
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Using Design Pattern Clues to Improve
the Precision of Design Pattern

Detection Tools
Francesca Arcelli Fontanaa Marco Zanonia Stefano Maggionia

a. DISCo — Dipartimento di Informatica, Sistemistica e Comunicazione
University of Milano-Bicocca Viale Sarca, 336 — Building U14 20126
— Milan, Italy

Abstract Design pattern detection, or rather the detection of structures
that match design patterns, is useful for reverse engineering, program
comprehension and for design recovery as well as for re-documenting
object-oriented systems. Finding design patterns inside the code gives
hints to software engineers about the methodologies adopted and the
problems found during its design phases, and helps the engineers to evolve
and maintain the system. In this paper, we present the results provided by
four different design pattern detection tools on the analysis of JHotDraw
6.0b1, a well-known Java GUI framework. We show that the tools generally
provide different results, even while evaluating the same system. From this
observation, we introduce an approach based on micro structures detection
that aims to discard the false positives from the detected results, hence
improving the precision of the analyzed tools results. For this purpose we
exploit a set of micro structures called design pattern clues, which give
useful hints for the detection of design patterns.

Keywords

Software re-engineering; software maintenance; reverse engineering; design recovery;
design pattern detection.

1 Introduction

Reverse engineering and reengineering activities are very important to support software
maintenance, comprehension and evolution [CCI90, MJS+00]. One of the objectives
of reverse engineering consists in reconstructing the architecture of target software
systems [DP09] and detecting their fundamental components to consequently reveal
their relationships. The retrieval of these components would make the restructuring
and maintenance phases easier, as the system would not be seen as a single monolithic

Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni. Using Design Pattern Clues to Improve the
Precision of Design Pattern Detection Tools. In Journal of Object Technology, vol. 10, 2011,
pages 4:1–31. doi:10.5381/jot.2011.10.1.a4

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a4
http://dx.doi.org/10.5381/jot.2011.10.1.a4


2 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

structure, but as a set of smaller interacting components that are usually easier to
manage.

In this context, particular relevance is given to design patterns [GHJV95, Coo98].
Design patterns are useful both in the design phases, as they are a sort of directive
to solve a problem in a given context, and in the reverse engineering phases, as the
detection of such elements in a system gives to the software maintainer hints about the
issues faced during the system design. The detection of design patterns, or better the
detection of structures that match design patterns, gives therefore useful information
about the organization of a system, and it can reveal the logical foundations of a given
implementation. Knowing the potential uses of design patterns helps during a design
recovery phase by outlining possible design problems and decisions. Moreover, design
pattern detection is important during the re-documentation phases of a system, in
particular when the system documentation is scarce, incomplete or not up-to-date to
the current system version.

For what concerns the vocabulary used in the design pattern detection community,
Guéhéneuc et al. [Gué07] proposed the use of the term motifs to express the solutions
advocated by the design patterns. These solutions are implemented in systems as
micro architectures, where a micro architecture is composed of classes, methods, fields,
and relationships having the structure similar to one or more motifs. The authors
distinguish between patterns and motifs because patterns encompass information
that is not readily available for their identification. While design patterns describe
good solutions to common and recurring problems, design motifs are the solutions
which software engineers introduce in their program design [KGH10]. This aspect
leads to the implementation of personalized solutions, given by different design motifs,
which in the literature are usually called variants [BMR+96, KB96, SvG98]. The
variants problem concerns the possibility of potentially infinite implementations of the
same pattern, hence making its detection a difficult task. Guéhéneuc et al. [Gué07]
suggest that strictly speaking, we cannot use the terms “design pattern identification”
or “detection”, but rather the instantiation and identification of micro-architectures
similar to some motifs; thus, they propose to use the term “design motif detection”
for the process traditionally called design pattern detection. In the remainder of this
paper, we will be consistent with this vocabulary.

Many different approaches and tools for the detection of design motifs exist, and
they normally give different results when analyzing the same system. The comparison
among these tools is not easy because a standard benchmark platform is not yet
available, even if some benchmarks have been proposed [FHFG08, Ess10, AFZC10].
The tools exploit different detection techniques; some of them are based on the
identification of micro structures [NNZ00, SS03] inside source code, that can be used
as the basic bricks onto which the detected motifs can be built.

By micro structure we mean a kind of program construct or arrangement that
has limited scope and size, and that can be represented as a property of a program
element (class, method, attribute, etc) or as a relation between a couple of elements.
An example of this kind of micro structure is given by Elemental Design Patterns
(EDPs) used in the SPQR approach [SS03].

In the context of these micro-structures, we have introduced the concept of design
pattern clues [Mag06], which constitutes a new category of micro-structures, with the
aim to identify particular hints useful in a design motif detection process.

In this paper we analyze how design pattern clues and some EDPs can be used and
exploited as elements that can help software engineers to validate or discard the results

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 3

provided by tools for design motif detection. This aspect is interesting because the
results of design motif detection are generally characterized by low precision. Therefore,
having a means to help the engineers to verify the produced output could increase the
precision of the results. In this context, we do not take into consideration the recall
values of the single tools, as our objective in this work is to check the retrieved design
motifs and to discard the false positives that have been eventually detected by the
tool.

The validation and refinement process (which is explained in detail in section 5) is
based on the definition of rules for each of the design patterns to be analyzed, where
we define which clues or EDPs should or must belong to any design motif we want to
validate. The instances obtained through the design motif detection tool are checked
according to the defined rules, to validate or discard them according to the clues and
EDP that can be identified, giving the possibility to classify them as correct or wrong.
To test our approach we have manually validated the instances obtained by the design
motif detection tool and compared them with the results of our refinement process.

The principal aims of this paper are:

• to show how design pattern clues and EDPs can be used to refine the results
obtained by other tools for design motif detection;

• to analyze the improvement of the precision of these results through the detection
of clues and EDPs in the found design motifs.

We describe and analyze in the paper the results obtained with four tools for
design motif detection: Design Pattern Detection Tool [TCSH06] (which we will refer
to as DPD Tool from now on), PINOT [SO06], Web of Patterns [DE07] and FUJABA
[NNZ00]. We will show the results we obtained by analyzing the JHotDraw framework
and will observe how our refinement process helps in reducing, for some design patterns,
the number of false positives produced by the detection tools.

The paper is organized as follows: in section 2 we describe selected related work
on design motif detection; in section 3 we introduce design pattern clues, which can
be useful for the refinement of third-party-identified pattern motifs, and we give an
example of clues and EDPs in a design motif. In section 4 are discussed the results
obtained by the four considered tools on the analysis of JHotDraw 6.0b1, showing
the differences among them. In section 5 we describe the principal phases of our
refinement process, in section 6 we describe the pattern refinement rules, explaining
the steps followed during the refinement process. In section 7, we provide examples of
the application of the rules on some detected instances and in section 8 we summarize
and discuss the refinement results obtained on the instances identified by the detection
tools. Finally, section 9 traces the conclusions of our work and discusses possible
future improvements.

2 Related Works

Several tools and approaches for design motif detection have been proposed in the
literature, but we emphasize that undertaking a comparison among design motif
detection tools is a difficult task. Benchmark proposals for the evaluation of design
motif detection tools have been presented [AFZC10, FHFG08, Ess10], but a standard
benchmark platform is not yet available. Another initiative where a repository of
pattern-like micro-architectures called P-MARt [GA08] has been defined, serving as

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


4 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

a baseline to assess the precision and recall of motif identification tools; in order to
support also benchmarking a common exchange format, called DPDX [KBH+10], for
design motif detection tools has been proposed.

The work more correlated to our research is described by Kniesel et al. [KB09],
who compare different design motif detection tools, and they propose a novel approach
based on data fusion, built on the synergy of proven techniques, without requiring
any re-implementation of what is already available. They show how a pattern can
be a witness for the existence of another pattern. Their approach differs from our
approach because they exploit the results of the tools in a data fusion approach to
better improve both precision and recall, while we exploit micro structures to validate
the results of the tools and to improve only the precision. It would be interesting
in the future to analyze if our approach based on micro structures could be used to
improve their approach.

We briefly introduce below several approaches or tools developed for design motif
detection and we start by describing the four tools that we have considered for our
experimentation of the refinement process, while the others are cited as examples of
known design motif detection tools.

Pinot [SO06] is a modification of Jikes, IBM’s Java compiler, developed to detect
various design motifs based on static rule-based analysis. The authors present a
reverse engineering oriented reclassification of the GoF design patterns into different
categories: patterns provided by the programming language, syntax-based patterns,
semantic based patterns and domain-specific patterns.

