId(VALUE@CNT@ + 2) : Cell@tablemm | content@Cell@tablemm : NAME >
OBJSET@ .

Function doAssign assigns an OCL expression to an attribute of an object. It
receives the set of objects created in the declarative part, the identifier of the object
and its attribute, and the OCL expression that will be assigned to the attribute of
the object. The function replaces the old value of the attribute with the result of the
evaluation of the OCL expression. Function doNewTable creates a new Table with a
new Row and a new Cell. It receives the set of objects created by the declarative part
of the rule, the counter for assigning identifiers to the new objects, and the String that
will give name to the Cell.

The following code shows how the do function works when the instruction is a For:

eq do(OBJSET@, For(Sequence[AT@ ; LO], INSTR1@) ˆ INSTR@) = do(OBJSET@,
For(AT@, INSTR1@) ˆ For(Sequence[LO], INSTR1@) ˆ INSTR@) .

eq do(OBJSET@, For(Sequence[AT@ ; LO], INSTR1@ ˆ INSTR2@) ˆ INSTR@) =
do(OBJSET@, For(AT@, INSTR1@) ˆ For(Sequence[LO], INSTR1@) ˆ
For(Sequence[AT@ ; LO], INSTR2@) ˆ INSTR@) .

eq do(OBJSET@, For(Sequence[mt−ord], INSTR1@) ˆ INSTR@) = do(OBJSET@, INSTR@) .
eq do(OBJSET@, For(AT@, none) ˆ INSTR@) = do(OBJSET@, INSTR@) .

In the general case, the For function receives a sequence of objects and a sequence
of instructions. It applies the sequence of instructions to every object of the sequence
received in the first argument. When the next instruction to be applied is an assign-
ment (AssignAttFor instruction) over a single object (which is a sequence with only
one element), the following piece of code is applied:

eq do(OBJSET@, For(AT@, AssignAttFor(SF@, SF1@, TARGETMODEL@, EXP@) ˆ
INSTR1@) ˆ INSTR@) = do(doAssign(OBJSET@, AT@, SF@, << AT@ . SF1@

; TARGETMODEL@ >> + EXP@), For(AT@, INSTR1@) ˆ INSTR@) .

The AssignAttFor instruction receives two structural features (which is the type of
the objects attributes in our Maude encoding), the model containing the objects that
have been created by the rule so far (needed because they may be referenced) and an
OCL expression. The aim of this instruction is to assign to the value of the element
attribute passed as first argument in the AssignAttFor the value of its attribute in the
second argument plus the OCL expression received in the fourth argument.

When the instruction found inside the For is an IfFor, the function do works as
follows:

eq do(OBJSET@, For(AT@, IfFor(ST@, SF@, EXP@, TARGETMODEL@, INSTR1@,
INSTR2@) ˆ INSTR3@) ˆ INSTR@) =

if (ST@ == "==") then

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 15

if (<< AT@ . SF@ ; TARGETMODEL@ >> == EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else if (ST@ == ">=") then

if (<< AT@ . SF@ ; TARGETMODEL@ >> >= EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else if (ST@ == "<=") then

if (<< AT@ . SF@ ; TARGETMODEL@ >> <= EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else if (ST@ == ">") then

if (<< AT@ . SF@ ; TARGETMODEL@ >> > EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else if (ST@ == "<") then

if (<< AT@ . SF@ ; TARGETMODEL@ >> < EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else if (ST@ == "=/=") then

if (<< AT@ . SF@ ; TARGETMODEL@ >> =/= EXP@)
then do(OBJSET@, For(AT@, INSTR1@ ˆ INSTR3@) ˆ INSTR@)
else do(OBJSET@, For(AT@, INSTR2@ ˆ INSTR3@) ˆ INSTR@)

fi
else none

fi fi fi fi fi fi .

Let us remind the reader that the IfFor function receives as arguments a string, a
structural feature, an OCL expression, the model containing all the elements created
by the rule so far, and two sequences of instructions. The If instruction shown before
was much simpler because the condition of the if is written inside the imperative part
of the rule, so it is passed to the function as the boolean result. Now, however, the
condition needs to be created inside the function because it needs to be evaluated
for each element of the sequence which is inside the For. Thus, the string received
by the IfFor instruction contains the kind of comparisons that will be made in the
condition (in this version, they are “==”, “>=”, “<=”, “>”, “<” and “= / =”). The
structural feature contains the name of the attribute whose value will be compared
in the condition with the OCL expression received in the third argument. If the
condition is satisfied, the sequence of instructions received in the fifth argument are
applied; otherwise, the instructions received in the sixth argument are applied.

To show the imperative constructs all together in one ATL rule, consider the
following one, that contains an imperative part to modify the elements that have
been created by the rule:

rule Main {
from s : JavaSource!JavaSource
to c : Table!Table(rows <− Sequence{row}),

row : Table!Row(cells <− Sequence{cell1, cell2, cell3}),
cell1 : Table!Cell(content <− ’FirstCell’),

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

16 · Javier Troya, Antonio Vallecillo

cell2 : Table!Cell(content <− ’SecondCell’),
cell3 : Table!Cell(content <− ’ThirdCell’)

do{
cell1.content <− cell1.content + ’_assignment’;
if (row.cells −> size() = 3) {
cell2.content <− ’Condition_satisfied’;
} else {
cell2.content <− ’Condition_not_satisfied’;
}
for (i in row.cells) {
i.content <− i.content + ’_assign_for’;
if (i.content = ’ThirdCell_assign_for’){
i.content <− i.content + ’_if_for_satisfied’;
} else {
i.content <− i.content + ’_if_for_not_satisfied’;
}
i.content <− i.content + ’_after_if_for’;
}
thisModule.NewTable(’NewTable’);
}

}

The corresponding encoding in Maude is as follows:

crl[Main] :
Sequence[...] =>
Sequence[...

