

JOURNAL OF OBJECT TECHNOLOGY

P ub l i s h e d b y A ITO — As s o c i a t i o n I n t e r n a t i o n a l e p ou r l e s Te chno l o g i e s Ob j e t s © Jo t , 2 011
On l i ne a t http://www.jot.fm

Ontological Behavior Modeling

 Conrad Bocka James Odellb

a. U.S. National Institute of Standards and Technology

b. Computer Sciences Corporation

Abstract This article gives an example of improving the effectiveness
of behavior modeling languages using ontological techniques. The
techniques are applied to behaviors in the Unified Modeling Language
(UML), using the logical meanings for classification introduced in
UML 2. The article suggests unifying UML’s three kinds of behavior
languages around the abstract syntax and semantics of composite
structure, UML’s model for capturing interconnection of parts of
classes. This significantly simplifies the UML metamodel, provides a
formal semantics to clarify ambiguities in the current informal
semantics, and increases the expressiveness of UML behaviors.

Keywords Behavior, Ontology, UML

1 Introduction

Language standards are more effective when people understand them the same
way. This requires that everyone see the same real-world implications of things
said in the languages (in “sentences”). For example, if we all understand “The dog
chases the cat” the same way, it is because we have similar ideas about what
constitutes real dogs, cats, and chasing. The relationship between sentences and
real world interpretations of them is semantics. The relationship between a
language and its sentences is syntax, which determines the sentences allowed in the
language [Genesereth87].

Formal approaches to semantics aid language understanding by specifying how
to properly interpret sentences in terms of real world things. This enables them to
cover the many uses of a language more completely, avoiding piecemeal approaches
of examples and manually defined compliance tests, as well as inadvertent
standardization introduced in reference implementations. A disadvantage of formal

C. Bock, J. Odell: “Ontological Behavior Modeling,” Journal of Object Technology, vol. 10, 2011, pages
3:1-36. Available at doi:10.5381/jot.2011.10.1.a3

http://dx.doi.org/10.5381/jot.2011.10.1.a3

2  C Bock and J. Odell

approaches is they often are difficult to learn, and time consuming to apply, though
some of the time is paid back as language definers are forced to communicate their
intent more clearly, uncovering problems early in the language development cycle
where they can be more easily addressed. One of the primary barriers to formal
approaches to semantics is lack of integration with commonly used techniques, and
the need to use them wholesale rather than gradually.

This article suggests ontological approaches to formalizing language standards
as a practical way to gain the benefits of formality while reducing its cost.
Ontological techniques use commonly understood notions of categories and
conditions of membership to increase formality while preserving accessibility (this
is sense of “ontology” in description logics [Borgida07]). They focus attention on
the potential members of categories, facilitating communication based on concrete
examples, and supporting more complex membership conditions as necessary.
These techniques enable languages to be built up from smaller, simply defined
elements to larger ones, by creating new categories with membership conditions
based on existing simpler categories, in thin enough layers that languages are more
easily understood in a uniform way. Ontologically defined languages can be
translated to more informal or formal languages as desired. They can determine
some properties of behaviors without reference implementations or compliance
tests, but make these easier to develop, because behaviors are more clearly defined.
Ontological approaches also facilitate consolidation of common practice and
communication by providing simpler, more widely understandable basic notions,
gradually combining them into more sophisticated ones.

Ontological approaches are already used in some mainstream organizations,
such as the Object Management Group (OMG), which introduced logical meanings
for classification in a major revision of Unified Modeling Language (UML 2)
[OMG10a], and adopted a standard UML extension and mapping for the Web
Ontology Language (OWL) [W3C09][OMG09] (OWL is a standard for
interchanging a particular kind of description logic [Horrocks06]). These efforts
and others showed that much of UML class semantics is the same as OWL's
[Berardi05], and that it is suitable as an ontological language generally
[Guizzardi04]. This view of UML classes treats them as categories with conditions
for membership, as they are in OWL, rather than as encapsulated code or instance
factories. It fulfills one of UML’s original purposes in modeling systems without
committing to whether the behaviors of the system are performed manually,
enacted by a combination of workflow systems and people, or executed
automatically by software or hardware [Cocks04]. OMG uses the ontological
capabilities of UML 2 to define languages by specializing and extending others,
either through metamodels or metamodel profiles [OMG10b].

Journal of Object Technology vol. 10, 2011

3  Ontological Behavior Modeling

This article continues the work of applying ontology to UML, focusing on the
abstract syntax and semantics of behaviors in the UML to strengthen their
common basis [OMG10a]. UML has three ways to specify behaviors, each
emphasizing different aspects:

 Activities for inputs and outputs between actions, and their time
ordering.

 State machines for reacting to notification of external events.

 Interactions for messages between objects.

UML has some common abstract syntax and semantics for these three specialized
behavior languages, but it is a small portion of them and does not provide a way to
integrate them. This article expands the commonality between UML's three
specialized behavior languages and provides linkages between them.

Some ontological techniques are currently used in UML behaviors, but not
completely applied. UML currently supports behavior as ontological classes and
instances. The article builds on this by specializing behavior from composite
structure, UML’s model for interconnecting of parts of classes, where parts of
behaviors are actions in Activities, states in State Machines, and messages in
Interactions. It adds a simple temporal model to link parts of behavior together.
This article sketches how the framework is specialized for the most salient aspects
of UML’s three behavior languages. It does not suggest any changes in UML
notation (it uses composite structure notation for user model examples, but these
are not proposed as a concrete syntax for behaviors).

Section 2 defines the notion of behavior semantics in general, drawn from
conventional mathematical definitions rather than UML. Section 3 covers how
UML behavior semantics is defined currently. Section 4 applies ontological
techniques to behavior modeling, in part through UML composite structure.
Section 5 outlines related and future work. Section 6 summarizes the article.
Sections 3 and later assume familiarity with the UML metamodel and notation
[OMG10a], especially its composition model [Bock04], and OMG's metalevel
architecture [OMG10c].

2 Behavior Semantics in General

The real-world implications of anything said in behavior languages are what occurs
when behaviors actually happen. For example, a factory operation for changing
the color of an object happens many times every day, at many factories, each
involving a different object, different colors, and so on. Each time the behavior
happens is a separate behavior occurrence, usually at different times, involving
different objects and colors, and at different factories. Occurrences might be

Journal of Object Technology vol. 10, 2011

4  C Bock and J. Odell

performed manually, enacted by a combination of workflow systems and people, or
executed automatically by software or hardware.

The semantics of behavior languages specify which occurrences “follow” the
behaviors expressed in those languages, in the sense that occurrences are supposed
to obey models of behaviors. The occurrences following the three behaviors in
Figure 1 happen to be the same, but this is only clear from the semantics of the
languages, rather than the syntax in Figure 1. For example, the figure does not
say the arrows, punctuation, and symbol placement imply painting must complete
before drying starts, even though many explanations of these languages assume it is
understood. The semantics is more apparent from the occurrences in Figure 2.
This shows behaviors on the vertical axis, time on the horizontal, and occurrences
as interval bars on the graph. The dashed oval contains two groups of occurrences
following the behavior in Figure 1, assuming that painting is supposed to complete
before drying starts. The group outside the oval on the right does not follow the
behavior. Figure 2 has only a few example occurrences, rather than a complete
semantics. Complete semantics of the behavior languages used in Figure 1 provide
general rules to determine whether an occurrence follows the particular process
specifications in Figure 1.

DryPaint

Change Color

<process name=“Change Color”>
<sequence>
<invoke operation=“Paint”></invoke>
<invoke operation=“Dry”></invoke>

</sequence>
</process>

void ChangeColor
{ Paint();
Dry();

}
Figure 1: Behavior Notation Examples

Time

Paint

Change Color

Allowed by
Change Color

Dry

Behavior

Not allowed by
Change Color

Figure 2: Behavior Occurrences

Journal of Object Technology vol. 10, 2011

5  Ontological Behavior Modeling

The same occurrence can follow multiple, partially specified behaviors, as
illustrated in Figure 3 for the two behaviors at the top. The Change Color #1
definition on the left specifies that painting happens before drying. The Change
Color #2 definition on the right specifies that spray painting happens before
cleanup. The group of occurrences on the lower left only follows Change Color #1,
because it dries, and brush painting is a kind of painting, but it does not clean up,
and brush painting is not spray painting. The occurrences on the right only follow
Change Color #2, because they do not dry. The occurrences in the middle follow
both behaviors, because cleaning up and drying both occur after painting, assuming
the arrows in the behavior language have temporal precedence semantics rather
than imperative, and spray painting is a kind of painting.