Tsantalis [TCSH06] proposes a design motif detection methodology, based on
similarity scoring between graph vertices. The approach has the ability to also
recognize motifs that are modified from their standard representation and exploits the
fact that motifs reside in one or more inheritance hierarchies, reducing the size of the
graphs to which the algorithm is applied. Evaluation on three open-source projects
demonstrated the accuracy and the efficiency of the method described in the paper.

Web of Patterns [DE07] uses an approach to the formal definition of design motifs
based on the web ontology language (OWL). The authors present their prototype
which accesses the motif definitions and detects motifs in Java software. The tool
connects to a pattern server, downloads and scans the patterns, translates them into
constraints, and resolves these constraints with respect to the program to be analyzed.

FUJABA [NNZ00, NSW+02], exploits a kind of micro structure, called sub-pattern,
and fuzzy logic combined with FUJABA Abstract Syntax Graphs (ASGs) to cope
with two different types of pattern variations: design variants and implementation
variants. The former is addressed using ASGs, by modelling various design variants
with different graphs, and implementation variants are handled by defining a set of
fuzzy rules together, that determine the degree of belief that a motif is found at a
certain location in the program.

SPQR [SS03] exploits another kind of micro structure called Elemental Design
Patterns (EDPs) and a system for logical calculus, the ρ-calculus, to detect DPs. The
authors claim that the tool can detect several design motifs in C++ systems.

DeMIMA [GA08] is an approach to semi-automatically identify micro-architectures
that are similar to design motifs in source code and to ensure the traceability of these
micro-architectures between implementation and design. DeMIMA consists of three
layers: two layers to recover an abstract model of the source code, including binary
class relationships, and a third layer to identify design motifs in the abstract model.
Through the use of explanation-based constraint programming, DeMIMA ensures

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 5

100% recall on an experimentation on five systems.
SPOOL [KSRP99] stands for Spreading Desirable Properties into the Design of

Object- Oriented, Large-Scale Software Systems. The authors outline three possible
ways of detection: manual, automatic, and semi-automatic, the first two of which
are supported in SPOOL. Automatic recovery is implemented through queries to a
previously generated repository.

The Pat system [KP96] transforms C++ source code into PROLOG facts and
matches them against pattern definitions given as PROLOG statements. The approach
is based on first-order logic and constraint solving techniques. The authors claim that
this system can detect many motifs without missing any and with few false positives.
Although we cannot verify the truth of these assertions, we can easily imagine the
high computational costs of this approach. In addition, only header files are examined,
so no behaviour is available for them.

PTIDEJ-Décor tool [MG07] uses constraint solving with explanation. Explanation
consists in first detecting instances matching DP definitions exactly and then, by
relaxing some constraints, entities that are less and less similar to DPs.

The MAISA tool [PKG+00] uses a library of motifs defined as sets of variables,
representing the motif’s roles, and unary or binary constraints over them. A solution to
the constraint satisfaction problem is a possible instantiation of these variables. To be
able to detect instances which do not exactly correspond to the definition, it is possible
to relax the definition by removing some constraints, but the number of candidates
tends to increase quickly. A similar approach has been used in the Columbus tool
[FBTG02], in which motifs are defined by using an XML based language called Design
Pattern Markup Language (DPML) and searched for in an Abstract Semantic Graph
(ASG) generated by the tool itself.

Several other tools and approaches have been proposed and described in the
literature [Tai07, AFC98, Wuy98, Vok06, SvG98, AFRG+06].

3 Micro-structures for Design Motif Detection

Different kinds of micro-structures have been proposed in the literature, with different
objectives, like design motif detection, identification of common programming tech-
niques and extraction of architectural relationships. As far as design motif detection
is concerned, the approaches based on the recognition of micro-structures inside the
code and other input generally exploit source code static analysis.

The relevance of micro-structures in the general detection process can be important.
To obtain an effective detection process with good rates of precision and recall, micro-
structures should help to identify those aspects that are fundamental for the presence
of motifs inside the code.

We have previously compared two types of micro-structures for design motif
detection [AFMRT05], focusing on their relevance in the identification of GoF design
patterns [GHJV95] and we realized that the detection of one kind of micro structure
is not enough to detect design motifs. Other techniques have to be used as for
example fuzzy logic, constraint solving or data mining as we saw in section 2 with
SPQR exploiting elemental design patterns and ρ-calculus and FUJABA exploiting
sub-patterns and fuzzy logic.

Hence we decided to study and propose a new category of micro-structures, named
design pattern clues, with the aim to identify hints, conditions and concepts useful
for design motif detection. The aim to introduce a new kind of micro structure was

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


6 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

to try to complement the information that can be extracted through other micro
structures, to obtain information to be used in a design motif detection approach. So
we started to analyze design pattern motifs, extracted from examples and real systems,
and we tried to understand, for each specific design pattern, what information the
other micro-structures (in particular EDPs) were not able to capture. We put together
the causes of bad detection for each pattern, and we tried to specify more precisely
what all these causes had in common. Then we tried, when possible, to specify how
to detect these causes in the code without ambiguity; clues were the output of this
process. After having done this work for each pattern, we also made a further analysis
of the clues coming from different patterns in order to avoid duplication and let their
definition become more stable. It was a bottom-up task, done starting from the real
implementations of patterns rather than from their theoretical definition.

Recently we made an extensive comparison [AFMR11] of four micro-structures
types, precisely: Design Pattern Clues, Elemental Design Patterns [Smi02], Sub-
Patterns [NSW+02] and Micro Patterns [GM05], with the aim to provide in the future
a unified catalog of micro-structures. In this paper our focus is to analyze how two
kind of micro-structures, in particular clues and EDPs, can be used to refine the
results of detection obtained through different tools.

Many differences exist between clues and EDPs. For example, clues are strictly
focused on formalizing constructs that are typical in the implementation of design
patterns, while EDPs depict basic programming constructs (like object instantiations
or method invocations) that are independent from the presence of design patterns
inside the system to be analyzed. Clues and EDPs share the same detail level, as in
general they can be detected by the analysis of single statements and elements of a
class, like method invocations or field declarations.

EDPs capture object-oriented best practices and are independent of any program-
ming language; clues aim to identify basic structures peculiar to each design pattern.
In spite of the differences between them, these micro-structures can be used both for
the construction and the detection of design motifs.

Examples of both clues and EDPs are given in the next sub-sections.

3.1 Design Pattern Clues

We already introduced design pattern clues for creational patterns [Mag06] and we
introduce here the clues for all the other categories [GHJV95]. We have defined
design pattern clues by manually analyzing design pattern architectures and sample
implementations, identifying basic structures that are peculiar for each single pattern.
Clues give us more information related to the single roles that constitute the various
patterns. Roles [KB09] are duties that can be fulfilled by program elements (type,
methods, . . . ) relations (inheritance, association, etc) and collaborations in a design
pattern. The information about roles is exploited in combination with EDPs, which
on the contrary tend to be useful to identify relationships among the pattern roles,
leading to the extraction of pattern motifs. An example of a design pattern and of its
clues is reported in subsection 3.2.

Currently, we have identified 46 design pattern clues (definitions are available in
Appendix A), subdivided into the following nine categories:

Class Information: collects clues that can be identified analyzing a class declaration
or that characterize a single class;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 7

Multiple Class Information: collects clues that can be identified by the comparison
among two classes (or more) and their contents;

Variable Information: gathers information about particular variables;

Instance Information: contains clues regarding particular instances of a certain
class, and one clue representing a controlled instantiation mechanism;

Method Signature Information: collects clues which are identifiable analyzing the
signature of a method;

Method Body Information: contains those clues that can be identified by only
analyzing the body of any kind of method;

Method Set Information: collects clues whose details can be deducted analyzing
the whole set of methods the involved classes declare and implement;

Return Information: includes those clues regarding various possible return modes
from a method;

Java Information: collects clues which are strictly bound to the Java language.

All 46 clues can be automatically detected from source code, as they are represen-
tations of implementation issues which can be easily understood through an analysis
of it. The clue catalogue is reported in Appendix A. Each design pattern clue is
automatically recognizable from source code with the use of an ad-hoc tool called
Micro-Structures Detector (MSD) [AFZ11, Ess09]. Design pattern clues are extracted
through AST matching, that is described in detail in section 5.