(@Tablemm@ { do (
< T@ : Table@tablemm | rows@Table@tablemm : R@ >
< R@ : Row@tablemm | cells@Row@tablemm : Sequence [C1@ ; C2@ ; C3@] >
< C1@ : Cell@tablemm | content@Cell@tablemm : "FirstCell" >
< C2@ : Cell@tablemm | content@Cell@tablemm : "SecondCell" >
< C3@ : Cell@tablemm | content@Cell@tablemm : "ThirdCell" >,
Assign(C1@, content@Cell@tablemm,
<< C1@ . content@Cell@tablemm ; TABLEMODEL@ >> + "_assignment") ˆ

If(<< Sequence[C1@ ; C2@ ; C3@] −> size() ; JAVASOURCEMODEL@ >> == 3,
Assign(C2@, content@Cell@tablemm, "Condition_satisfied"),
Assign(C2@, content@Cell@tablemm, "Condition_not_satisfied")) ˆ --- endIf

For(<< R@ . cells@Row@tablemm ; TABLEMODEL2@ >>,
AssignAttFor(content@Cell@tablemm, content@Cell@tablemm, TABLEMODEL2@,
"_assign_for") ˆ

IfFor("==", content@Cell@tablemm, "ThirdCell_assign_for", TABLEMODEL3@,
AssignAttFor(content@Cell@tablemm, content@Cell@tablemm, TABLEMODEL3@,
"_if_for_satisfied"),

AssignAttFor(content@Cell@tablemm, content@Cell@tablemm, TABLEMODEL3@,
"_if_for_not_satisfied")) ˆ --- endIfFor

AssignAttFor(content@Cell@tablemm, content@Cell@tablemm, TABLEMODEL4@,
"_after_if_for")) ˆ --- endFor

NewTable(VALUE@CNT@ + 6, "NewTable"))
OBJSETTT@ }

)
] if...

The first argument of function do is the set of objects created in the declarative
part of the rule. Consequently, we enforce the declarative part of the rule to be

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 17

Figure 8 – Trace class.

executed before the imperative part. This is the way in which ATL works. The second
argument is a sequence of instructions. It contains, in this case, four instructions. The
first instruction executed is an Assign. Then, an If block with two assignments inside is
executed. After this, a For instruction, containing three instructions (two assignments
and a if block), is executed. Finally, the instruction that represents the called rule,
NewTable, is executed.

4.3.6 ResolveTemp

The resolveTemp function looks for the trace that contains the source element passed
as first argument, and returns the identifier of the element from the sequence of
elements created from the source element. Its representation in Maude is as follows:

op resolveTemp : Oid Nat @Model @Model −> Oid .
eq resolveTemp(O@ , N@ , @TraceMm@{ < TR@ : Trace@TraceMm | srcEl@TraceMm :

Sequence[O@] # trgEl@TraceMm : SEQ # SFS > OBJSET} , SOURCEMODEL@) =
if (<< SEQ −> size () < N@ ; SOURCEMODEL@ >>) then null

else << SEQ −> at(N@) ; SOURCEMODEL@ >>
fi .

It has four arguments: the identifier of the source model element from which the
searched target model element is produced; the position of the target object identifier
in the sequence trgEl@TraceMm; and the trace and class models, respectively. It
returns the identifier of the element to be retrieved. The major difference with the
ATL function is that here we receive as second argument the position that the searched
target model element has among the ones created by the corresponding rule. In ATL,
instead, the argument received is the name of the variable that was given to the
target model element when it was created. This deviation from ATL is merely due to
technical reasons: we do not use variable names in this function because we do not
store variable names in traces. A trace contains a sequence with the identifiers of the
target elements that were created from the source elements. As it is a sequence, it is
ordered and, consequently, every element identifier has a position within the sequence.
Therefore, the difference of passing as argument the position of the element identifier
in the sequence instead of the variable name is not significant since it is easy to retrieve
the position of the element among those created by the ATL rule.

4.4 ATL refining mode in Maude

As explained in section 2.1, the ATL refining execution mode transforms the elements
identified by the source patterns according to the behaviour defined in the rules.
Those model elements that are not explicitly affected by the rules (either directly or
indirectly) remain unchanged.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

18 · Javier Troya, Antonio Vallecillo

The semantics of this ATL execution mode can be specified in Maude in a similar
way to the one used to specify the normal execution mode. However, the traces will be
treated in a slightly different manner, because we do not need to specify and maintain
traces between elements that have not been modified by the transformation. In fact,
traces in this execution mode can be considered as model differences between the
elements of both models: the old and new versions of the model being transformed.
Thus, we have defined each trace as an instance of the class shown in Fig. 8, which
follows the approach used in [RV08].

Traces of type modified represent the transformation of an object from the source
model into another object in the target model where at least one of its attributes (or
references) have been modified. Traces whose type is added, in turn, represent the
addition of a new object (or more than one) in the target model.

In the 2010 implementation of the refining mode, ATL allows to remove objects.
To represent this new feature we have traces of type deleted, whose source elements
(srcEl) are the deleted objects, and the set of target elements (trgEl) is empty. A
Maude rule that represents an ATL rule where objects are deleted simply contains
these objects in its left hand side, but not in its right hand side, and it creates a trace
of type deleted as mentioned above.