Time

Brush Paint

DryPaint

Change Color #1

Follows
both

Dry

Behavior

Follows
only #2

Cleanup
Spray
Paint

Change Color #2

Cleanup

Follows
only #1

Change Color

Spray Paint

Figure 3: Overlapping Behaviors

Behavior languages can include elements that require occurrences following one

behavior to also follow another (generalization). Figure 4 shows one behavior
generalizing another, using the UML notation for generalization (see Section 3).
This means any occurrence following the more special behavior Change Color #3
also follows the general behavior Change Color #1. It is not possible for
occurrences to follow only the specialized behavior and not the general one. Figure
5 shows two behaviors generalizing a third one. Occurrences following Change
Color #4 also follow Change Color #1 and Change Color #2, but it is possible to
have occurrences of the general behaviors separately. Figure 6 shows behaviors
that cannot have common occurrences, they are inconsistent. The Change Color
#5 behavior allows only drying right after painting, using an operational or
imperative semantics, while Change Color #6 allows only shipping. No occurrences
can follow both of these behaviors.

Journal of Object Technology vol. 10, 2011

6  C Bock and J. Odell

Time

Brush Paint

DryPaint

Change Color #1

Follows
both

Dry

Follows
only #3

Change Color #3

Cleanup

Follows
only #1

Dry
Spray
Paint

Cleanup

Behavior

Change Color

Spray Paint

Figure 4: Behavior Generalization

Time

Paint

Change Color

DryPaint

Change Color #1

Follows
#1, #2, #4

Dry

Follows
only #2

CleanupPaint

Change Color #2

Cleanup

Follows
only #1

Dry

Paint

Change Color #4

Cleanup
Ship

Ship

Behavior

Figure 5: Multiple Behavior Generation

Journal of Object Technology vol. 10, 2011

7  Ontological Behavior Modeling

Time

Paint

Change Color

DryPaint

Change Color #5

Follows
both

Dry

Follows
only #6

ShipPaint

Change Color #6

Ship

Follows
only #5

only

Behavior

only

Figure 6: Inconsistent Behaviors
Venn diagrams are another way to visualize the examples so far, as illustrated

in Figure 7 and Figure 8. The dots are occurrences and the ovals are the behaviors
from Figure 3 through Figure 6. A dot inside an oval is an occurrence following a
behavior, otherwise it does not. The ovals for Change Color #1 and Change Color
#2 overlap, with the occurrences following both definitions populating the
intersection, per Figure 3. The oval for Change Color #3 is completely contained
in Change Color #1, because Change Color #1 generalizes Change Color #3, per
Figure 4. The oval for Change Color #4 is completely contained in the
intersection of Change Color #1 and Change Color #2, because they both
generalize Change Color #4, per Figure 5. Some occurrences in the intersection
are not contained by Change Color #4 because there can be occurrences satisfying
Change Color #1 and Change Color #2 without the shipping step required by
Change Color #4. The occurrences lying outside all the ovals do not satisfy any of
the behaviors. Figure 8 is the Venn diagram for Figure 6. The intersection of the
ovals for Change Color #5 and Change Color #6 do not contain any occurrences
because they require conflicting things of the occurrences, per Figure 6.

Change Color #1

Change Color #3

Change Color #4

Change Color #2

Figure 7: Venn Diagram for Figure 3 through Figure 5

Journal of Object Technology vol. 10, 2011

8  C Bock and J. Odell

Change Color #5 Change Color #6

Figure 8: Venn Diagram for Figure 6

The examples in this section assume behavior languages specify which

occurrences follow behaviors written in the language (semantics). There are
various ways to specify behavior semantics, ranging from informal to formal. This
article suggests an ontological approach that treats behaviors as models of
occurrences, where models capture constraints on intended occurrences of the
behaviors. This balances accessibility and formality, and can be augmented with
more precise methods as needed. The rest of the article assumes familiarity with
the UML metamodel and notation [OMG10a], especially its composition model
[Bock04], and OMG's metalevel architecture [OMG10c].

3 Behavior Semantics in UML Currently

The most basic aspects of UML behavior semantics are the same as described in
Section 2, captured in an ontological way by specializing Behavior from Class in
the UML metamodel (M2), as shown in Figure 9 (this treats UML classes as
ontological categories into which instances fall, rather than object-oriented classes
that are instantiated, see Section 1). The dashed arrows across levels show
instances at the tail of the arrows falling into classes at the head of the arrows (the
arrow between Change Color #3 and Behavior is omitted for brevity, adopting the
default UML constraint that specialized classes must be of the same or more special
type than their generalizations). The instances of user-defined behaviors (M1) are
occurrences (M0). Occurrences are shown at the lowest level because they do not
classify anything, they are only instances, and cannot form generalizations. By
comparison, behaviors are classes in the middle level, and generalize with the same
semantics as classes: occurrences of specialized behaviors are occurrences of general
behaviors. Behaviors support properties, associations, operations, and even other
behaviors, such as state machines. This reflects common practice in systems that
manage processes, for example, workflow and operating systems. Operations on
behaviors might manage execution, such as starting, stopping, or aborting
occurrences. The operations are specified in the behavior models (M1) and invoked

Journal of Object Technology vol. 10, 2011

9  Ontological Behavior Modeling

on occurrences (M0). Occurrences can have properties, such as how long the
process has been executing or how much it costs, as well as links to objects, such as
the performer of the execution, who to report completion to, or resources being
used, and states of performance such as started and suspended. The properties are
specified in the behavior models (M1) and are given values in occurrences (M0).

Class

Behavior

Metamodel
(M2)

Change Color #3

Change Color #1
Model
(M1)

Occurrences
(M0)

Change Color
3/15/09 2-4pmET :

Figure 9: UML Behavior Currently

The rest of UML behavior semantics is less formally expressed, except for the
slightly more formal overview in Common Behavior, which has a non-normative
model of the real-world implications of behaviors, and the brief use of trace
semantics in the Interactions chapter. Neither of these is used for the semantics of
the other kinds of UML behavior languages described in Section 1, except some
terminology reuse between the Common Behavior semantic model in state
machines, and in interactions often conflated with the model level. UML has a
general metamodel for time, time intervals, and durations, but it is not used to
specify the semantics of behaviors, perhaps because it does not cover ordering in
time. Interactions have an event ordering metamodel with briefly described trace
semantics, but it is not well developed or used for specifying the semantics of other
UML behaviors.

4 Behavior Semantics for UML Future

The ontological approach to UML behavior semantics in this section builds on the
existing foundation of behavior classes described in Section 3. Section 4.1 uses
composite structure to capture how behaviors coordinate other behaviors in time.
Section 4.2 applies class modeling to events. Section 4.3 uses properties to identify
things participating in behaviors and associations. Section 4.4 extends the models
of the previous sections to capture transfer of things between behaviors and
participants.

Journal of Object Technology vol. 10, 2011

10  C Bock and J. Odell

4.1 Composition and Time

One of the primary purposes of behaviors is to coordinate other behaviors in time.
For example, in Figure 1 of Section 2, Change Color coordinates Paint and Dry, in
this case ensuring the occurrences of painting and drying happen during
occurrences of changing color, and in the proper order. The occurrences Paint and
Dry are suboccurrences of the occurrences of Change Color.

Coordinating behaviors in time requires at least two kinds of constraint on
allowed occurrences (semantics):

1. Between occurrences and suboccurrences, to ensure suboccurrences happen
during the occurrence they are “under,” for example, between Change Color
occurrences and Paint occurrences.

2. Between suboccurrences, to ensure they happen in the desired order, for
example, between Paint occurrences and Dry occurrences under Change
Color occurrences.

The above are the whole-part and part-part relations of composition [Bock04],
respectively, applied to temporal relations between occurrences. They are
addressed in Sections 4.1.1 and 4.1.2, respectively.