3.2 Example of Micro-structures in a Design Motif

Considering the structural design pattern category, we propose the basic implemen-
tation of the Composite design pattern and we discuss the design pattern clues and
EDPs that can be identified in it. The description of design pattern clues can be
found in Appendix A, while the description of EDPs are avilable in a separate catalog
[Smi02, Ess10]. Next we show a simple Java implementation of the Composite design
pattern:

public abstract class Component{
public abstract void operation();
public void add(Component c){}
public void remove(Component c){}

}

public class Composite extends Component{
private List<Component> components = new Vector<Component>();

public void operation(){
for (Component c : components)
c.operation();

}

public void add(Component c){

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


8 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

components.add(c);
}

public void remove(Component c){
components.remove(c);

}
}

public class Leaf extends Component{
public void operation(){ ... }

}

3.2.1 Design Pattern Clues

Seven design pattern clues can be found in this basic implementation of the Composite:

Abstract cyclic call: (method signature information category) in the Composite
class the method operation() invokes the Component.operation() abstract
method within a cycle; therefore the Composite class contains an Abstract cyclic
call ;

Component method: (method signature information category) the two methods
Component.add() and Component.remove() are instances of this clue, as they
receive as parameter an object belonging to the same class;

Node class: (method set information category) Composite extends a class (Component)
declaring Component methods and overrides them;

Leaf class: (method set information category) Leaf extends a class (Component)
declaring Component methods without overriding them;

Same interface container: (instance information category) Composite contains a
list of Components, which are objects that share the same interface with the
Composite class; so Composite has a Same interface container clue;

Multiple redirections in family: (method body information category) the Redirect
in Family EDP is detected inside a cycle (into the Composite.operation()
method), therefore it is supposed to work on a set of elements. In this case,
the operation() method is invoked on each Component object belonging to the
Components list.

3.2.2 Elemental Design Patterns

In the implementation above of the Composite the following EDPs have been detected:
one Abstract Interface EDP states that the Component class declares an abstract
method, and consequently is an abstract class; two Inheritance EDPs connect the
Composite and Leaf class through an extension relationship; a Create Object EDP can
be found in Composite, where a list of Components is instantiated; finally a Redirect
in Family EDP is detected in the Composite.operation() method. This method
invokes a method with the same signature belonging to Composite’s superclass.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 9

4 Detection of Design Motifs through Four Design Motif Detec-
tion Tools

Several tools for design motif detection exist such as those cited in section 2. Each
one is based on a different approach, adopts different strategies to detect motifs, and
in general can identify only a subset of the defined motifs. In this paper we focus
on the evaluation of four known tools, namely DPD Tool [TCSH06], PINOT [SO06],
FUJABA [NNZ00] and Web of Patterns [DE07] and we report the results obtained
by these tools in the analysis of the JHotDraw 6.0b1 framework [Bra]. We focus our
attention on this system because the development of JHotDraw demonstrates the
practical application of design patterns in a software project. For each class of the
system, the documentation indicates if it eventually belongs to a certain pattern or set
of patterns, and which role it plays within the patterns it takes part in. Thus, we have
a precise indicator about what patterns have been implemented, how many instances
of a certain pattern can be found in the system, and which classes take part in which
patterns.

Table 1 summarizes the results produced by the four considered tools on JHotDraw
6.0b1, in terms of the number of occurrences they are able to detect for each pattern.
From the analysis of this table, several points can be observed. First of all, no tool is
able to detect or provide techniques for the identification of the whole set of design
patterns defined by Gamma et al. [GHJV95].

A second consideration is related to the different results obtained by the tools in
the detection of the same pattern. As it can be noticed, there is no pattern for which
the tools return the same number of occurrences. Even if this would have been the
case, it could have been possible that the detected instances differed from one tool to
another in terms of classes realizing each single instance. The difference in the results
obtained by the tools is due to the different detection strategies and sometimes to
the slightly different pattern definition interpretations that lead to include or exclude
certain mofits during the detection. As the different tools identify a considerable
number of false positives, hence with low precision rates, we propose in this paper
an approach aimed at discarding false positive instances through the help of micro
structure based refinement rules. Our approach aims at improving the precision of
design motif detection tools, therefore obtaining results that are more close to the
actual design pattern motifs implemented in the analyzed systems.

5 Pattern Instances Refinement Process

We now describe the steps of the refinement process that we propose in this paper
and the steps of the validation of our process. Figure 1 summarizes both of them. In
the figure, the grey rectangles represent the tools that we have developed involved
in the refinement process. Rounded rectangles are related to the needed artifacts
and representations, while straight rectangles represent the pursued activities and
operations.

In the first phase, design motifs are identified from an analyzed system through the
different detection tools; then to validate our refinement process, they are manually
evaluated to check which of them are correct instances, and which are false positives.
The manual evaluation is based both on the system documentation (in the case it
traces the existence of patterns within the system), and on personal experience and
knowledge about patterns. Manual evaluation has been performed by several software

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


10 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Table 1 – Results of the design motif detection process obtained by four tools on the analy-
sis of JHotDraw 6.0b1

Pattern
category

Pattern
name

Design
Pattern
Detection
Tool

PINOT FUJABA2 Web of
Patterns

C
re
at
io
na

l Abstract
Factory n/a n/a 2 14

Builder n/a n/a n/a n/a
Factory
Method 2 34 2 n/a

Singleton 2 0 0 1
Prototype 3 n/a n/a n/a

B
eh
av
io
ur
al

Chain of re-
sponsibility n/a n/a 0 n/a

Command 231 n/a n/a n/a
Iterator n/a n/a 10 n/a
Mediator n/a n/a n/a n/a
Memento n/a n/a 11 n/a
Observer 3 n/a n/a n/a
State 291 3 0 n/a
Strategy 291 51 0 n/a
Template
Method 5 2 31 1

Visitor 1 1 0 0

St
ru
ct
ur
al

Adapter 231 5 26 1
Bridge n/a n/a 0 n/a
Composite 1 4 0 1
Decorator 3 5 0 n/a
Façade n/a n/a 8 n/a
Flyweight n/a n/a 0 n/a
Proxy n/a n/a n/a n/a

1Design Pattern Detection Tool identifies the Adapter and the Command as being the same pattern.
This is due to the fact that the two patterns actually present an identical structure. The 23 results
are to be considered comprising both Adapter and Command instances. The same considerations
are applicable to the State and Strategy patterns, which the tool recognizes as being the same
pattern.
2The instances detected by FUJABA are expressed in terms of similarity to the actual correct
implementation of the pattern. For each instance, a percentage value is given, which represents
the grade of similarity of the instance to the actual pattern. For brevity, we don’t report here the
similarity values. Anyway, each of the identified instances is at least 80% close to the real pattern.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 11

engineering master students. In the future, the evaluation step could be supported
by an automated comparison with a repository of valid instances (work in progress
[Ess10]). The results obtained by the detection tools are represented in different
forms, depending on the tool. In general, the tools provide graphical or textual
representations, where each role is associated with a particular class.

In the second phase, each instance to be refined by the corresponding micro-
structure-based rule described in the next section, must be represented in a graph-
based form, where each node represents a class (having a role in the pattern) and
each edge represents the set of micro-structures relating two classes. A design pattern
role is the label, defined in the pattern definition, that we can give to each class
belonging to a design pattern instance, to specify its job (the role) within the overall
pattern. In this phase of the refinement process, we define the roles for each detected
instance: each role identified by the tool is translated to a graph node. The graph
structures are defined in appropriate XML templates (one for each kind of pattern).
Each element of the template corresponds to a role, and has to be completed with
the actual class or classes playing that specific role. The class-role association is
currently supported by a manual process, but we are working on the development of
the automation of the process, at least for the most common tools for design motif
detection [Ess10, AFZC10].

In the third phase, the micro structures are detected through the Micro Structures
Detector Module (MSD module) and the defined graph nodes obtained in phase two
constitute the first input for the Design Pattern Refiner (DPR module), a graphical
front end devoted to the validation of motifs. For each instance, starting from the
graph nodes and from the micro-structures identified by the Micro-Structures Detector
on the subject system, the Refiner generates the actual micro structure based motifs.

Hence, through the Micro-Structures Detector, the micro structures are extracted
by visitors that traverse an AST representation of the source code, each of them
returning instances of the micro structures if the analyzed classes or interfaces actually
implement them. The information is acquired statically and is characterized by 100%
rate of precision and recall. This value is due to the fact that these kinds of structures
are meant to be mechanically recognizable, i.e. there is always a 1-to-1 correspondence
between a micro structure and a piece, or a set of pieces, of code. In other words,
the micro structures are not ambiguous (as on the contrary design patterns may be),
and once a micro structure has been specified in terms of the source code details
that are used to implement it, the micro structure can be correctly detected. Our
actual implementation of the MSD module is based on AST analysis, and exploits the
JDT library, which provides all the classes and interfaces that can be used to access
a project’s ASTs. The micro structures are collected by a set of visitors, invoked
sequentially on the ASTs of the classes constituting the project and visit only those
nodes that may contain the information they are able to detect (for example, the
visitors that look for method call EDPs only analyze nodes that represent a method
invocation, i.e. instances of the MethodInvocation class). The results coming from
the visitors, i.e. the instances of basic elements that have been found inside the project,
are then stored in an XML file.