In the encoding of a transformation in refining mode in Maude, the Init rule is also
different, since now the source model is copied into the target one. Thus, in case of
the Public2Private example introduced in section 2.1, this rule is as follows:

rl [Init] :
Sequence[(@UMLSimpMm@ { OBJSET@ })]
=>
Sequence[(@UMLSimpMm@ { OBJSET@ }) ;

(@TraceMm@ {< ’CNT : Counter@CounterMm | value@Counter@CounterMm : 1 >}) ;
(@UMLSimpMm@ { OBJSET@ })] .

After the application of this rule, both the source and target models contain the
same elements. Then, the target model is modified as the ATL matched rules are
executed, “navigating” the source model.

Models navigability and in-place transformations

The ATL documentation [Gro06] states that, both in normal and in refining execution
modes, source models are read-only and target models are write-only. This means
that only source models can be navigated and, therefore, the state of the target model
does not affect the behavior of the transformation.

This is an important detail that significantly affects the way in which ATL works
in refining mode. In fact, it is a common mistake to confuse the behavior of the
ATL refining mode with the typical behavior of the in-place transformations used by
most rewriting systems, including graph grammars or even Maude rules. In these
rewriting systems, a set of rules modifies the state of a configuration of objects (i.e.,
a model) one by one. Thus, after the application of each rule the state of the system
is changed, and subsequent rules will be applied on the system on this new state. In
this way, the target model after the application of one rule becomes the source model
in the next step. In other words, the transformation navigates the target model,
which is continuously updated by every executed rule. However, this is not the way
in which the ATL refining mode works. In ATL the rules always read (i.e., navigate)
the state of the source model, which remains unchanged during all the transformation
execution. This is the approach we have followed in our representation in Maude, too.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 19

Figure 9 – In-place behavior: navigability on the target model.

In order to illustrate this difference, let us go back to the Public2Private transforma-
tion and imagine that we add another matched rule that changes all private Properties,
capitalizing the first letter of their names. Let us call this rule Private2Capital.

If ATL worked in a pure in-place manner (i.e., navigating the target model), the
transformation would change the names of all properties: all of them will end up being
private and with the first letter of their names in capitals (see the example shown in
Fig. 9). However, the ATL refining mode navigates the source model. This means
that, at the end of the execution of the Public2Private transformation, only those
properties that were originally private in the source model will have their names
capitalized, while the original public properties in the model will be transformed into
private properties but their names will not be changed (see Fig. 10).

5 Simulation and Formal Analysis

Once the ATL model transformation specifications are encoded in Maude, what we get
is a rewriting logic specification for it. Maude offers tool support for interesting possi-
bilities such as model simulation, reachability analysis and model checking [CDE+07].

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

20 · Javier Troya, Antonio Vallecillo

Figure 10 – ATL refining mode: navigability always on the source model.

5.1 Simulating the transformations

Because the rewriting logic specifications produced are executable, this specification
can be used as a prototype of the transformation, which allows us to simulate it.
Maude offers different possibilities for performing the simulation, including step-by-
step execution, several execution strategies, etc. In particular, Maude provides two
different rewrite commands, namely rewrite and frewrite, which implement two differ-
ent execution strategies, a top-down rule-fair strategy, and a depth-first position-fair
strategy, respectively [CDE+07]. The result of the process is the final configuration
of objects reached after the rewriting steps, which is nothing but a model.

For example, the JavaSource2Table ATL model transformation described in sec-
tion 2, when executed in default mode over the JavaSource source model shown in
Fig. 3, results in a sequence of three models: the source, the trace and the target
model. The encoding in Maude of this last one, which conforms to the Table meta-
model and is displayed in Fig. 4, is shown below.

@JavaSourceMm@ {
< ’s : JavaSource@javasourcemm |

classes@JavaSource@javasourcemm : Sequence[’c1 ; ’c2] >
< ’c1 : ClassDeclaration@javasourcemm |

name@NamedElement@javasourcemm : "FirstClass" #

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 21

methods@ClassDeclaration@javasourcemm : Sequence[’m1 ; ’m2] >
< ’m1 : MethodDefinition@javasourcemm |

name@NamedElement@javasourcemm : "fc_m1" #
invocations@MethodDefinition@javasourcemm : null #
class@MethodDefinition@javasourcemm : ’c1 >

< ’m2 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "fc_m2" #
invocations@MethodDefinition@javasourcemm : Sequence [’i1 ; ’i1] #
class@MethodDefinition@javasourcemm : ’c1 >

< ’i1 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m1 >

< ’c2 : ClassDeclaration@javasourcemm |
name@NamedElement@javasourcemm : "SecondClass" #
methods@ClassDeclaration@javasourcemm : Sequence [’m3 ; ’m4] >

< ’m3 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "sc_m1" #
invocations@MethodDefinition@javasourcemm : ’i2 #
class@MethodDefinition@javasourcemm : ’c2 >

< ’i2 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m1 >

< ’m4 : MethodDefinition@javasourcemm |
name@NamedElement@javasourcemm : "sc_m2" #
invocations@MethodDefinition@javasourcemm : ’i3 #
class@MethodDefinition@javasourcemm : ’c2 >

< ’i3 : MethodInvocation@javasourcemm |
method@MethodInvocation@javasourcemm : ’m3 > }

Although the Maude specifications can be used for running the ATL transforma-
tions, and not only for simulating it, the performance of the Maude specifications is
not comparable with ATL (see Section 5.4). However, our proposal does not try to
compete with ATL in this respect. It is not the goal of this work to use Maude for
implementing model transformations, but for providing semantics to ATL. The fact
that Maude specifications are executable gives us an implementation of the transfor-
mation, but such an implementation is not intended to be used as an alternative to
ATL in practice—just for verification purposes.