4.1.1 Whole-part for Behavior

UML has various concrete syntaxes for the first behavior coordination semantic
(occurrence to suboccurrence):

 Activities have actions that compose behaviors directly, or indirectly
through operations.

 State Machines have submachine states that compose state machines, and
states have behaviors that happen on entry, exit, and during the state.

 Interactions have interaction uses that compose other interactions directly,
as well as messages and actions that compose behaviors indirectly.

UML does not have a common abstract syntax or semantics for the above, except
for some semantic elements in the mostly informal overview in Common Behavior,
which are used sporadically in specifying the concrete behavior metamodels.

The basis for the first behavior coordination semantic above is some occurrences
happen during others. Specifically, the time intervals of some occurrences are
within the time intervals of others (the beginning of one occurrence is at the same
time or after the beginning of another, and the end of the first occurrence is at the
same time or before the end of the other, equivalent to the disjunction of “during”
and “=” in Allen’s temporal logic [Allen83]). For example, the beginning of a
Change Color occurrence is at the same time or before the beginning of its Paint

Journal of Object Technology vol. 10, 2011

11  Ontological Behavior Modeling

suboccurrence, and the end of the suboccurrence is at the same time or before the
end of its Change Color occurrence. This can be captured as a happensDuring
association between occurrences as shown in Figure 10 at M1 (the type of Property
is actually Type in UML, but the semantics is same for the purposes of this
article). The Behavior Occurrence class is the most general behavior, added in an
M1 library. It generalizes all user-defined behaviors, and classifies all M0
occurrences (properties and operations for all occurrences can be defined on
Behavior Occurrence, such as their start and end times, see other examples in
Section 3). It makes no constraint on occurrences at all, it allows all of them, like
an intentionally empty behavior specification. Any occurrence happening during
another will be linked via happensDuring. The happensBefore association in Figure
10 is used for the second behavior coordination semantic, see Section 4.1.2.

step1

Metamodel
(M2)

Paint

Model
(M1)

Paint
3/15/09 10-11amET :

Change Color
3/15/09 10-12pmET :

Change Color
step1

Behavior
Occurrence

happens
During

Occurrences
(M0)

happens
Before

Class

Behavior

Property

type

Step

owned
Attribute

ownedStep

Figure 10: Step Properties
The happensDuring association must be specialized to link occurrences to

suboccurrences, because there are potentially many unrelated occurrences
happening at the same time that are not suboccurrences. For example, a factory
will have many occurrences happening while changing the color of a particular
object, such as products being placed on the loading dock. Most of these are
unrelated to changing color. Suboccurrences can be distinguished by specializing
Property to classify behavior properties at M1 that have suboccurrences as values
at M0, see the Step metaclass in Figure 10 (the ownedStep metaproperty is
subsetted from ownedAttribute to indicate a behavior’s steps are included in its
attributes. Generalization notation is used for UML property subsetting for
brevity). The types of step properties at M1 are the “subbehaviors,” such as Paint
being the type of the step1 property on the Change Color behavior. Each
occurrence of Change Color will have an occurrence of Paint as the value of its
step1 property. Step properties are subsetted from the end of happensDuring at
M1 that identifies the suboccurrence, ensuring suboccurrence time intervals are

Journal of Object Technology vol. 10, 2011

12  C Bock and J. Odell

within those of the occurrences they happen under. A similar model captures the
drying step also, linking each occurrence of Change Color to an occurrence of Dry.

4.1.2 Part-part for Behavior

UML has three concrete syntaxes for the second behavior coordination semantic
(suboccurrence to suboccurrence), depending on the kind of behavior:

 Activities have control flow between actions.

 State Machines have transitions between states.

 Interactions have temporal orderings between messages.

UML does not have a common abstract syntax or semantics for the above.
The basis for the second behavior coordination semantic is some occurrences

happen before others. Specifically, the time intervals of some occurrences are
before the time intervals of others, except possibly at an end point (the end of one
occurrence is at the same time or before the beginning of another, equivalent to the
disjunction of “<” and “meets” in Allen’s temporal logic [Allen83]). For example,
the end of the Paint suboccurrence is at the same time or before the beginning of
the Dry suboccurrence under Change Color occurrences. This can be captured as a
happensBefore association between occurrences as shown at M1 in Figure 10 in
Section 4.1.1. Any occurrence happening before another will be linked to it via
happensBefore.

The happensBefore association must be limited to each occurrence of the
composed behavior separately. For example, a factory will have many occurrences
of Change Color, but painting is only required to happen before drying under each
occurrence separately. Under different Change Color occurrences drying might
happen before painting, because drying can happen under one occurrence before
painting happens under another. This can be captured by specializing UML
Connector to classify those at M1 connecting step properties and typed by
happensBefore, see Succession in Figure 11 at M2 (the /role property is introduced
to elide connector ends for readability, and composite structure notation is used,
but it is not suggested as a concrete notation for UML behaviors). Succession
connectors between step properties require the occurrence values of steps to be
ordered in time by linked by the happensBefore association. For example, the
succession between step1 and step2 in Change Color ensures the painting
suboccurrence of each Change Color occurrence happens before the drying
suboccurrence under that same occurrence of Change Color, rather than others.
This is the “contextualization” provided by connectors, compared to using the
happensBefore association directly between Paint and Dry, which would allow all
occurrences of painting to happen before drying, regardless of what occurrence of

Journal of Object Technology vol. 10, 2011

13  Ontological Behavior Modeling

Change Color they are under (this assumes structural semantics of connectors,
rather than message passing semantics [Bock04][OMG00]).

Metamodel
(M2)

Model
(M1)

Change Color

step1 : Paint

Class

Behavior

Property

type

Step

owned
Attribute

ownedStep

Occurrences
(M0)

Connector
/role

Succession

type

/fromStep

/toStep

step2 : Dry

owned
Connector

step1 Paint
3/15/09 10-11amET :

Change Color
3/15/09 10-12pmET :

step2 Dry
3/15/0911-12pmET :

: happensBefore

happensBefore

Association

1 1

Figure 11: Succession Connectors

The semantics of successions must require existence of later occurrences at the

proper time, and give the correct time ordering of occurrences when successions
form loops. They should require occurrences happening later to exist when earlier
occurrences have happened, and prevent occurrences from appearing later in a
behavior when they were supposed to follow those happening earlier. Behaviors
with succession loops can potentially have multiple occurrence values for the same
step, which means some occurrences in steps appearing later syntactically will
happen before occurrences in steps appearing earlier. The semantics of successions
should not link all the values of earlier step properties to values of later ones.

The above requirements for the semantics of successions can be captured with
UML multiplicity 1 on both ends of the connectors. Connector end multiplicities
specify the minimum and maximum number of links created for each value of the
connected properties on each instance of the class owning the connector. These are
different from the multiplicities of the associations typing the connector, which
constrain the number of links regardless of which connector creates them in which
structured classifier. Connector multiplicities only constrain links created in a
single instance of the structured classifier due to a single connector. Links of the
association typing the connector can be created by other connectors of that type, or
for other reasons entirely (for example, in the presence of succession loops, the
transitivity of happensBefore will cause some values of step1 to link to multiple
values of step2, and some values of step2 to link backwards to multiple values of

Journal of Object Technology vol. 10, 2011

14  C Bock and J. Odell

step1. Links created due to transitivity are not due to the connector, and are not
restricted by succession connector multiplicity).

Multiplicities have lower and upper bounds, which have different semantic
effects for successions depending on whether the multiplicities are on the later or
earlier ends of the succession:

 Later end of successions:

 Lower multiplicity of 1 means a succession will link every occurrence
value of the earlier step through happensBefore to at least one
occurrence value of the later step. In the example of Figure 11, this
requires a drying occurrence value of step2 if there is a painting
occurrence value of step1, because the connector must create at least
one happensBefore link for each value of step1 to a value of step2.
Without the lower multiplicity on the later end of successions, step2
would not be required to have a value, unless the step property has a
minimum multiplicity of 1, which does not work in the presence of
conditionals, see end of this section.