The Design Pattern Refiner associates roles to nodes in the graph according to the
output of the motif detection tool; the refiner then applies the appropriate refinement
rule to each instance, to check which of the micro-structures defined by the rule
are actually implemented. Based on this application on the micro-structures which
are peculiar for the pattern and on the necessary pattern’s micro-structures, in the

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


12 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Detected pattern
instance

Role R1: Class1
Role R2: Class2
Role R3: Class3

Manual evaluation

System documentation
Personal experience

Roles definition
Micro-structures

detector

Pattern roles
representation

R1

R2

R3

(1)

(2)

(3)

Pattern refinement rule

R1

R2

R3

m1
m3

m2m4

Rule application

Refined instance

R1

R2

R3

m1
m3

m2

Validation

(4) Results comparison

Micro-structures based
pattern instance

R1

R2

R3

m1
m3

m6
m7
m8

m2m5

Figure 1 – An overview of the refinement process

validation step each instance is either accepted as a true pattern instance or classified
as a false positive and discarded.

In order to validate whether the refinement process provides the same results or
not, we have to compare the obtained results with those of the manual evaluation.
We plan to automate this phase in a future integration of the refinement process just
described with the benchmark platform for design motif detection evaluation we are
currently developing [Ess10].

6 Definitions of Refinement Rules

The rules we define in this section aim to increase the precision values of design motif
detection tools. Given a subject system S, we indicate with tp (true positives) the
number of real design pattern instances implemented in S and identified by the motif
detection tools; fp (false positives) indicates the number of instances which have been
detected by the tool on S but which are not correct realizations of the subject pattern,

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 13

while fn (false negatives) indicates the number of pattern instances implemented in S
which cannot be identified by the detection tool. The precision P of a design motif
detection tool is computed as P = tp/(tp+ fp), and indicates what proportion of the
detected instances are correct implementations. The more P is close to 1, the more
the tool is precise and the fewer false positives the tool detects. The recall R is defined
as R = tp/(tp + fn), and indicates what proportion of the actually implemented
pattern instances the tool is able to recover. A widely used combination of these two
indicators is the F-measure, calculated as F = 2 · P ·R/(P +R); it is equivalent to
the harmonic mean of precision and recall, where precision and recall have the same
weight. To balance differently P and R in the F-measure another formula is used:
F = (1+ β2) ·P ·R/(β2 ·P +R); in particular, when β = 1 the formula is the same of
the first version. Augmenting β results in more weight for recall, lowering β wheigts
more precision.

To increase the precision of the results provided by available tools, we propose to
analyze the pattern instances identified by them with the use of refinement rules that
are based on micro-structures that can be detected in each pattern. Micro-structures
are as the same level of abstraction as design patterns, but, due to their nature and
definition, each of them can be assigned to a single role inside the pattern it is a hint
for. We have analyzed the structures and typical implementations of design patterns,
in order to assign to each role the micro-structures (clues and EDP), that characterize
them.

The rules are based on two kinds of micro-structures: the EDPs, which are useful
to recover and define the structures of the patterns, and the design pattern clues,
which are more useful to characterize the single pattern roles. Each refinement rule
for a given design pattern is represented as a graph G = (V,E), where V represents
the set of classes that constitute the pattern, i.e., the pattern roles, and E represents
the set of clues and EDPs that connect the various roles and that are peculiar for the
pattern. In this context, each clue or EDP can be seen as a relationship between two
roles (therefore it is depicted as an edge between two nodes of the rule graph), or as a
relationship between a role and itself (hence depicted as a self-link on the role node).

Refinement rules are not to be considered sufficient conditions for the correctness
of pattern instances, but only necessary conditions. The evaluation of the rules will
prove to be useful in the refinement process, as ambiguous instances will be discarded
or accepted based on the verification of the conditions in the rules.

We now describe the rules for the validation of the patterns that are recognizable
by the majority of the considered tools. Necessary clues and EDPs are underlined.
The clues and EDPs not underlined are not part of the refinement rules, but they are
optional conditions, which are often verified on design motifs, but are not mandatory.
We include them, as a support for manual validation.

We will define the rules and discuss the refinement process for the following patterns:
the Abstract Factory, Factory Method and Singleton creational patterns, the Adapter,
Composite and Decorator structural patterns, and the Template Method and Visitor
behavioural patterns, because these patterns are recognizable by the majority of the
tools. Even if three out of the four considered tools are supposed to detect instances
of the State and Strategy patterns, we will not provide refinement rules for them,
as we have not identified any particular micro-structure which could help in their
validation. This is due to the strictly behavioral nature of these patterns, which cannot
be represented in the form of elements that can be statically detected from source
code analysis. In future work we will study if some clues can be defined, exploiting

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


14 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

dynamic analysis, which for example will point to some particular interaction sequence
or will reveal concrete objects in polymorphic method calls.

Figures 2, 3 and 4 describe the refinement rules for the considered structural
design patterns, namely the Adapter, Composite and Decorator patterns. In order to
understand the clues used into the refinement rules, please refer to the Appendix A
for the definitions of each clue. For example in the Composite refinement rule (an
example of clues and EDPs in a Composite motif is given in subsection 3.2, the Leaf
role needs a Leaf class clue in order to be acceptable and the Component role needs
a Component Method clue and could have an Abstract Interface EDP, but the latter
is not mandatory; the Composite role must present the Same interface container,
Multiple redirections in family and Node class clues, but can have also an Abstract
cyclic class clue. The meaning of the refinement rule is that a motif is valid when the
classes covering all its roles present the mandatory micro-structures, otherwise the
motif has to be discarded.

All the figures in sections 6 and 7 report the name of the micro-structures on the
graphs edges. When a micro-structure’s name ends with EDP, it is an Elemental
Design Pattern; in all other cases it is a Design Pattern Clue.

Adapter

Abstract interface EDP

Target Adaptee

Inheritance EDP
Overriding method

Delegate EDP
All methods invoked

Adapter method

Figure 2 – Adapter refinement rule. Roles = {Target, Adaptee, Adapter}. The Adapter
method clue requires that the Adapter overrides the methods provided by the Target in
order to be able to invoke the methods declared by the Adaptee.

Figures 5, 6 and 7 report and explain the refinement rules for the considered
creational patterns. For example in the Abstract Factory rule there are four roles
(Abstract Factory, Abstract Product, Concrete Factory, Concrete Product), and we
require that the Concrete Factory and the Concrete Product roles must be connected
by a Concrete Product Getter clue: if an instance having two classes associated
respectively to these two roles does not present that connection, it is considered wrong,
and therefore discarded.

Figures 8 and 9 introduces the refinement rules for the considered behavioral
patterns, namely the Template Method and the Visitor.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 15

Component

Leaf class

Leaf Composite

Inheritance EDP Inheritance EDP
Redirect in family EDP

Abstract interface EDP
Component method

Abstract cyclic call
Same interface container
Multiple redirections in family
Node class

Figure 3 – Composite refinement rule. Roles = {Composite, Component, Leaf}. With
Same interface container the Composite must have a collection of Component ele-
ments, and Node class ensures it overrides the component methods defined by the
Component. Finally, with Multiple redirections in family the component methods are
invoked on all the components belonging to the collection. Component method requires
the Component defines component methods.

ComponentConcrete
Component

Decorator

Inheritance EDP

Reference to abstract class
Instance in abstract class
Instance in abstract referred
Inheritance EDP
Redirect in family EDP

Abstract interface EDP

Same interface instance

Concrete
Decorator Inheritance EDP

Extend method EDP
Redirect in family EDP

Conglomeration EDP

Figure 4 – Decorator refinement rule. Roles = {Component, Decorator, Concrete decorator,
Concrete component}. Same interface instance clue requires the Decorator maintains
a single reference to the Component. Extend method EDP ensures the concrete decora-
tors enrich the methods defined by the Decorator.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


16 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Abstract
Product

Concrete
Product

Abstract
Factory

Concrete
Factory

Concrete product getter

Abstract interface EDP
Abstract interface EDP
Abstract product returned
Parent product returned

Controlled parameter
Concrete products returned
Multiple returns

Create object EDP
Concrete product getter

Inheritance EDP Inheritance EDP

Figure 5 – Abstract Factory refinement rule. Roles = {Abstract Factory, Abstract Product,
Concrete Factory, Concrete Product}. The Concrete product getter requires that the
Concrete factory implements at least one method which returns an instance of the
Concrete product.

Product

Concrete
Product

Creator

Concrete
Creator

Controlled parameter
Concrete products returned
Multiple returns

Inheritance EDP

Create object EDP
Factory method

Inheritance EDP

Figure 6 – Factory Method refinement rule. Roles = {Creator, Concrete Creator, Product,
Concrete Product}. The Factory Method clue assures the existence of a method which
creates instances of the Concrete product within the Concrete creator.