5.2 Reachability analysis

Executing the system using the rewrite and frewrite commands means exploring just
one possible behavior of the system. However, a rewrite system does not need to
be Church-Rosser and terminating,2 and there might be many different execution
paths. Although these commands are enough in many practical situations where an
execution path is sufficient for testing executability, the user might be interested in
exploring all possible execution paths from the starting model, a subset of these, or
a specific one.

Maude search command allows us to explore (following a breadthfirst strategy up
to a specified bound) the reachable state space in different ways, looking for certain
states of special interest. Other possibilities would include searching for any state

2For membership equational logic specifications, being Church-Rosser and terminating means not
only confluence (a unique normal form will be reached) but also a sort decreasingness property,
namely that the normal form will have the least possible sort among those of all other equivalent
terms.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

22 · Javier Troya, Antonio Vallecillo

(given by a model) in the execution tree, let it be final or not. For example, we
could be interested in knowing the partial order in which two ATL matched rules are
executed, checking that one always occurs before the other. This can be proved by
searching for states that contain the second one in the trace model, but not the first.

5.3 Checking other properties

After the simulation is completed, it is also possible to analyze the trace model looking
for instance for rules that have not been executed, or for obtaining the traces (and
source model elements) related to a particular target model element (or viceversa).
Although this could also be done in any transformation language that makes the
trace model explicit, the advantages of using our encoding in Maude is that these
operations become easy to specify because of Maude’s facilities for manipulating sets
using order-sorted unification modulo associativity and commutativity:

op getSourceElements : @Model Oid −> Sequence .
eq getSourceElements(@TraceMm@{< TR@ : Trace@TraceMm | srcEl@TraceMm :

SEQ # trgEl@TraceMm : Sequence[O@ ; LO] # SFS > OBJSET}, O@) = SEQ .
eq getSourceElements(@TraceMm@{< TR@ : Trace@TraceMm | srcEl@TraceMm :

SEQ # trgEl@TraceMm : Sequence[T@ ; LO] # SFS > OBJSET}, O@)
= getSourceElements(@TraceMm@{< TR@ : Trace@TraceMm | srcEl@TraceMm :
SEQ # trgEl@TraceMm : Sequence[LO] # SFS > OBJSET}, O@) .

eq getSourceElements(@TraceMm@{OBJSET} , O@) = Sequence[mt−ord] [owise] .

We can also use a similar operation to traverse the trace model and check that
every source element has been transformed by at most one ATL match rule. In fact,
in ATL only one matched rule can be applied on a given model element (this ensures
some kind of confluence of the ATL rules, too).

In general there are two ways of dealing with such constraints, depending on
whether we want the Maude rules to enforce them during their execution or not. In
the first case these constraints will be added to the Maude rules. In the second case
the mapping to Maude will not consider them, so these situations will occur if they
happen in the ATL code. But we will be able to check them once the transformation
is done by exploring the trace model, as mentioned above.

For example, to check that no more than one ATL rule is applied over a single
source element we have defined the singleApplicability operation:

op singleApplicability : OCL−Exp String @Model Int −> @Object .
eq singleApplicability(SR@, NAME, @TraceMm@ { < TR@ : Trace@TraceMm |
srcEl@TraceMm : Sequence[SR@ ; LO] # rlName@TraceMm : NAME’ # SFS > OBJSET},
VALUE@CNT@) =
if NAME =/= NAME’ then
< newId(VALUE@CNT@) : TraceSA@TraceMm | rl1Name@TraceMm : NAME #
rl2Name@TraceMm : NAME’ # srcEl@TraceMm : SR@ # errMsg@TraceMm : "Rules " +
NAME + " and " + NAME’ + " are applied over the same source element: " +
SR@ >

else singleApplicability(SR@, NAME, @TraceMm@ { < TR@ : Trace@TraceMm |
srcEl@TraceMm : Sequence[LO] # rlName@TraceMm : NAME’ # SFS > OBJSET},
VALUE@CNT@)

fi .
eq singleApplicability(SR@, NAME, TRACEMODEL@, VALUE@CNT@) = none [owise] .

This operation receives as arguments a source model element, a string with the
name of the rule from which the function is called, the trace model and the counter

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 23

to create new identifiers. The function looks for a trace created by a different rule
(we check that the names of the rules are different: NAME =/= NAME’) where the
element received as argument is present in the srcEl@TraceMm part.

The problem, as usual, is what to do when a problem is encountered during the
execution of the rule. In this case our encoding generates a special kind of trace
(TraceSA@TraceMm), which captures every error found. Such traces store the prob-
lematic rule names (those whose left hand side parts contain the same source model
element), the source model element and an error message.