 Upper multiplicity of 1 means the succession can link each occurrence
value of the earlier step through happensBefore to no more than one
occurrence value of the later step. Behaviors with succession loops can
potentially have multiple occurrence values for the same step. In the
example of Figure 11, the upper multiplicity limits the connector to
link each painting occurrence value of step1 through happensBefore to
no more than one drying occurrence value of step2. Without the upper
multiplicity on the later end of successions, an occurrence value of
step1 could be linked to multiple occurrences in step2 even though only
one drying occurrence in step2 results from each painting occurrence in
step1.

 Earlier end of successions:

 Lower multiplicity of 1 means the succession will link every occurrence
value of the later step through happensBefore to at least one
occurrence value of the earlier step. In the example of Figure 11, this
requires a painting occurrence value of step1 for each value of drying
occurrence value of step2. Without the lower multiplicity on the
earlier end of successions, step2 could have values that did not happen
after a value in step1. The lower multiplicity prevents occurrence in
step2 spontaneously appearing without an occurrence in step1.

 Upper multiplicity of 1 means the succession can link each occurrence
value of the later step through happensBefore to no more than one
occurrence value of the earlier step. Behaviors with succession loops
can potentially have multiple occurrence values for the same step. In

Journal of Object Technology vol. 10, 2011

15  Ontological Behavior Modeling

the example of Figure 11, the upper multiplicity limits the connector
to link each drying occurrence value of step2 backwards through
happensBefore to no more than one drying occurrence value of step1.
Without the upper multiplicity on the earlier end of successions, an
occurrence value of step2 could be linked to multiple occurrences in
step1 even though each drying occurrence in step2 results from only
one painting occurrence in step1, and with succession loops, could link
step2 occurrence values to step1 occurrence values that happened later
in the loop.

Taken together, the multiplicities ensure a one-to-one correspondence between
occurrences at the earlier end of the succession with those at the later end,
capturing more formally the token semantics informally described in some UML
behaviors. This can be summarized as the “array” formation of links due to
connector ends with multiplicity of 1, see Figure 9.23 of [OMG10a].

Behavior languages usually include constructs for more expressive constraints
between suboccurrences. In UML these are control nodes in activities, pseudostates
in state machines, and operators in interactions. UML does not have a common
abstract syntax or semantics for these constructs. Some of them have the same
semantics as successions, such as forks and joins in activities and state machines,
and the par operator in interactions. These constructs establish partial time orders
(parallelism) between portions of the behavior that are synchronized at the end of
those portions. Successions support partial time ordering with more than one
succession from or to the same step. For example, a step with multiple outgoing
successions means the step happens before those at the later ends of the
successions. Another step with multiple incoming successions means the step
happens after those at the earlier ends of the successions. Steps in the separate
paths between these “forks” and “joins” have no time ordering constraints, they
happen in parallel.

Other more expressive coordinating constructs in UML go beyond successions,
constraining occurrences across successions, for example, decisions and merges in
activities, junctions and choice in state machines, and the opening side of the alt
operand in interactions. These require additional constraints on suboccurrences
allowed by successions. For example, decisions, splitting junctions, and the alt
operator require only one of the successions going out of a step to result in an
occurrence in the downstream step. This could be captured informally with
“guards” on successions, possibly augmented more formally using the Object
Constraint Language (OCL) at the model level, generated for each M1 behavior by
constraint patterns defined in the metamodel [OMG10d]. Another example of
additional constraints is merges, junctions used as merges, and the closing side of
the alt operand, which require each incoming succession into a step to result in a
separate occurrence of the step. This could be captured informally with relations

Journal of Object Technology vol. 10, 2011

16  C Bock and J. Odell

between successions, possibly augmented with a more formal constraint language
on occurrences [Bock05][Bock06].

4.2 Events

The real-world implications of modeled events are changes as they actually happen
at particular times. For example, the arrival of a product at a loading dock of a
factory will happen many times, each time being a separate occurrence of a
modeled event. When the modeling and occurrence levels might be confused,
events in models at M1 are called event types and real events at M0 are called
event occurrences.

UML has a common abstract syntax for event types (which it calls “events”),
and some semantics in the mostly informal overview in Common Behavior. This is
mostly limited to the time at which objects become aware of events happening
outside them, which are a kind of event also. The semantic terminology in the
Common Behavior overview is used to varying degrees in the semantics of the
other kinds of behaviors, sometimes conflated with the modeling level.

The semantics of events can be captured in a similar way to behaviors by
specializing Event Type from Class in the metamodel (M2), as shown in Figure 12
(this treats UML classes as ontological categories into which instances fall, rather
than object-oriented classes that are instantiated, see Section 1). The instances of
user-defined event types (M1) are the event occurrences (M0). Event types can be
generalized with the same semantics as classes: occurrences of specialized event
types are occurrences of the general event types. The Event Occurrence class is the
most general event type, added in an M1 library. It generalizes all user-defined
event types, and classifies all M0 event occurrences. It makes no constraint on
event occurrences at all, it allows all of them. Event types support properties and
associations, such as the time they happen and the particular objects that change.
They can be linked for time ordering, which is similar enough to behavior
semantics to abstract up to Occurrence in the M1 library, see Figure 12. It
classifies all M0 “happenings,” whether they occur over time as behaviors do, or are
considered instantaneous, like events. The happensBefore and happensDuring
associations are promoted to Occurrence. Any event occurrence happening before
another will be linked to it via happensBefore, as well as any behavior occurrence
happening before another, or both, when an event occurrence happens before a
behavior occurrence. Event occurrences can happen during behavior occurrences.
Event occurrences happening during event occurrences mean they happen at the
same time.

Journal of Object Technology vol. 10, 2011

17  Ontological Behavior Modeling

Class

Event Type

Metamodel
(M2)

Product Arrives at
Factory

Product Arrives

Model
(M1)

Occurrences
(M0)

Product Arrives
3/15/09 2pmET :

Event Occurrence

happens
Before

Occurrence

Behavior
Occurrence

Behavior

happens
During

Figure 12: Event Types and Event Occurrences

Event types captured this way fold easily into behavior composition, because

they can be the type of behavior properties linked by succession connectors. This
assumes steps as in Figure 10 of Section 4.1.1 are generalized to be typed by
behaviors or event types, enabled successions to connect both, as in Figure 13 (M2
omitted for brevity). In this example, the first step is a property typed by the
arrival of a product at the factory. The occurrence value of this step is an event
happening during the Change Color occurrence, due to subsetting of steps from
happensDuring in Figure 10. The product arrival property is connected by
succession to a painting step. This ensures painting occurs after the product
arrives under each occurrence of Change Color.

Model
(M1)

Change Color

step0 : Product Arrives

Occurrences
(M0)

step1 : Paint

Product Arrives
3/15/09 10amET :

Change Color
3/15/09 10-12pmET :

: happensBefore

step0

step1 Paint
3/15/0910-11pmET :

happensBefore

Figure 13: Event Steps

Journal of Object Technology vol. 10, 2011

18  C Bock and J. Odell

Properties of behaviors can capture events about occurrences themselves, for
example, when occurrences start, end, whether they end abnormally, and so on.
These can be captured in a taxonomy at M1, as shown in Figure 14. Behavior
occurrences might end normally, whether or not they are successful in achieving
their goals due to expected problems (normal ending), or might end unexpectedly
due to actions of external or internal agents (abnormal and error ending).
Taxonomies like these can be included in standard model libraries, and extended
by modelers. Behavior properties typed by these can be connected by succession,
as shown in Figure 15. The top class captures that all behavior occurrences have
start and end properties, where the starting happens before ending under each
occurrence. The Change Color behavior uses succession connectors on ports typed
by behavior events to account for occurrences of Paint that fail, and require
recycling of the product. It also requires that painting and ventilation abort at the
same time (because events happening during others means they happen at the
same time). Other precedence rules could be added, for example, that ventilation
starts before painting starts.