Singleton

Create object EDP
Final class
Private flag
Static flag
Controlled self instantiation
Private self instance
Static self instance
Controlled exception
Protected instantiation
Single self instance

Figure 7 – Singleton refinement rule. Roles = {Singleton}. Protected instantiation avoids
the creation of instances from external classes. Single self instance requires the pres-
ence of only one instance for the Singleton class.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 17

Abstract Class

Concrete Class

Inheritance EDP
Template implementor

Abstract interface EDP
Conglomeration EDP
Template method

Figure 8 – Template Method refinement rule. Roles = {Abstract class, Concrete class}.
The Template Method clue requires that in the Abstract class a concrete method
invokes abstract methods inside its body. The Template implementor clue instead
requires that the Concrete class gives an implementation to the abstract methods in-
voked by the Template Method defined in the Abstract class.

Visitor

Concrete Visitor

Inheritance EDP

Abstract interface EDP

Element

Concrete
element

Delegate EDP
Cross relationship

Cross relationship

Abstract interface EDP
Visitable class

Inheritance EDP

This parameter
Object structure child
Visitable class

Figure 9 – Visitor refinement rule. Roles = {Visitor, Concrete Visitor, Element, Concrete
Element}. The Object structure child clue requires the Concrete elements to belong
to a well defined object structure, like a tree. With the Visitable class clue Concrete
elements also provide methods to accept visitor classes in order to be inspected.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


18 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

7 Application of the Rules to the Detected Instances

We now provide some examples of the results obtained with the refinement of the
instances detected by the four considered tools. For each instance, we indicate the
corresponding design pattern, the graph representing the instance after the application
of the refinement rule, and the consequent considerations about the validity of the
analyzed instance. Figures 10, 11, 12 and 13 report examples of the application of the
refinement process on creational design pattern instances. The description of the rule
application is reported on the caption of each figure.

DrawingView

Figure 10 – Factory Method detected instance. Roles assignment = {DrawingView: Cre-
ator}. The application of the Factory Method rule to this instance does not validate it,
as it lacks the remaining pattern roles and the fundamental micro structures defined by
the rule.

AbstractFigure

PolyLineFigure

PolyLineConnector Connector

Inheritance ED
P

Fa
ct
or

y 
m
et
ho

d

Conglomeration EDP

Figure 11 – Factory Method detected instance. Roles assignment = {AbstractFigure:
Creator, PolyLineFigure: Concrete creator, PolyLineConnector: Concrete product}.
This instance is validated by the rule, because the structural relationships among the
roles exist and the necessary Factory Method clue is implemented.

Clipboard

Single self instance
Create Object EDP
Protected instantiation

Figure 12 – Singleton detected instance. Roles assignment = {Clipboard: Singleton}. This
instance is validated by the Singleton rule as it presents all the three required micro
structures: Single self instance, Create Object, Protected instantiation. In fact the Clip-
board class maintains a single instance of itself and prevents the creation of Clipboard
instances from other classes.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 19

Iconkit

Single self instance

Figure 13 – Singleton detected instance. Roles assignment = {Iconkit: Singleton}. The
instance cannot be validated by the Singleton rule because it lacks the presence of two
micro structures: no protected instantiation mechanism exists.

Figures 14 and 15 describe examples of the application of the refinement process
on instances of structural design patterns.

CompositeFigure

Node class
Multiple redirections in family

Figure
Redirect in family EDP
Same interface container

Component method

Figure 14 – Composite detected instance. Roles assignment = {Figure: Component,
CompositeFigure: Composite}. The Figure class presents the Component method
clue, and CompositeFigure presents both the Multiple redirections in family and Same
interface container clues, so the refinement rule accepts this instance.

OffsetLocator

Same interface instance

Locator
Redirect in family EDP

Abstract interface EDP

Figure 15 – Decorator detected instance. Roles assignment = {Locator: Component,
OffsetLocator: Decorator}. The instance is validated by the rule, because all the
constraints defined are satisfied. This is a Decorator variant without concrete classes.

Figures 16 and 17 introduce examples of the application of the refinement process
on instances of behavioral design patterns.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


20 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

AbstractFigure

Template method
Conglomeration EDP
Abstract Interface EDP

Figure 16 – Template Method detected instance. Roles assignment = {AbstractFigure:
Abstract class}. AbstractFigure presents all the elements that characterize the Ab-
stract Class role, in particular the Template Method clue. However no Concrete class
is present in this instance, so the instance cannot be validated. With a further analysis
we identified the PolyLineFigure class as a correct Concrete class, implementing the
Template implementor clue; if we add the PolyLineFigure class the instance is correct,
and is validated by the rule.

StorableOutput

Controlled parameter
Facade method
Conglomeration EDP
Delegate EDP

Storable

Abstract Interface EDP
This parameter
Delegate EDP
Cross relationship
Visitable class

Cross relationship

Figure 17 – Visitor detected instance. Roles assignment = {Storable: Visitor,
StorableOutput: Concrete element}. This instance is not correct and is not validated
by the rule. For example, the StorableOutput does not present the necessary Object
structure child clue: the concrete elements of the pattern must belong to a hierarchy
of objects, whose ancestor is the abstract element. As the Object structure child is not
present, the abstract element (the root of the object structure) is not present too.

8 Refinement Results Evaluation

The results of the refinement process applied to the instances detected by the four
analyzed tools are reported in Tables 2 to 5. For each of the considered patterns, the
number of identified instances is reported. The number of correct instances column
indicates how many of them are correct implementations, according to the manual
evaluation process. The number of validated instances is then reported, i.e., the number
of instances that have been confirmed as correct implementations by the refinement
rule. The two precision values (the first one referring to the instances detected by each
single tool, the second one referring to the refined instances considering the actual
correct detected instances) are then reported. If no instances for a certain pattern
have been detected by the tool, the precision before refinement value (which considers
the number of correct instances with respect to the detected instances) cannot be
computed; hence “not applicable” (n/a) value is indicated. Similarly, if no instances
for a certain pattern have been validated by the refinement process, the precision
after refinement (which considers the number of correct instances with respect to
the validated instances) cannot be computed, and a “not applicable” (n/a) value is
reported. Table 2 describes the refinement results on the instances detected by the
Design Pattern Detection Tool.

Good results have been achieved in the refinement of the Factory Method, the
Singleton and the Visitor instances, where the corresponding rules succeeded in

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 21

Table 2 – Results of the refinement process on the instances detected by Design Pattern
Detection Tool

Design Pattern Detection Tool

Pattern Instances Precision
Category Name Detected Correct Validated Before re-

finement
After re-
finement

Creational Factory
Method

2 1 1 50% 100%

Singleton 2 1 1 50% 100%

Behavioural
Command 23 11 23 48% 48%
Template
Method

5 5 5 100% 100%

Visitor 1 0 0 0% n/a

Structural
Adapter 23 11 23 48% 48%
Composite 1 1 1 100% 100%
Decorator 3 3 3 100% 100%

discarding all the detected false positives. As far as the Template Method, the
Composite and the Decorator patterns are concerned, the detected instances are all
correct, and the refinement succeeded in validating them. Some problems are related
to the Adapter/Command instances: all of them are accepted as true positives by the
refinement rule, even if only 11 of them actually are. We believe that the detection and
consequent validation of instances of these patterns is difficult due to their generality.
The only kind of information that characterizes them (i.e., overriding a superclass or
interface method, then calling a method belonging to another class through a Delegate
EDP [Smi02]) is captured by our rule and probably they are already captured by the
detection techniques of the tools, so the precision remains the same. Table 3 reports
the results obtained for the PINOT tool.

During the refinement of the instances reported by PINOT, the Factory Method
and Decorator instances have been correctly refined, and the process succeeded in
discriminating all the true positives from the false ones. Visitor and Composite
instances have also been correctly discarded, as they revealed to be only false positives.
Finally, Template Method and Adapter instances (which are constituted only by true
positives) have all been correctly accepted by the corresponding rules.

Table 4 reports the results obtained for the FUJABA tool. The Factory Method
instances have been correctly refined, and the Abstract Factory ones have all been
discarded being false positives. Template Method instances have all correctly been
accepted, while for the Adapter pattern we can make the same considerations as for
the Design Pattern Detection tool: the pattern is too generic to be correctly refined
by the rule.