As an example of how this function is called, we add a call to it in the Method-
Definition matched rule that we presented above. We can see the call in the next
listing:

crl[MethodDefinition] :
Sequence[

(@JavaSourcemm@ { < M@ : MethodDefinition@javasourcemm | SFS > OBJSET@ }) ;
(@TraceMm@ { <CNT@ : Counter@CounterMm | value@Counter@CounterMm : VALUE@CNT@>

OBJSETT@ }) ;
(@Tablemm@ { OBJSETTT@ })]

=> Sequence[
(@JavaSourcemm@ { < M@ : MethodDefinition@javasourcemm | SFS > OBJSET@ }) ;
(@TraceMm@ {
< CNT@ : Counter@CounterMm | value@Counter@CounterMm : VALUE@CNT@ + 4 >
...
singleApplicability(M@, "MethodDefinition", @TraceMm@{OBJSETT@},VALUE@CNT@)
OBJSETT@}) ;

(@Tablemm@ { ... })]
if JAVASOURCEMODEL@ := ...

/\ TR@ := newId(VALUE@CNT@ + 1) /\ R@ := newId(VALUE@CNT@ + 2)
/\ TC@ := newId(VALUE@CNT@ + 3) /\
/\ not alreadyExecuted(Sequence[M@],"MethodDefinition",@TraceMm@ { OBJSETT@ }).

5.4 Questions of efficiency

Another improvement over the proposal presented in [TV10a] is the use of a more
compact encoding of the Maude representation of the ATL rules. Maude is a very
expressive language, which allows many different ways to represent the same concepts
or the same behaviors. Each encoding, although functionally and semantically equiv-
alent, may be different regarding other non-functional aspects such as performance,
readability or understandability, among others.

In the previous sections we have shown the encoding that was also used in [TV10a].
This encoding is rather natural (to the Maude users) and convenient for representing
the behavior of ATL constructs and rules. However, when it comes to simulating and
analyzing the specifications, it may be significantly improved in several ways.

The aim of the modifications is to remove as many guards as possible from the
Maude rules, so that the rewrite process does not need to evaluate conditions for
triggering them. Thus, we have avoided the use of auxiliary variables that were
declared as guards with the “:=” operator by replacing them with their corresponding
expressions in the places where these auxiliary variables were used. We have also got
rid of the AlreadyExecuted function, which had to navigate the trace model in each
rule invocation, by introducing an auxiliary model in the Maude rules that contains
the elements from the input model that have not yet been transformed by ATL rules.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

24 · Javier Troya, Antonio Vallecillo

Original Optimized
encoding encoding ATL

125 Classes, 500 Attributes 15” 4” 0.3”
250 Classes, 1000 Attributes 1’37” 15” 0.5”
375 Classes, 1500 Attributes 5’53” 40” 0.8”
500 Classes, 2000 Attributes 16’09” 1’37” 1.1”
750 Classes, 3000 Attributes 58’28” 4’02” 2”
1250 Classes, 5000 Attributes 3h16’49” 16’37” 3”
2000 Classes, 8000 Attributes 17h57’15” 1h04’19” 5”

Table 1 – Comparative performance figures.

This new model initially coincides with the input model of the transformation and,
when a rule is executed on a set of elements, these elements are removed from the
model. We have removed the evaluation of some OCL expressions in the conditions of
the Maude rules by checking them in the input model. We have also tried to avoid the
use of OCL expressions in the right hand side of Maude rules when initializing objects
attributes in the target model by specifying variables for the values of the objects’
attributes in the input model. Please refer to [TBV10] for a complete description of
the performed modifications.

This alternative encoding provides significant improvements in efficiency and per-
formance, as shown in Table 1 for the ATL Class2Relational transformation [TV10a].
Still, it is not comparable to the performance of the equivalent ATL transformation
(shown in the last column).

The problem is that the new Maude encoding is much more verbose and less easy to
read and understand. However, this new encoding can be automatically obtained from
the previous one, hence allowing an automatic transformation from one to the other.
This is why we have detailed here the original encoding, because it is functionally
equivalent and much easier to read and understand.

6 Related Work

The definition of a formal semantics for ATL has received attention by different
groups, using different approaches. For example, in [dRJK+06] the authors propose
an extension of AMMA, the ATLAS Model Management Architecture, to specify the
dynamic semantics of a wide range of Domain Specific Languages by means of Ab-
stract State Machines (ASMs), and present a case study where the semantics of part
of ATL (namely, matched rules) are formalized. Although ASMs are very expressive,
the declarative nature of ATL does not help providing formal semantics to the com-
plete ATL language in this formalism, hindering the complete formalization of the
language—something that we were pursuing with our approach.

Other works [BS06, ABK07] have proposed the use of Alloy to formalize and
analyze graph transformation systems, and in particular ATL. These analysis include
checking the reachability of given configurations of the host graph through a finite
sequence of steps (invocations of rules), and verifying whether given sequences of rules
can be applied on an initial graph. These analysis are also possible with our approach,
and we also obtain significant gains in expressiveness and completeness. The problem

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 25

is that Alloy expressiveness and analysis capabilities are quite limited [ABK07]: it
has a simple type system with only integers; models in Alloy are static, and thus the
approach presented in [ABK07] can only be used to reason about static properties of
the transformations (for example it is not possible to reason whether applying a rule
r1 before a rule r2 in a model will have the same effect as applying r2 before r1); only
ATL declarative rules are considered, etc. In our approach we can deal with all the
ATL language constructs without having to abstract away essential parts such as the
imperative section, basic types, etc. More kinds of analysis are also possible with our
approach.

Other works provide formal semantics to model transformation languages using
types. For intance, Poernomo [Poe08] uses Constructive Type Theory (CTT) for
formalizing model transformation and proving their correctness with respect to a given
pre- and post-condition specification. This approach relies on a simple encoding of
MetaClasses as mixed inductive/co-inductive structured types which the current proof
assistant does not handle well due to structural guard constraints for co-inductive
definitions [PM10]. Alternative approaches encode models as graph covering trees
and additional links [GS10, GSMP11] or as a classical mathematical graphs relying
on nodes and relations between nodes [TCCG07]. These approaches can be considered
as complementary to ours, each one focusing on different aspects.