Behavior Event

Start Event End Event

Normal End
Event

Abnormal End
Event

Success Failure Abort Error

Model
(M1)

Event Occurrence

Figure 14: Behavior Event Taxonomy

Figure 15: Successions between Behavior Events

Model
(M1)

Change Color

step1 : Paint

step2 : Dry
: happensBefore

: Success

step3 : Recycle
: happensBefore

: Failure

Behavior Occurrence

start : Start
Event

end : End
Event

: happensBefore

step0 : Ventilate
: happensDuring

: Abort : Abort

Journal of Object Technology vol. 10, 2011

19  Ontological Behavior Modeling

Multiple behavior properties can have the same event type, which is useful for
cap

4.3 Participants

Behaviors involve objects that are behaving, by definition, and these objects can be

g messages. Interactions
can

turing the semantics of UML state machines. State machines are a compact
notation for event-driven behaviors, in particular for specifying how objects
respond to notification of external events. State machine semantics are mostly a
subset of the other kinds of UML behaviors. An exception is pseudostates that
machines “commit” to being accessible when used as submachines (all states of
submachines are accessible, but entry and exit point pseudostates highlight that
other machines use them for access to submachine states). This gives state
machines multiple ways for “control” to enter and leave, which is not possible in
the other kinds of UML behaviors. The semantics of entry and exit points can be
captured with multiple behavior properties for start and end types on the same
machine, respectively. State machines can have multiple properties typed by Start
Event, each a separate entry point, while multiple properties can be typed by End
Event, each a separate entry point. This distinguishes different “ways” of starting
and ending the state, but without specialized event types as in Figure 15. When
these machines are used by others as submachines, transitions to entry points and
from exit points (through connection point references) correspond to successions to
and from the event properties, as in Figure 15, assuming the merge semantics of
transitions is addressed, see end of Section 4.1.2.

identified by properties on behaviors. For example, a behavior for changing the
color of objects in a factory involves at least the object having its color changed,
the tools and materials used to change it, robots or people doing the changing, and
so on. The behavior can have a property specifying the type of objects having
their color changed, other properties specifying the types of tools and materials,
and so on, as well as constraints on those objects, such as their size and other
characteristics. Occurrences of the behavior have values for these properties that
are instances of the specified object types, satisfying the specified constraints, and
playing roles specified by the properties. For example, the values might be the
object having its color changed during a particular painting occurrence, the
individual tools being used in that occurrence, and so on.

Interactions are behaviors involving objects exchangin
 have properties specifying the types of objects involved, playing roles specified

by the properties. For example, a buyer interacts with a seller. Occurrences of
interactions have values for these properties that are instances of the specified
types, playing roles specified by the properties. For example, the values might be a
person who is buying and a company that is selling. Interactions do not usually
specify internals of the objects exchanging messages, focusing only on externally

Journal of Object Technology vol. 10, 2011

20  C Bock and J. Odell

observable behavior (in particular, interactions do not need to specify the types of
things exchanging messages, they might only describe the messages exchanged).

UML has various concrete syntaxes for specifying the objects involved in
beh

ractions have lifelines.

 variables, and partitions.

ct syntax or semantics for the above.
 do, by

def

on classes if properties
ide

s extending
bey

before the link is created and after the link is destroyed.

aviors:

 Inte

 Activities have object nodes,

 Behaviors have parameters.

UML does not have a common abstra
It is not coincidental that associations also involve objects as behaviors
inition, and that these objects can be identified by properties on association

classes. For example, an association for things owned by people has links involving
at least individual things and an individual person. The association class can have
properties specifying the type of things that can be owned and the type of people
that can own them. Instances of the association class (links) have values for these
properties that are instances of the specified types, playing roles specified by the
properties.1 Association classes can have other properties, for example, a property
for how long the link has existed. UML does not currently have a standard way to
specify which properties of an association class identify its end objects and which
do not (the Systems Engineering Modeling Language, SysML, extends UML to
support association participant properties [OMG10b]).

Behaviors can be considered specialized associati
ntifying objects involved in a behavior also identify its end objects as an

association class. For example, a behavior for changing color can be considered an
association between the object having its color changed and the tools used during
the behavior. This enables behaviors to be types for connectors, which are needed
to capture the semantics of object flow and messaging, see Section 4.4.

The basis for a semantics of participants is they can have lifetime
ond those of the behaviors or associations they participate in. For example, an

object being painted in a factory participates in a color-changing occurrence, but
the object and the factory exist before the occurrence starts and after it ends. A
person interacts with a company to purchase a product, but the person and
company exist before the purchase begins and after it ends. A piece of furniture
might be linked to an owner, but the piece of furniture and the owner usually exist

1 Association classes support multiplicities between their ends, for example, everything

might be expected to be owned by at least one person. Ordinary classes with properties for
ends cannot capture this, but they support multiplicities other than 1 for the ends
themselves, see footnote 2.

Journal of Object Technology vol. 10, 2011

21  Ontological Behavior Modeling

The semantics of objects involved in behaviors or associations can be captured
by first specializing Property to classify properties of association classes at M1 that
will have end objects as values at M0, as shown in Figure 16 (the figures use M2
specialization instead of property subsetting for brevity and readability, but the
semantics is the same). Then Association Class is specialized to Behavior, and
Association Participant to Behavior Participant, for classifying properties of
behaviors at M1 that have involved objects as values at M0. Further
specializations are introduced for interactions, where the participants send
messages to each other, see section 4.4. Figure 16 shows an interaction with
participant properties for purchasing, including a buyer, a store, and a bank
approving a credit card. A painting behavior might have participant properties
identifying tools and materials used. 2

type

Metamodel
(M2)

Behavior
Behavior

Participant
ownedBP

PurchaseModel
(M1)

object

seller

approver

Product

Store

Bank

Interaction Interaction
Participant

ownedIP

Class

Association
Class

Property

Association
Participant

owned
Attribute

ownedAP

Figure 16: Participant Properties

2 These specializations assume link ends at M0 might not have values, as in

[Flatscher02][Bock97], whereas UML currently requires link ends to have exactly one object.
Optional link ends are necessary because behaviors might have optional participants. The
property specializations could be redefinitions, to prevent participants of the general kinds
on the specialized classes. Behavior participant properties typically do not share values with
step properties, but participants can be occurrences, see discussion of Figure 19. Requiring
all behaviors to be association classes could be avoided with an upgrade to the Meta-Object
Facility (MOF) for multiple classification [OMG10e]. Then M1 behaviors could additionally
be classified as associations as needed, along with their participant properties, rather than
using specialization Behavior from Association Class.

Journal of Object Technology vol. 10, 2011

22  C Bock and J. Odell

4.4 g

nd messaging are the “transfer” of
 transfers can be anything capable of

identifying the things being transferred. For example, an object in a factory can

ire transfers).

ns
flo

 on Transfer
ide

 Object Flow and Messagin

The real-world implications of object flow a
entities, where the source and target of

flow from a painting occurrence to a drying occurrence, even if the object does not
physically move. The occurrences have properties identifying the object being
painted or dried, and transfer is represented as removing the value of one property
and re-assigning it to another. Object flow and messaging can also involve physical
movement, for example, sending a package from one company to another.

UML has concrete syntaxes for object flow and messaging in different diagrams:

 Activities have object flows link pins on actions. Any kind of thing can
flow that has elements at M0 (not operations calls, for example).

 Interactions have messages linking lifelines at points that can be identified
by events. Messages can be signals or operation calls.

UML does not have a common abstract syntax or semantics for object flow and
messaging (all UML behaviors can capture sending and receiving messages, but this
is only the beginning and end of message transfers, rather than ent

The basis for a semantics of object flow and messaging is the transfer of entities
happens over time, however small, which means they can be treated as behaviors.
Occurrences of object flow and messaging behaviors start when an object begi

wing or a message is sent, and end when an object stops flowing, or the message
is received. For example, an object in a factory can flow from a painting
occurrence to a drying occurrence without being moved, but the transfer of
participation from painting to drying occurrences will take at least some time in
the real world, however small, and will start and end at particular times. Object
flow and messaging that involve physical movement will obviously take at least the
time to move the object or message, for example, to send a package from one
company to another, and will also start and end at particular times.