Finally, Table 5 indicates the results obtained for the Web of Patterns tool.
In the case of Web of Pattern, the rule did not succeed in accepting the correct

Abstract Factory instances, hence the precision rate decreased to 0%; therefore we are
working on improving the Abstract Factory refinement rule. The Template Method

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


22 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Table 3 – Results of the refinement process on the instances detected by PINOT

PINOT

Pattern Instances Precision
Category Name Detected Correct Validated Before re-

finement
After re-
finement

Creational Factory
Method

34 17 17 31% 100%

Singleton 0 0 0 n/a n/a

Behavioural Template
Method

2 2 2 100% 100%

Visitor 1 0 0 0% n/a

Structural
Adapter 5 5 5 100% 100%
Composite 4 0 0 0% n/a
Decorator 5 2 2 40% 100%

Table 4 – Results of the refinement process on the instances detected by FUJABA

FUJABA

Pattern Instances Precision
Category Name Detected Correct Validated Before re-

finement
After re-
finement

Creational
Abstract
Factory

2 0 0 0% n/a

Factory
Method

2 1 1 50% 100%

Singleton 0 0 0 n/a n/a

Behavioural Template
Method

31 31 31 100% 100%

Visitor 0 0 0 n/a n/a

Structural
Adapter 26 5 26 19% 19%
Composite 0 0 0 n/a n/a
Decorator 0 0 0 n/a n/a

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 23

Table 5 – Results of the refinement process on the instances detected by Web of Patterns

Web of Patterns

Pattern Instances Precision
Category Name Detected Correct Validated Before re-

finement
After re-
finement

Creational Abstract
Factory

14 3 0 21% 0%

Singleton 1 1 1 100% 100%

Behavioural Template
Method

1 1 1 100% 100%

Visitor 0 0 0 n/a n/a

Structural Adapter 1 0 0 0% n/a
Composite 1 0 0 0% n/a

instance has been correctly accepted, and the Adapter and Composite instances
correctly discarded as false positives.

9 Conclusions and Future Work

In this paper we have presented a new approach to the refinement and validation of the
results provided by the experimentation of common design motif detection tools. The
approach is based on the application of rules defined in terms of the roles constituting
each pattern, and of the micro-structures that characterize them.

As different tools generally provide different results even while analyzing the same
target systems (and the results are generally affected by a considerable number of
false positives), this approach is intended to discard the identified false positives,
hence improving the precision of each single tool. From our experiment, out of the
considered design patterns, it emerged that the refinement rules behave well for the
Factory Method, the Singleton, the Template Method, the Visitor, the Composite
and the Decorator patterns. For these patterns, false positives have been correctly
eliminated, and real instances have been confirmed. The Adapter pattern revealed
itself to be problematic, as the hints for its detection are too much general due to
the actual pattern definition and purpose. For this pattern, the false positives have
not been recognized by the rule, therefore they have been accepted as real pattern
instances.

The refinement approach is not intended to improve the recall of each single tool,
as it is devoted uniquely to the analysis of already detected instances, and it does
not allow for the detection of further pattern instances in the subject systems. In the
case our refinement process fails to refine a true positive occurrence, discarding it and
therefore changing it into a false negative, the recall decreases.

From the results we obtained we can conclude that the refinement process can
be useful to improve the precision of the results of the detection tools. We aim to
better refine the clue definitions and the corresponding rules in order to improve the
refinement process. To the best of our knowledge, the only other approach that tries

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


24 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

to combine information coming from different sources is described by Kniesel et al
[KB09]. We would therefore like to investigate a possible integration of our approach
with their data fusion approach.

In the future, we plan to extend our experiments to the analysis of more systems,
as well as to the analysis of repositories of design pattern instances. The refined
instances can be used to enrich the design pattern repository used for benchmark
proposals [AFZC10, Ess10]. Moreover, we would like to analyze formal specifications
of design patterns and object oriented design [Dey10, EK03] to understand the link
between the concepts we defined, the way we model them, and the available formal
representations, in order to improve our pattern representations and possibly enrich
existing representations with our structures. Another interesting area would be the
research and definition of clues relying on dynamic analysis, and therefore able to catch
particular situations, which are particulary relevant in the detection of behavioral
design patterns.

A A Catalogue of Design Pattern Clues

Table 6 reports the complete catalogue of the design pattern clues. Each clue is identi-
fied by its name, its meaning, the design pattern it belongs to and the correspondent
design pattern category (C for creational, B for behavioural, or S for structural design
patterns), and eventually the other clues it depends on. In fact, the existence of some
clues is subordinated to the presence of some others. For example, asserting that the
Template implementor clue depends on the Template Method clue means that the
existence of the Template Method clue is a necessary condition for the detection of
the Template implementor.

Table 6 – A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends
on

C
la
ss

In
fo
rm

at
io
n Final class The class is declared final. Singleton C

Interface and class
inherited

The class implements an interface
and extends a class, providing there-
fore the only mechanism to simulate
multiple inheritance in the Java lan-
guage.

Adapter
(based on
classes)

S

Multiple interfaces
inherited

The class implements n interfaces,
with n > 1.

Adapter
(based on
classes)

S

Object structure
child

The class is a Visitable class and
it has at least an ancestor which is
either an interface or an abstract
class.

Visitor B Cross re-
lationship,
Visitable
class

Template implemen-
tor

A class extends another class imple-
menting a Template Method

Template
Method

B Template
Method

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 25

Table 6 – A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends
on

M
ul
ti
pl
e
C
la
ss
es

In
fo
rm

at
io
n Façade method The body of a method consists

uniquely of method calls to classes
which are not related with it, i.e.
which are not a superclass, an im-
plemented interface or the class it-
self. A facade method could also
contain some object creations, but
no other statements besides object
creations or method calls.

Façade S

Proxy class A class implements an interface or
extends an (abstract) class, and
owns a reference to a class that im-
plements the same interface or ex-
tends the same (abstract) class.

Proxy S

V
ar
ia
bl
es

In
fo
rm

at
io
n Private flag The class maintains a control flag

that is declared private. A flag be-
longs to a simple type, typically
boolean; numerical fields are consid-
ered flags when their value is com-
pared to form a boolean expression
in a control statement.

Singleton C

Static flag The class maintains a control flag
that is declared static. A flag be-
longs to a simple type, typically
boolean; numerical fields are consid-
ered flags when their value is com-
pared to form a boolean expression
in a control statement.

Singleton C

In
st
an

ce
In
fo
rm

at
io
n

Controlled self in-
stantiation

The instantiation of an object of
the same class occurs inside an if
(or a switch) block, therefore under
a condition.

Singleton C

Private self instance The class owns a private instance
of the same class. Access to this
instance can occur only from within
the same class.

Singleton C

Static self instance The class has a static instance of the
same class. Therefore this instance
is unique inside the system.

Singleton C

Single self instance The class maintains a unique in-
stance of the same class, no matter
if it is static or not.

Singleton C

Instance in abstract
class

An abstract class maintains a refer-
ence to a different class.

Bridge S

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


26 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Table 6 – A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends
on

Same interface con-
tainer

A class contains some kind of collec-
tion of objects that are compatible
with an ancestor of the declaring
class.

Composite,
Inter-
preter

S

Same interface in-
stance

A class contains a reference to an ob-
ject whose type is compatible with
an ancestor of the declaring class.

Decorator S

M
et
ho

d
Si
gn

at
ur
e
In
fo
rm

at
io
n

Controlled parame-
ter

A method of a certain class receives
as input a parameter used inside
it to make some controls (i.e. the
parameter is used in the condition
of some if or switch block). If a
method controls more than one of
its input parameters, each one of
these parameters will be an instance
of this clue.

Abstract
Factory,
Builder,
Factory
Method

C

Factory parameter A method of a certain class receives
as an input parameter an object
that belongs to a class defining some
Concrete product getter methods.

Abstract
Factory,
Builder,
Factory
Method

C Concrete
product
getter

Protected instantia-
tion

All the constructors within a given
class are declared private.

Singleton C

This parameter A method receives the caller object
as a parameter.

Observer,
Visitor

B

Adapter method Two types of Adapter method ex-
ist. It can be a method which is
an implementation of an interface
method and that calls a method be-
longing to the parent class; or it can
be an overridden method from the
parent class which calls a method
belonging to a class that does not
share common ancestors with the
adapter method declaring class.

Adapter S Interface
method
(only in the
first case)

Interface method A class implements a method de-
clared inside an interface.

Adapter
(based on
classes)

S

Overriding method A class overrides a method belong-
ing to its superclass.

Adapter
(based on
objects)

S

Component method A class declares a method that takes
an object of the same class as its
single parameter.

Composite S

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 27

Table 6 – A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends
on

Cross relationship Given two classes C1 and C2, C1
declares a method which accepts a
reference to C2 as one of its parame-
ters, viceversa C2 declares a method
which accepts a reference to C1 as
one of its parameters.

Visitor B

Abstract cyclic call A method invokes an abstract
method within a cycle.