There are also the early works in the graph grammar community with a logic-based
definition and formalization of graph transformation systems. For example, Cour-
celle [Cou97] proposes a combination of graph grammars with second order monadic
logic to study graph properties and their transformations. Schürr [SWZ99] has also
studied the formal specification of the semantics of the graph transformation language
PROGRES by translating it into some sort of non-monotonic logics.

A different line of work proposed in [BHM09] defines a QVT-like model transfor-
mation language reusing the main concepts of graph transformation systems. They
formalize their model transformations as theories in rewriting logic, and in this way
Maude’s reachability analysis and model checking features can be used to verify them.
Only the reduced part of QVT relations that can be expressed with this language is
covered. Our work is different: we formalize a complete existing transformation lan-
guage by providing its representation in Maude, without proposing yet another MT
language.

In this paper we have dealt with all new features of ATL version 3.0, and in par-
ticular we have formalized the ATL refining mode. Many works have been dedicated
to the semantics of the default execution mode, but no one seems to be focused on
the refining mode despite the importance this execution mode is gaining. For ex-
ample, Tisi et al. propose in [TCJ10] the use of this execution mode to implement
Higher-Order Transformations (HOTs). They are model transformations that ana-
lyze, produce or manipulate other model transformations [TJF+09]. Writing HOTs
is generally considered a time-consuming and error-prone task, and often results in
verbose code. Refining mode is used in [TCJ10] to facilitate the definition of HOTs
in ATL, and they recommend the developers to consider in-place refining mode for
every transformation modification and (de)composition.

Finally, Maude has been proposed as a formal notation and environment for spec-
ifying and effectively analyzing models and metamodels [RVD09, BM08]. Simulation,
reachability and model-checking analysis are possible using the tools and techniques
provided by Maude [RVD09]. We build on these works, making use of one of these
formalizations to represent the models and metamodels that ATL handles.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a5

26 · Javier Troya, Antonio Vallecillo

7 Conclusions and Future Work

In this paper we have proposed a formal semantics for ATL by means of the repre-
sentation of its concepts and mechanisms in Maude. Apart for providing a precise
meaning to ATL concepts and behavior (by its interpretation in rewriting logic), the
fact that Maude specifications are executable allows users to simulate the ATL pro-
grams. Such an encoding has also enabled the use of Maude’s toolkit to reason about
the specifications.

In general, it is unrealistic to think that average system modelers will write these
Maude specifications. One of the benefits of our encoding is that it is systematic, and
therefore it can be automated. Thus we have defined a mapping between the ATL
and the Maude metamodels (i.e., a mapping between these two semantic domains)
that realizes the automatic generation of the Maude specifications. Such a mapping
is being defined by means of a set of ATL transformations, that are being developed
as part of our current work.

In addition to the analysis possibilities mentioned here, the use of rewriting logic
and Maude opens up the way to using many other tools for ATL transformations in the
Maude formal environment. In this respect, we are trying to make use of the Maude
Termination Tool (MTT) [DLM08] and the Church-Rosser Checker (CRC) [DM10]
for checking the termination and confluence of ATL specifications.

Finally, the formal analysis of the specifications needs to be done in Maude. At
this moment we are also working on the integration of parts of the Maude toolkit
within the ATL environment. This would allow ATL programmers to be able to
conduct different kinds of analysis to the ATL model transformations they write,
being unaware of the formal representation of their specifications in Maude.

References

[ABK07] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M. Küster. Analy-
sis of Model Transformations via Alloy. In Benoit Baudry, Alain Faivre,
Sudipto Ghosh, and Alexander Pretschner, editors, Proceedings of the
4th MoDeVVa workshop Model-Driven Engineering, Verification and
Validation, pages 47–56, 2007.

[BHM09] Artur Boronat, Reiko Heckel, and José Meseguer. Rewriting logic se-
mantics and verification of model transformations. In Proc. of the
12th International Conference on Fundamental Approaches to Soft-
ware Engineering (FASE’09), pages 18–33. Springer-Verlag, 2009.
doi:10.1007/978-3-642-00593-0_2.

[BJM00] Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specifica-
tion and proof in membership equational logic. Theoretical Computer
Science, 236(1):35–132, 2000. doi:10.1007/BFb0030589.

[BM08] Artur Boronat and José Meseguer. An algebraic semantics for MOF.
In Proc. of FASE’08, volume 4961 of LNCS, pages 377–391. Springer,
2008. doi:10.1007/978-3-540-78743-3_28.

[BS06] Luciano Baresi and Paola Spoletini. On the use of Alloy to analyze
graph transformation systems. In Proc. of ICGT’06, number 4178 in
LNCS, pages 306–320. Springer, 2006. doi:10.1007/11841883_22.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/BFb0030589
http://dx.doi.org/10.1007/978-3-540-78743-3_28
http://dx.doi.org/10.1007/11841883_22
http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 27

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All About Maude – A
High-Performance Logical Framework, volume 4350 of LNCS. Springer,
Heidelberg, Germany, 2007. doi:10.1007/978-3-540-71999-1.

[Cou97] Bruno Courcelle. The expression of graph properties and graph trans-
formations in monadic second-order logic. In Handbook of graph gram-
mars and computing by graph transformation. Vol. I: Foundations,
pages 313–400, 1997.