The semantics of object flow and messaging can be captured by specializing
Transfer from Behavior Occurrence at M1 to classify occurrences that transfer
things, as shown in Figure 17. A behavior participant property

ntifies the thing transferred at M0. It is typed by the class Thing, which is the
most general class, provided in an M1 library. Thing generalizes all standard and
user-defined M1 classes, and classifies all M0 elements of any kind. It makes no
constraint on M0 elements at all, it allows all of them, like an intentionally empty
class specification. Two other behavior participant properties on Transfer identify
the source and target. User-defined transfers and the types of things transferred
are specialized from Transfer and Thing respectively. The transferredThing
property is redefined to limit the transferred things to the desired type, products in

Journal of Object Technology vol. 10, 2011

23  Ontological Behavior Modeling

this example (in UML, redefinition of a property by another of the same name
restricts values of the property in the specialized class to the redefining type).

Figure

saging differ only in the kinds of sources and targets they
have, not the transfer itself. Object flow transfers things between behavior
occ

get. This enables transfers
bet

n, in the same sense as
hap

 17: Transfers

Object flow and mes

urrences, while messaging transfers between objects. Behavior occurrences
participating in object flows are like all participants in having lifetimes beyond the
transfers. For example, when an object in a factory flows from a painting
occurrence to a drying occurrence, the painting occurrence will start before the
transfer, and the drying occurrence will end after it.

It simplifies modeling to treat object flow and messaging the same way, with
the difference implied by the kinds of source and tar

ween behavior occurrences and objects, for example between internal business
processes and other companies. Behaviors accepting inputs and providing outputs
through object flows (described below) can also receive and send messages between
objects without wrapping them with a messaging layer. UML partially integrates
object flow and messaging with actions or other model elements that are informally
specified as sending or receiving messages. This still requires wrappers or other
modification of object flow to work across objects. UML does not have a common
abstract syntax or semantics for object flow and messaging integration, and the
semantics of its partial integration is specified informally.

Another aspect of the semantics of object flow and messaging is they must be
limited to the behavior occurrences in which they happe

pensBefore in Section 4.1. Object flows in UML are between actions happening
under each occurrence of activities separately, while messaging is between lifelines
under each occurrence of interactions separately. This means they can be captured
by specializing Connector, as shown in Figure 18 (Change Color is classified as an

Transfer

Behavior
Occurrence

Thing

transferred
Thing

Behavior
Behavior

Participant
ownedBP

source

target

Metamodel
(M2)

Model
(M1)

Painted
Product Transfer

Class

Product
{ redefines

transferredThing }

transferredThing

Journal of Object Technology vol. 10, 2011

24  C Bock and J. Odell

activity, which are the only UML behaviors that support object flows). Object
flows are unified under a general Flow class, with the difference between object
flow and messaging being the kinds of sources and targets, as described above.
Flow connectors at M1 are typed by Transfer or its specializations, for example in
Change Color by Painted Product Transfer from Figure 17, and in Purchase by
transfers of credit card numbers, approvals, and products (flow connectors have no
end for the thing being transferred, even though the transfer behavior as an
association does. UML constraints are loose enough to accommodate this). Flows
have the property /typeOfThingTransferred with values derived from the type of
the transferredThing property of the connector type at M1 (transfers having no
detail in them other than the thing that flows could potentially be omitted, leaving
only the value of the typeOfThingTransferred property at M2). This is not the
type of the transfer during which the thing is transferred, which is always
TRANSFER or its specializations. The top M1 model in Figure 18 uses an object
flow, because it connects properties identifying behavior occurrences in the flow,
while the bottom model is using messaging, it connects properties identifying
objects.

Connector
Metamodel

FlowClass

/typeOfThing
Transferred

(M2)

Model
(M1)

Change Color : Activity

step1 : Paint step2 : Dry
: Painted Product Transfer

Purchase : Interaction

buyer :
Person

seller :
Store

: Product Transfer

approver :
Bank: Card # Transfer : Approval Transfer

Figure 18: Flow Connectors

4.4.

and go to the “outside” of behaviors (“inputs” and
“outputs”). For example, a behavior for changing the color of objects in a factory

1 Inputs and Outputs

Some transfers come from

will get objects on which to operate from elsewhere in the factory, and will also
give the changed object back to somewhere in the factory. Interactions usually do
not have inputs and outputs, because they can add more participants to receive

Journal of Object Technology vol. 10, 2011

25  Ontological Behavior Modeling

and send more messages as needed, but interactions can have inputs and outputs to
integrate with external behavior occurrences.

UML has a common abstract syntax for inputs and outputs (parameters), but
the semantics is specified informally in different ways in interaction and activities
(st

 a
spe

ate machines have parameters, but do not provide elements for using them).
Inputs and outputs are semantically a kind of transfer with specialized

participants for entities outside behaviors. This can be captured by
cialization of Behavior Participant, as shown in Figure 19.3 In this example,

the external entities for the changing color behavior are a feeder from which
products are drawn to be painted, and a buffer to which they are put after drying
completes (this assumes an upgrade to MOF supporting multiple classification for
participants that are both external and interacting [OMG10e]). This highlights the
flexibility of generalizing object flow and messaging. The transfer acts as object
flow for the occurrences of painting and drying, but as messaging for the feeder and
buffer (Change Color is not classified as an activity, as in Figure 18, because UML
activities do not support flows to external objects). The external entities can also
be behavior occurrences, as they typically are in business process modeling or
functional programming languages, for example (and in UML, where behaviors are
classes, see Section 3). In these applications there is one external “calling”
occurrence from which inputs are accepted and to which outputs are provided for
each occurrence of the behavior.

Change Color

step1 :
Paint

step2 :
Dry

Metamodel
(M2)

Model
(M1)

Behavior
Participant

Behavior
ownedBP

External
Participant

in :
Feeder

out :
Buffer

Figure 19: External Participants

3 The external entities do not appear as ports in Figure 19, because they represent the

external entities themselves, rather than a point at which things come out of or go into
occurrences. They could be modeled as ports if the behavior is reused with equality
connectors to the ports. Then connectors would link the ports to (properties identifying)
entities outside the behavior.

Journal of Object Technology vol. 10, 2011

26  C Bock and J. Odell

The approach to inputs and outputs above is more expressive than UML
par meters, because it can model the time order in which inputs arrive and outputs
lea

 Flow Ordering

posed into larger transfers that order them in time
(“protocols”) as all occurrences can, see the two aspects of behavior coordination

ough interaction use.

se other protocols as submachines.

s (flows
and successions, respectively, see beginning of Section 4.4 and Section 4.1). This
me

a
ve without specifying the internal details of the behavior, see Section 4.4.2. This

is needed for long-lived behaviors that accept inputs and provide outputs at various
times.

4.4.2

Transfers can be com

semantics in Section 4.1. A transfer happening during another means it starts and
ends within the time interval of a larger transfer (occurrence to suboccurrence,
whole-part semantics), while a transfer happening before another means one is
completed before another starts (suboccurrence to suboccurrence, part-part
semantics).

UML has three concrete syntaxes for flow ordering, depending on the kind of
behavior:

 Interactions can order messages in time and reuse other interactions
thr

 Protocol state machines can specify the order in which operations can be
called on a class, and reu

 Activities can order actions for sending and receiving messages in time, and
compose other activities through direct and operation calls.

UML does not have a common abstract syntax or semantics for the above.

Transfers and time ordering are captured as special kinds of connector

ans capturing the time order of transfers requires succession connectors between
flow connectors. Since connectors are always between properties, flow connectors
must also be properties, the values of which are the M0 transfers as links
(behaviors are association classes, occurrences are links between participating
objects, see Section 4.3). It is useful to connect connectors generally, and this can
be captured by specializing ConnectorProperty from Connector and Property as
shown in Figure 20. Connector properties are typed by association classes, rather
than ordinary associations, enabling them to have links as values (SysML extends
UML to support connector properties [OMG10b]). The links in a composite are
treated the same as the other objects in it. Figure 21 applies this to protocols by
specializing Flow from ConnectorProperty, rather than from Connector, and also
from Step to enable flows to be ordered in time. Successions can link flows as
steps, for example in Figure 21 where the card transfer flow happens before the

Journal of Object Technology vol. 10, 2011

27  Ontological Behavior Modeling

approval flow, which happens before the product is given to the buyer. Successions
can also capture the time order in which inputs arrive and outputs leave, as needed
for long-lived behaviors that accept inputs and provide outputs at various times,
such as streaming parameters in UML activities.