Iterator,
Observer

B

Factory Method A method contains a class instance
creation statement and overrides a
method belonging to the superclass
or to one of the superinterfaces of
the subject class.

Factory
Method

C

M
et
ho

d
B
od

y
In
fo
rm

at
io
n Instance in abstract

referred
A method of a class implementing
Instance in abstract class invokes a
method on the declared instance.

Bridge S Instance
in abstract
class

Multiple redirec-
tions in family

A method contains a Redirect in
Family [Smi02] method invocation
that is contained within a cycle.

Composite S

Proxy method in-
voked

A proxy class invokes a method on
the referred subject using a Redirect
in limited family [Smi02] method
call EDP.

Proxy S Proxy class

Visitable class A method has a Cross relationship
clue and passes the owner object
(this) to the target method of the
Cross relationship.

Visitor B This parame-
ter, Cross re-
lationship

Template Method A method calls at least an abstract
method within its body.

Template
Method

B

M
et
ho

d
Se
t
In
fo
rm

at
io
n All methods invoked A class invokes all of the public

methods declared in a target class.
Adapter S

Leaf class A class extends another class with-
out implementing or redefining the
methods that are concerned with
the handling of classes that are
compatible with the same interface
(therefore tagged with a Component
method clue), or giving an empty
implementation for such methods.

Composite S Component
method

Node class A class extends another class imple-
menting or redefining the methods
that are concerned with the han-
dling of classes that are compatible
with the same interface (therefore
tagged with a Component method
clue).

Composite S Component
method

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


28 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

Table 6 – A catalogue of design pattern clues

C
at

eg
or

y

Clue name Meaning Belongs
to

D
P

C
at

eg
or

y

Depends
on

R
et
ur
n
In
fo
rm

at
io
n

Concrete product
getter

A class declares one or more meth-
ods that return objects of a type
different from itself.

Abstract
Factory,
Proto-
type

C

Concrete products
returned

A method returns objects that be-
long to subclasses of the declared
return type.

Abstract
Factory,
Factory
Method,
Builder

C

Empty concrete
product getter

A class declares one or more meth-
ods that return objects belonging
to some other classes, but the im-
plementation of these methods is
empty, i.e. it consists only of a de-
fault return statement (as, for ex-
ample, return null).

Builder C

Empty method A class declares one or more meth-
ods that return simple types, but
their implementation is empty, i.e.
it is only formed by a default return
statement (for example, return
false for the boolean data type).

Builder C

Multiple returns A method provides several possible
return points.

Abstract
Factory,
Factory
Method,
Builder

C

Void return A class defines a method that instan-
tiates an object without returning
it.

Builder C

Cross hierarchy re-
turn

A method returns an object of a
class belonging to a different hierar-
chy.

Iterator B

Ja
va

In
fo
rm

at
io
n Clone returned A method returns a clone of a cer-

tain instance.
Prototype C

Cloneable imple-
mented

A class implements the
java.lang.Cloneable interface.

Prototype C

Prototyping con-
structor

A method defines a constructor
which receives objects that can be
cloned, as instances of classes imple-
menting the java.lang.Cloneable
interface.

Prototype C Cloneable
implemented

Controlled excep-
tion

A method of a class can throw an
exception inside a control block.

Singleton C

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 29

References
[AFC98] Giulio Antoniol, Roberto Fiutem, and L. Cristoforetti. Design pattern recovery in

object-oriented software. In Proceedings of the 6th International Workshop on Program
Comprehension (IWPC ’98), pages 153–160, June 1998. doi:10.1109/WPC.1998.
693342.

[AFMR11] Francesca Arcelli Fontana, Stefano Maggioni, and Claudia Raibulet. Design patterns: a
survey on their micro-structures. To appear in Journal of Software Maintenance and
Evolution: Research and Practice, 2011.

[AFMRT05] Francesca Arcelli Fontana, Stefano Masiero, Claudia Raibulet, and Francesco Tisato.
A comparison of reverse engineering tools based on design pattern decomposition. In
ASWEC ’05: Proceedings of the 2005 Australian conference on Software Engineering,
pages 262–269, Washington, DC, USA, 2005. IEEE Computer Society. doi:10.1109/
ASWEC.2005.5.

[AFRG+06] Francesca Arcelli Fontana, Claudia Raibulet, Yann-Gaël Guéhéneuc, Giulio Antoniol,
and Jason McC Smith. Design pattern detection for reverse engineering. In Proc. 13th
Working Conf. Reverse Engineering WCRE ’06, 2006. doi:10.1109/WCRE.2006.23.

[AFZ11] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern detection and
software architecture reconstruction. Information Sciences, 181(7):1306–1324, April
2011. doi:10.1016/j.ins.2010.12.002.

[AFZC10] Francesca Arcelli Fontana, Marco Zanoni, and Andrea Caracciolo. A benchmark
platform for design pattern detection. In Proceedings of The Second International
Conferences on Pervasive Patterns and Applications PATTERNS 2010, page 42 to
47, Lisbon, Portugal, November 2010. IARIA, Think Mind. Available from: http:
//www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_
70046.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: a system of patterns, volume 1. John
Wiley and Sons, 1996.

[Bra] John Brant. Jhotdraw. Web site. http://www.jhotdraw.org/.
[CCI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:

a taxonomy. Software, IEEE, 7(1):13–17, January 1990. doi:10.1109/52.43044.
[Coo98] James W. Cooper. The Design Patterns Java Companion. Addison-Wesley, 1998.

Available from: http://www.patterndepot.com/put/8/DesignJava.PDF.
[DE07] Jens Dietrich and Chris Elgar. Towards a web of patterns. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 5(2):108–116, 2007. Software
Engineering and the Semantic Web. doi:10.1016/j.websem.2006.11.007.

[Dey10] Shouvik Dey. Formal specification of structural and behavioral aspects of design
patterns. Journal of Object Technology, 9(6):99–126, November 2010. doi:10.5381/
jot.2010.9.6.a5.

[DP09] Stéphane Ducasse and Damien Pollet. Software architecture reconstruction: A process-
oriented taxonomy. IEEE Transactions on Software Engineering, 35(4):573–591,
July–August 2009. doi:10.1109/TSE.2009.19.

[EK03] Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In Pro-
ceedings of the 25th International Conference on Software Engineering, ICSE ’03,
pages 149–159, Washington, DC, USA, 2003. IEEE Computer Society. Available from:
http://portal.acm.org/citation.cfm?id=776816.776835.

[Ess09] Essere lab. Micro structures detector. Web Site, 2009. http://essere.disco.unimib.
it/reverse/files/Micro_structures_detector.pdf.

[Ess10] Essere lab. Dp-benchmark. Web Site, 2010. http://essere.disco.unimib.it:
8080/DPBWeb/.

[FBTG02] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Colum-
bus — reverse engineering tool and schema for C++. In Proceedings. International
Conference on Software Maintenance, pages 172–181. IEEE Computer Society, 2002.
doi:10.1109/ICSM.2002.1167764.

[FHFG08] Lajos Jeno Fülöp, Péter Hegedus, Rudolf Ferenc, and Tibor Gyimóthy. Towards a
benchmark for evaluating reverse engineering tools. In Reverse Engineering, 2008.
WCRE ’08. 15th Working Conference on, pages 335–336, October 2008. doi:10.1109/
WCRE.2008.18.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1109/WPC.1998.693342
http://dx.doi.org/10.1109/WPC.1998.693342
http://dx.doi.org/10.1109/ASWEC.2005.5
http://dx.doi.org/10.1109/ASWEC.2005.5
http://dx.doi.org/10.1109/WCRE.2006.23
http://dx.doi.org/10.1016/j.ins.2010.12.002
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.thinkmind.org/index.php?view=article&articleid=patterns_2010_2_30_70046
http://www.jhotdraw.org/
http://dx.doi.org/10.1109/52.43044
http://www.patterndepot.com/put/8/DesignJava.PDF
http://dx.doi.org/10.1016/j.websem.2006.11.007
http://dx.doi.org/10.5381/jot.2010.9.6.a5
http://dx.doi.org/10.5381/jot.2010.9.6.a5
http://dx.doi.org/10.1109/TSE.2009.19
http://portal.acm.org/citation.cfm?id=776816.776835
http://essere.disco.unimib.it/reverse/files/Micro_structures_detector.pdf
http://essere.disco.unimib.it/reverse/files/Micro_structures_detector.pdf
http://essere.disco.unimib.it:8080/DPBWeb/
http://essere.disco.unimib.it:8080/DPBWeb/
http://dx.doi.org/10.1109/ICSM.2002.1167764
http://dx.doi.org/10.1109/WCRE.2008.18
http://dx.doi.org/10.1109/WCRE.2008.18
http://dx.doi.org/10.5381/jot.2011.10.1.a4


30 · Francesca Arcelli Fontana, Marco Zanoni, Stefano Maggioni

[GA08] Yann-Gaël Guéhéneuc and Giulio Antoniol. Demima: A multilayered approach for
design pattern identification. IEEE Transactions on Software Engineering, 34(5):667–
684, 2008. doi:10.1109/TSE.2008.48.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[GM05] Joseph (Yossi) Gil and Itay Maman. Micro patterns in java code. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 97–116, New York, NY,
USA, 2005. ACM. doi:10.1145/1094811.1094819.