[DLM08] Francisco Durán, Salvador Lucas, and José Meseguer. MTT: The
Maude Termination Tool (System Description). In Proc. of the 4th in-
ternational joint conference on Automated Reasoning (IJCAR’08), vol-
ume 5195 of LNAI, pages 313–319, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-71070-7_27.

[DM10] Francisco Durán and José Meseguer. A Church-Rosser Checker Tool for
Conditional Order-Sorted Equational Maude Specifications. In Proc.
of WRLA 2010, volume 6381 of LNCS, pages 69–85. Springer, 2010.
doi:10.1007/978-3-642-16310-4_6.

[dRJK+06] Davide di Ruscio, Frédéric Jouault, Ivan Kurtev, Jean Bézivin, and
Alfonso Pierantonio. Extending AMMA for supporting dynamic se-
mantics specifications of DSLs. Technical Report 06.02, Laboratoire
d’Informatique de Nantes-Atlantique, Nantes, France, April 2006.

[Ecl10] Eclipse M2M Project. ATL, 2010. http://www.eclipse.org/m2m/atl/

atlTransformations/.

[Gro06] Atlas Group. ATL: Atlas Transformation Language, ATL User Manual.
LINA and INRIA, 2006. http://www.eclipse.org/m2m/atl/doc/ATL_

User_Manual%5Bv0.7%5D.pdf.

[GS10] Mathieu Giorgino and Martin Strecker. BDDs verified in a proof as-
sistant (Preliminary report). In Proc. of Theoretical and Applied As-
pects of Program Systems Development (TAAPSD 2010), Univ. Taras
Shevchenko, Kiev (Ukraine), October 2010. Presses universitaires
de l’Universit Taras Shevchenko. http://www.irit.fr/~Martin.

Strecker/Publications/taapsd10.html.

[GSMP11] Mathieu Giorgino, Martin Strecker, Ralph Matthes, and Marc Pantel.
Verification of the Schorr-Waite algorithm – from trees to graphs. In
Logic-Based Program Synthesis and Transformation - 20th International
Symposium, LOPSTR 2010, Hagenberg, Austria, July 23-25, 2010, Re-
vised Selected Papers, volume 6564 of LNCS, pages 67–83. Springer,
2011. doi:10.1007/978-3-642-20551-4_5.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
ATL: A model transformation tool. Science of Computer Pro-
gramming, 72(1-2):31 – 39, 2008. Available from: http://www.
sciencedirect.com/science/article/B6V17-4SFXK3H-1/2/

0fa2857e74bc5ed41ca54eea199d9c17, doi:DOI:10.1016/j.scico.
2007.08.002.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96(1):73–155, 1992. doi:

10.1016/0304-3975(92)90182-F.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71070-7_27
http://dx.doi.org/10.1007/978-3-642-16310-4_6
http://www.eclipse.org/m2m/atl/atlTransformations/
http://www.eclipse.org/m2m/atl/atlTransformations/
http://www.eclipse.org/m2m/atl/doc/ATL_User_Manual%5Bv0.7%5D.pdf
http://www.eclipse.org/m2m/atl/doc/ATL_User_Manual%5Bv0.7%5D.pdf
http://www.irit.fr/~Martin.Strecker/Publications/taapsd10.html
http://www.irit.fr/~Martin.Strecker/Publications/taapsd10.html
http://dx.doi.org/10.1007/978-3-642-20551-4_5
http://www.sciencedirect.com/science/article/B6V17-4SFXK3H-1/2/0fa2857e74bc5ed41ca54eea199d9c17
http://www.sciencedirect.com/science/article/B6V17-4SFXK3H-1/2/0fa2857e74bc5ed41ca54eea199d9c17
http://www.sciencedirect.com/science/article/B6V17-4SFXK3H-1/2/0fa2857e74bc5ed41ca54eea199d9c17
http://dx.doi.org/DOI: 10.1016/j.scico.2007.08.002
http://dx.doi.org/DOI: 10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.5381/jot.2011.10.1.a5

28 · Javier Troya, Antonio Vallecillo

[PM10] Celia Picard and Ralph Matthes. Coinductive graph representation:
the problem of embedded lists. In Rachid Echahed, Annegret Habel,
and Mohamed Mosbah, editors, Proc. of Graph Computation Mod-
els (GCM 2010), pages 133–148, Enschede, The Netherlands, Octo-
ber 2010. Available from: http://gcm-events.org/gcm2010/pages/
gcm2010-preproceedings.pdf.

[Poe08] Iman Poernomo. Proofs-as-model-transformations. In Proc. of
ICMT’08, volume 5063 of LNCS, pages 214–228, Zurich, Switzerland,
2008. Springer. doi:10.1007/978-3-540-69927-9_15.

[RD08] Manuel Roldán and Francisco Durán. Representing UML models in
mOdCL. Technical Report. http://maude.lcc.uma.es/mOdCL, 2008.

[RV08] José E. Rivera and Antonio Vallecillo. Representing and operat-
ing with model differences. In Proc. of TOOLS 2008, volume 11
of LNBIP, pages 141–160, Zurich, Switzerland, June 2008. Springer.
doi:10.1007/978-3-540-69824-1_9.

[RVD09] José E. Rivera, Antonio Vallecillo, and Francisco Durán. Formal specifi-
cation and analysis of domain specific languages using Maude. Simula-
tion: Transactions of the Society for Modeling and Simulation Interna-
tional, 85(11/12):778–792, 2009.