Figure 20: Connector Properties

Metamodel
(M2)

Model
(M1)

Class

Behavior

Property

Step
ownedStep

Connector
/role

Succession
/fromStep

/toStep

Purchase

buyer :
Person

seller :
Store

: Product Transfer

approver :
Bank: Card # Transfer : Approval Transfer

: happens
Before

: happensBefore

Interaction Flow
Connector
Property

Figure 21: Flow Protocols

4.4 s and Participants

time, as described in Section 4.1,
they also coordinate flows between them and their participants. For example, a

.3 Composition with Flow

When behaviors coordinate other behaviors in

factory might use a behavior for changing color together with a behavior for
assembling parts. The objects flowing out of changing color occurrences might be
the same objects flowing into assembly. Similarly, a company might use a
purchasing interaction having a particular organizational position as the buyer,
using credit cards issued from the currently contracted bank, and purchased from
currently approved stores. Coordination behaviors specify “bindings” that specify
how flows and participants in the coordinated behavior are determined.

Class Property

owned
Attribute

ConnectorProperty

/role

Association
Class

Connector

type
{redefines Class::type
redefines Connector::type}

type
type

Association owned
Connector

Metamodel
(M2)

Journal of Object Technology vol. 10, 2011

28  C Bock and J. Odell

UML has various concrete syntaxes for flow and participant binding:

 Activities have actions with pins matching called behavior parameters.

d can be
and

ts, but these are for time ordering, rather than

 the coordinating and coordinated behavior
occ

ality, in the same sense as happensBefore in
Sec

 Interactions have arguments matching behavior parameters, an
used in conjunction with collaboration, collaboration uses,
collaboration role bindings.

UML does not have a common abstract syntax or semantics for the above (state
machines have binding-like construc
transfers, see the end of Section 4.2).

The basis for a semantics of bindings is they establish equality between the
same things playing different roles in

urrences. For example, a factory using a behavior for assembling might require
transfers into assembly occurrences to be the same ones out of painting
occurrences. Similarly, a company using a purchasing interaction might require the
person participating as the buyer to be the same as the one participating in the
company in the requisition position, and the credit cards used to be the same ones
supplied in current banking contracts.

An aspect of the semantics of bindings is they must be limited to the behavior
occurrences in which they establish equ

tion 4.1. The equality required by a coordinating behavior only applies to flows
and participants within each occurrence of the coordinating behavior, and the
occurrences being coordinated under it. This means bindings can be captured by
specializing Connector, as shown in Figure 22 (SysML extends UML to support
binding connectors [OMG10b]). In this example, a factory behavior uses binding
connectors to equate M0 transfers out of its changing color suboccurrences to the
transfers between changing color and assembling, and to equate those to transfer
occurrences into its assembly suboccurrences. The nested composite structure
diagrams in Figure 22 indicate reuse of the separately defined behaviors Change
Color and Assembly by using them as types of steps. Bindings are directed, to
prevent modification of reused behaviors, even though equality is symmetric
mathematically. Using connectors this way in UML requires input and output
flows to be ports, though they are not shown this way in Figure 22. Port
connector properties can indicate which flows are accessible when a composite class
is reused in another composite.

Journal of Object Technology vol. 10, 2011

29  Ontological Behavior Modeling

Connector

Binding

Factory : Activity

step1 : Change Color step2 : Assembly

: Transfer

Metamodel
(M2)

Model
(M1)

Purchase : Interaction

buyer :
Person

seller :
Store

: Product Transfer

approver
: Bank: Card # Transfer : Approval Transfer

: Paint : Dry

in : out :

: Bolt : Tighten

in : out :

Company : Interaction

requisition :
Person

contractedB : Bank

Transfer

: Purchase contractedS : Store

Figure 22: Binding Connectors

The bottom of Figure 22 shows an example of interaction reuse with participant

bindings. The n-ary association notation applied in a composite structure is a
three-end flow connector in an overall company interaction. The flow connector
reuses a purchasing interaction, shown outside rather than inside as in the factory
example. The purchasing interaction is specialized from Transfer, as all
interactions are because their occurrences transfer things. This enables Purchase to
be the type of the three-end flow in the Company interaction, because flows are
connectors typed by transfers, see Section 4.4. The Company interaction has
binding connectors between its participants and those of the Purchase interaction.
These ensure the buyer in the purchase is the same person that fills the requisition
position in the company, and the bank and store in the purchase are those
contracted by the company. As in the factory example, using connectors this way
in UML requires the participant properties to be ports, even though they are not
shown this way in Figure 22. Port participants can indicate which participants are
accessible when a behavior is reused in another behavior.

Journal of Object Technology vol. 10, 2011

30  C Bock and J. Odell

5 Related and Future Work

Many applications of ontology to dynamics focus either on modeling languages, or
on the things being modeled (occurrences), but not both at once. A common
approach is to use ontology languages for capturing modeling language syntax
[Martin04][Dumitru05][Haller08]. This provides an accurate description of the way
modelers can assemble language elements (syntax). However, it does not give them
capabilities typical of ontology languages, such as specialization, or a way to tell
when occurrences at M0 follow models written at M1 (semantics). At the opposite
end of the spectrum, ontology languages can describe or constrain occurrences
directly, with little emphasis on constructing behavior models
[ISO06][Aitken02][Masolo02]. This gives a way to specify semantics for behavior
modeling languages when desired, but not the semantics or syntax of any particular
language. With these approaches, the modeler must repeatedly specify behaviors in
all semantic detail, without the shorthands provided in behavior modeling
languages. To address this, some researchers translate behavior modeling
languages to ontologies of occurrences [Ren09][Gröner10]. This provides an easier
“front end” for specifying allowed occurrences, but does not fully integrate modeling
languages with their semantics, and in the particular work cited, requires
significant limitations, such as sequentializing parallel tasks.

At least one framework enables the application of ontology to modeling
languages and the things being modeled at the same time (syntax and semantics)
[IDEAS09], but does not provide extensions for modeling dynamics. Another effort
extends an upper ontology for modeling dynamics [Gangemi05]. However, it is
either expressed too mathematically for the modeling community to use, or applies
ontology languages only to syntax. Some are extending ontology languages to
capture syntax and semantics at the same time, but have not applied the
extensions to modeling dynamics [Jekjantuk10]. Work on formalizing UML with
ontologies does not address its behavior models [Berardi05][Guizzardi04]. UML 2
introduces ontological meanings for classification, and these are applied to its
syntax through the subset of UML used to define itself [OMG10e]. UML 2 also
partially applies ontology to the semantics of behavior as classes. This paper
continues this line of development, employing composite structure to capture
temporal and other relationships between elements of behavior in a general enough
way to apply to all three of UML behavior models.

The framework of this paper can be extended in future work to complete its
specialization into the three UML behavior languages, including such topics as
asynchronous and polymorphic invocations, interrupts, exceptions, and more
expressive coordinating constructs for suboccurrences.

Journal of Object Technology vol. 10, 2011

31  Ontological Behavior Modeling

6 Summary

This article suggests improving the effectiveness of behavior modeling languages
through ontological approaches, enabling users and implementers to understand
them more uniformly. These approaches specify real-world implications of
language sentences more rigorously than informal text, but not directly in
mathematics. They start with common sense notions, building up incrementally to
more complex ones. By taking smaller, accurately defined steps in language
development, standards can increase the reliability of communication between
users, tools, and implementers, enabling tools to work more seamlessly with each
other and with the people using them.