[Gué07] Yann-Gaël Guéhéneuc. PMARt: pattern-like micro architecture repository. In
Michael Weiss, Aliaksandr Birukou, and Paolo Giorgini, editors, Proceedings of the
1st EuroPLoP Focus Group on Pattern Repositories, July 2007.

[KB96] Jung Jae Kim and Kevin Michael Benner. Pattern Languages of Program Design 2,
chapter Implementation of patterns for the observer pattern, pages 75–86. Addison-
Wesley, Reading, MA, 1996.

[KB09] Günter Kniesel and Alexander Binun. Standing on the shoulders of giants — a data
fusion approach to design pattern detection. In Program Comprehension, 2009.
ICPC ’09. IEEE 17th International Conference on, pages 208–217, May 2009. doi:
10.1109/ICPC.2009.5090044.

[KBH+10] Günter Kniesel, Alexander Binun, Péter Hegedüs, Lajos Jeno Fülöp, Alexander
Chatzigeorgiou, Yann-Gaël Guéhenéuc, and Nikolaos Tsantalis. DPDX — towards
a common result exchange format for design pattern detection tools. In Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on, pages
232–235, March 2010. doi:10.1109/CSMR.2010.40.

[KGH10] Olivier Kaczor, Yann-Gaël Guéhéneuc, and Sylvie Hamel. Identification of design
motifs with pattern matching algorithms. Information and Software Technology,
52(2):152–168, 2010. cited By (since 1996) 1. doi:10.1016/j.infsof.2009.08.006.

[KP96] Christian Kramer and Lutz Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Reverse Engineering, 1996.,
Proceedings of the Third Working Conference on, pages 208–215, November 1996.
doi:10.1109/WCRE.1996.558905.

[KSRP99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-
based reverse-engineering of design components. In Proceedings of the 21st interna-
tional conference on Software engineering, ICSE ’99, pages 226–235, New York, NY,
USA, 1999. ACM. doi:10.1145/302405.302622.

[Mag06] Stefano Maggioni. Design patterns clues for creational design patterns. In Proceed-
ings of the First International Workshop on Design Pattern Detection for Reverse
Engineering (DPD4RE 2006), co-located event with WCRE 2006, October 2006.

[MG07] Naouel Moha and Yann-Gaël Guéhéneuc. PTIDEJ and DECOR: identification of
design patterns and design defects. In Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications companion,
OOPSLA ’07, pages 868–869, New York, NY, USA, 2007. ACM. doi:10.1145/
1297846.1297930.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, and Kenny Wong. Reverse engineering: a roadmap. In ICSE ’00: Proceedings of
the Conference on The Future of Software Engineering, pages 47–60, New York, NY,
USA, 2000. ACM. doi:10.1145/336512.336526.

[NNZ00] Ulrich A. Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In
Proceedings of the 22nd international conference on Software engineering, ICSE ’00,
pages 742–745, New York, NY, USA, 2000. ACM. doi:10.1145/337180.337620.

[NSW+02] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh.
Towards pattern-based design recovery. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 338–348, New York, NY, USA,
2002. ACM. doi:10.1145/581339.581382.

[PKG+00] Jukka Paakki, Anssi Karhinen, Juha Gustafsson, Lilli Nenonen, and A. Inkeri
Verkamo. Software metrics by architectural pattern mining. In Proceedings
of the International Conference on Software: Theory and Practice (16th IFIP
World Computer Congress), pages 325–332, Beijing, China, 2000. Available from:
http://www.cs.helsinki.fi/group/maisa/ifip2000.pdf.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1109/TSE.2008.48
http://dx.doi.org/10.1145/1094811.1094819
http://dx.doi.org/10.1109/ICPC.2009.5090044
http://dx.doi.org/10.1109/ICPC.2009.5090044
http://dx.doi.org/10.1109/CSMR.2010.40
http://dx.doi.org/10.1016/j.infsof.2009.08.006
http://dx.doi.org/10.1109/WCRE.1996.558905
http://dx.doi.org/10.1145/302405.302622
http://dx.doi.org/10.1145/1297846.1297930
http://dx.doi.org/10.1145/1297846.1297930
http://dx.doi.org/10.1145/336512.336526
http://dx.doi.org/10.1145/337180.337620
http://dx.doi.org/10.1145/581339.581382
http://www.cs.helsinki.fi/group/maisa/ifip2000.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a4


· 31

[Smi02] Jason McC Smith. An elemental design pattern catalog. Technical Report 02-040,
Dept. of Computer Science, Univ. of North Carolina - Chapel Hill, December 2002.
Available from: ftp://ftp.cs.unc.edu/pub/publications/techreports/02-040.pdf.

[SO06] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java
source code. In Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering, pages 123–134, Washington, DC, USA, 2006. IEEE
Computer Society. doi:10.1109/ASE.2006.57.

[SS03] Jason McC Smith and David Stotts. Spqr: flexible automated design pattern
extraction from source code. In Automated Software Engineering, 2003. Pro-
ceedings. 18th IEEE International Conference on, pages 215–224, October 2003.
doi:10.1109/ASE.2003.1240309.

[SvG98] Jochen Seemann and Jürgen Wolff von Gudenberg. Pattern-based design recovery of
java software. In Proceedings of the 6th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT ’98/FSE-6, pages 10–16, New York,
NY, USA, 1998. ACM. doi:10.1145/288195.288207.

[Tai07] Toufik Taibi. Design Pattern Formalization Techniques. IGI Publishing, Hershey, PA,
USA, 2007.

[TCSH06] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T.
Halkidis. Design pattern detection using similarity scoring. IEEE Transactions on
Software Engineering, 32(11):896–909, 2006. doi:10.1109/TSE.2006.112.

[Vok06] Marek Vokác. An efficient tool for recovering design patterns from C++ code. Journal
of Object Technology, 5(1):139–157, January 2006. doi:10.5381/jot.2006.5.1.a6.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Technology of Object-Oriented Languages, 1998. TOOLS 26. Proceedings, pages
112–124, August 1998. doi:10.1109/TOOLS.1998.711007.

About the authors

Francesca Arcelli Fontana is an associate professor of computer science
at the Department of Computer Science of the University of Milano Bicocca,
where she works on software evolution and reverse engineering. Contact her
at arcelli@disco.unimib.it, or visit http://essere.disco.unimib.it.

Marco Zanoni is a PhD Student at the Department of Computer Science
of the University of Milano Bicocca; he took his master degree in 2008. He
is currently working on techniques for design pattern detection on object
oriented systems. Contact him at marco.zanoni@disco.unimib.it, or visit
http://essere.disco.unimib.it.

Stefano Maggioni took his master degree in 2006 and his PhD degree
in 2010 at the University of Milano Bicocca, working on the definition of
design pattern clues. Contact him at maggioni@disco.unimib.it, or visit
http://essere.disco.unimib.it.

Acknowledgments We would like to kindly thank the reviewers for their very useful comments
and suggestions for improving the paper.

Journal of Object Technology, vol. 10, 2011

ftp://ftp.cs.unc.edu/pub/publications/techreports/02-040.pdf
http://dx.doi.org/10.1109/ASE.2006.57
http://dx.doi.org/10.1109/ASE.2003.1240309
http://dx.doi.org/10.1145/288195.288207
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.5381/jot.2006.5.1.a6
http://dx.doi.org/10.1109/TOOLS.1998.711007
mailto:arcelli@disco.unimib.it
http://essere.disco.unimib.it
mailto:marco.zanoni@disco.unimib.it
http://essere.disco.unimib.it
mailto:maggioni@disco.unimib.it
http://essere.disco.unimib.it
http://dx.doi.org/10.5381/jot.2011.10.1.a4

	Introduction
	Related Works
	Micro-structures for Design Motif Detection
	Design Pattern Clues
	Example of Micro-structures in a Design Motif
	Design Pattern Clues
	Elemental Design Patterns


	Detection of Design Motifs through Four Design Motif Detection Tools
	Pattern Instances Refinement Process
	Definitions of Refinement Rules
	Application of the Rules to the Detected Instances
	Refinement Results Evaluation
	Conclusions and Future Work
	A Catalogue of Design Pattern Clues
	Bibliography
	About the authors