[Ste07] Perdita Stevens. Bidirectional model transformations in QVT: Seman-
tic issues and open questions. In Proc. of MODELS 2007, volume
4735 of LNCS, pages 1–15. Springer, October 2007. doi:10.1007/

978-3-540-75209-7_1.

[SWZ99] Andy Schürr, Andreas J. Winter, and Albert Zündorf. The PROGRES
approach: language and environment. In Handbook of graph gram-
mars and computing by graph transformation. Vol. II: Applications,
languages, and tools, pages 487–550, 1999.

[TBV10] Javier Troya, José M. Bautista, and Antonio Vallecillo. A Rewrit-
ing Logic Semantics for ATL (Extended Version). Universidad de
Málaga, November 2010. http://atenea.lcc.uma.es/Descargas/

ATLinMaudeJOT.pdf.

[TCCG07] Xavier Thirioux, Benôıt Combemale, Xavier Crégut, and Pierre-Löıc
Garoche. A Framework to Formalise the MDE Foundations. In Interna-
tional Workshop on Towers of Models (TOWERS 2007), pages 14–30,
Zurich, June 2007.

[TCJ10] Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving higher-
order transformations support in ATL. In Proc. of ICMT 2010, vol-
ume 6142 of LNCS, pages 215–229, Málaga, Spain, June 28-29 2010.
Springer. doi:10.1007/978-3-642-13688-7_15.

[TJF+09] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and
Jean Bézivin. On the Use of Higher-Order Model Transformations.
In Richard Paige, Alan Hartman, and Arend Rensink, editors, Proc.
of MDA-FA 2009, volume 5562 of LNCS, pages 18–33. Springer, 2009.
doi:10.1007/978-3-642-02674-4_3.

[TV10a] Javier Troya and Antonio Vallecillo. Towards a rewriting logic seman-
tics for ATL. In Proc. of ICMT 2010, volume 6142 of LNCS, pages

Journal of Object Technology, vol. 10, 2011

http://gcm-events.org/gcm2010/pages/gcm2010-preproceedings.pdf
http://gcm-events.org/gcm2010/pages/gcm2010-preproceedings.pdf
http://dx.doi.org/10.1007/978-3-540-69927-9_15
http://maude.lcc.uma.es/mOdCL
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1007/978-3-540-75209-7_1
http://dx.doi.org/10.1007/978-3-540-75209-7_1
http://atenea.lcc.uma.es/Descargas/ATLinMaudeJOT.pdf
http://atenea.lcc.uma.es/Descargas/ATLinMaudeJOT.pdf
http://dx.doi.org/10.1007/978-3-642-13688-7_15
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.5381/jot.2011.10.1.a5

A Rewriting Logic Semantics for ATL · 29

230–244, Málaga, Spain, June 28-29 2010. Springer. doi:10.1007/

978-3-642-13688-7_16.

[TV10b] Javier Troya and Antonio Vallecillo. Towards a Rewriting Logic Se-
mantics for ATL (Extended Version). Universidad de Málaga, Jan-
uary 2010. Technical Report. http://atenea.lcc.uma.es/Descargas/
ATLinMaude.pdf.

About the authors

Javier Troya is PhD student at the Department of Computper
Science at the University of Málaga, where he received a MSc De-
gree in Computer Science in 2008. His research interests include
Model-Driven Software Development and its industrial applica-
tions, as well as the formal semantics of model transformation
languages. For further information, please visit http://www.lcc.
uma.es/~jtc or contact him at javiertc@lcc.uma.es.

Antonio Vallecillo is Professor of Computer Science at the
University of Málaga. His research interests include Open Dis-
tributed Processing, Model-Based Engineering, Componentware,
Software Quality, and the industrial use of formal methods.
For further information about his research projects and publi-
cations, please visit http://www.lcc.uma.es/~av or contact him
at av@lcc.uma.es.

Acknowledgments The authors would like to thank Franciso Durán and José E.
Rivera for their comments and suggestions on the paper, and to Jordi Cabot and Sal-
vador Mart́ınez for helping us understand the precise behaviour of the ATL refining
mode. We would also like to thank the reviewers for their insightful and constructive
comments and suggestions. Finally, we need to acknowledge José Bautista for develop-
ing the ATL transformations between ATL and Maude that implement the encoding.
This work has been partially supported by Spanish Research Projects TIN2008-03107
and P07-TIC-03184.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/978-3-642-13688-7_16
http://dx.doi.org/10.1007/978-3-642-13688-7_16
http://atenea.lcc.uma.es/Descargas/ATLinMaude.pdf
http://atenea.lcc.uma.es/Descargas/ATLinMaude.pdf
http://www.lcc.uma.es/~jtc
http://www.lcc.uma.es/~jtc
mailto:javiertc@lcc.uma.es
http://www.lcc.uma.es/~av
mailto:av@lcc.uma.es
http://dx.doi.org/10.5381/jot.2011.10.1.a5

	Introduction
	Transformations with ATL
	ATL Refining Mode

	Rewriting Logic and Maude
	Encoding ATL in Maude
	Characterizing Model Transformations
	Encoding Models and Metamodels in Maude
	Modeling ATL default execution mode
	Matched rules.
	Lazy rules.
	Unique lazy rules.
	Helpers.
	The imperative section.
	ResolveTemp

	ATL refining mode in Maude

	Simulation and Formal Analysis
	Simulating the transformations
	Reachability analysis
	Checking other properties
	Questions of efficiency

	Related Work
	Conclusions and Future Work
	References
	About the authors