A proof-of-concept for ontological approaches is provided by a common
semantic basis for UML behaviors. It starts with the existing UML notion of
behaviors as classes, where each instance is one occurrence of a behavior in time,
see Section 2. The article treats elements of behavior as parts of a whole, as
captured in UML composite structure. The two relationships of composition
(whole-part and part-part) are applied to behavior through a common sense model
of time: nested durations for subbehaviors, and time ordering for steps in
behaviors, respectively, see Section 4.1, and summary in Figure 23 and Figure 24.
Events are captured as classes, where each instance is one occurrence of an event in
time. This enables them to type step properties and be ordered in time with other
steps, see Section 4.2. Participants in behaviors and associations are treated as
parts of a whole, and captured as properties in a composite structure, as
summarized in Figure 24. This enables behaviors to act as links between
participants, as associations do, and be used to connect parts of other behaviors,
see Section 4.3. Specialized behavior associations between participants capture the
transfer of objects in messaging and object flow, which are distinguished by the
kind of source and target of the transfer (objects or behavior occurrences,
respectively). Transfers connect elements of behaviors, including steps and
participants, through composite structure, see the introduction to Section 4.4 and
Section 4.4.1. Specialized properties identify links connecting objects and
occurrences, which are combined with behavior steps to enable transfers to be
ordered in time, as in messaging protocols, and inputs and outputs to long-lived
behaviors, see Section 4.4.2. Finally, transfers can be equated (bound) to each
other to enable behaviors to coordinate transfers when they use other behaviors see
Section 4.4.3.

Journal of Object Technology vol. 10, 2011

32  C Bock and J. Odell

Event Type

Event Occurrence

happens
Before

Occurrence

Behavior
Occurrence

Behavior

happens
During

Transfer

Behavior
Occurrence

Thing

transferred
Thing

Behavior
Behavior

Participant

ownedBP

source

target

Class
ClassMetamodel

(M2)

Model
(M1)

Figure 23: Model Library

Step

Connector

Succession

Behavior
Behavior

Participant

Interaction Interaction
Participant

Class

Association
Class

Property

Association
Participant

External
Participant

Connector Property

Flow

BindingEvent
TypeMetamodel

(M2)

Figure 24: Metaclass Taxonomy

The ontological approach to language specification appears in the above models

as simple notions, such as class as category, and properties specifying links between
instances, also falling into categories, with both specialized in multiple, thin layers
to more sophisticated constructions, such as flows between various kinds of
behavior participants. At each stage, the implications of user models for the real
world are captured (semantics), sometimes with reusable model libraries. This
enables more uniform understanding and implementation of the three UML
behavior models, and more expressiveness from their integration.

Acknowledgements

Many of the behavior modeling techniques in this article were applied largely
independent of UML in the Business Process Definition Metamodel, developed with
team members Antoine Lonjon, Cory Casanave, and others [OMG08]. A partial
mathematical formalization is available in an executable subset of UML [OMG11].

Commercial equipment and materials might be identified to adequately specify certain procedures.
In no case does such identification imply recommendation or endorsement by the U.S. National Institute
of Standards and Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

Journal of Object Technology vol. 10, 2011

33  Ontological Behavior Modeling

References

[Aitken02] S. Aitken, J. Curtis: “A Process Ontology,” Knowledge Engineering
and Knowledge Management: Ontologies and the Semantic Web,
Lecture Notes in Computer Science, vol. 2473, pp. 263-270, 2002.
doi:10.1007/3-540-45810-7_13

[Allen83] J. Allen: “Maintaining Knowledge about Temporal Intervals,”
Communications of the Association of Computing Machinery, vol. 26,
no. 11, pp. 832-843, November, 1983. doi:10.1145/182.358434

[Berardi05] D. Berardi, D. Calvanese, G. De Giacomo: “Reasoning on UML class
diagrams,” Artificial Intelligence, vol. 168, no. 1-2, pp. 70-118, October
2005. doi:10.1016/j.artint.2005.05.003

[Bock04] C. Bock: “UML 2 Composition Model,” Journal of Object Technology,
vol. 3, no. 10, pp. 47-73, http://www.jot.fm/issues/issue_2004_11/
column5, November-December, 2004. doi:10.5381/jot.2004.3.10.c5

[Bock05] C. Bock, M. Gruninger: “PSL: A Semantic Domain for Flow Models,”
Software and Systems Modeling Journal, vol. 4, no. 2, pp. 209-231,
May 2005. doi:10.1007/s10270-004-0066-x

[Bock06] C. Bock: “Interprocess Communication in the Process Specification
Language,” U.S National Institute of Standards and Technology
Interagency Report 7348, October 2006.

[Bock97] C. Bock, J. Odell: “A More Complete Model of Relations and Their
Implementation, Part I: Relations as Object Types” Journal of Object-
Oriented Programming, vol. 10, no. 3, pp. 38-40, http://www.conrad
bock.org/relation1.html, June 1997.

[Borgida07] A. Borgida, R. Brachman: “Conceptual Modeling with Description
Logics,” The Description Logic Handbook: Theory, Implementation,
and Applications, 2nd ed., Baader, F., Calvanese, D., McGuinness, D.,
Nardi, D., Patel-Schneider, P (eds.), pp. 375-401, August, 2007.
doi:10.2277/0521781760

[Cocks04] D. Cocks, M. Dickerson, D. Oliver, J. Skipper: “Model Driven Design,”
International Council on Systems Engineering Insight, vol. 7, no. 2,
July 2004.

[Dumitru05] R. Dumitru, U. Kellera, H. Lausena, J. de Bruijna, R. Laraa, M.
Stollberga, A. Polleresa, C. Feiera, C. Busslerb, D. Fensela: “Web
Service Modeling Ontology,” Applied Ontology, vol. 1, pp. 77-106,
2005.

[Flatscher02] R. Flatscher: “Metamodeling in EIA/CDIF-Meta-Metamodel and
Metamodels,” Association of Computing Machinery Transactions on

Journal of Object Technology vol. 10, 2011

http://dx.doi.org/10.1007/3-540-45810-7_13
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://www.jot.fm/issues/issue_2004_11/column5
http://www.jot.fm/issues/issue_2004_11/column5
http://dx.doi.org/10.5381/jot.2004.3.10.c5
http://dx.doi.org/10.1007/s10270-004-0066-x
http://www.conradbock.org/relation1.html
http://www.conradbock.org/relation1.html
http://dx.doi.org/10.2277/0521781760

34  C Bock and J. Odell

Modeling and Computer Simulation, vol. 12, no. 4, pp. 322-342,
October 2002. doi:10.1145/643120.643124

[Gangemi05] A. Gangemi, S. Borgo, C. Catenacci, J. Lehman: “Task taxonomies for
knowledge content,” Laboratory for Applied Ontology,
http://www.loa-cnr.it/Papers/D07_v21a.pdf , 2005.

[Genesereth87] M. Genesereth, N. Nilsson: Logical Foundations of Artificial
Intelligence, Morgan Kaufman, 1987.

[Gröner10] G. Gröner., S. Staab: “Specialization and Validation of Statecharts in
OWL,” Proceedings of of 17th International Conference on Knowledge
Engineering and Knowledge Management by the Masses, Lecture
Notes in Artificial Intelligence, vol. 6317, pp. 360-370, 2010.
doi:10.1007/978-3-642-16438-5_26

[Guizzardi04] G. Guizzardi, G. Wagner, H. Herre: “On the Foundations of UML as
an Ontology Representation Language,” Lecture Notes in Computer
Science, vol. 3257, pp. 47-62, 2004.

[Haller08] A. Haller, M. Marmolowski, E. Oren, W. Gaaloul: “A Process
Ontology for Business Intelligence,” Digital Enterprise Research
Institute, Technical Report 2008-04-1, April 2008.

[Horrocks06] I. Horrocks, O. Kutz, U. Sattler: “The Even More Irresistible SROIQ,”
Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning, pp. 57-67, American
Association of Artificial Intelligence Press, 2006.

[IDEAS09] International Defence Enterprise Architecture Specification Group:
“The IDEAS Foundation Model,” http://www.ideasgroup.org/
foundation, 2009.

[ISO06] International Organization for Standardization: “Process Specification
Language (ISO 18629),” ISO Technical Committee 184, Sub-committee
4, June 2006.

[Jekjantuk10] N. Jekjantuk, G. Gröner, J. Pan, E. Thomas: “Towards hybrid
reasoning for verifying and validating multilevel models,” Proceedings
of of 17th International Conference on Knowledge Engineering and
Knowledge Management by the Masses, Lecture Notes in Artifical
Intelligence, vol. 6317, pp. 411-420, October 2010. doi:10.1007/978-3-
642-16438-5_31

[Martin04] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, M. McDermott, D.
McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N.
Srinivasan, K. Sycara: “Bringing Semantics to Web Services: The
OWL-S Approach,” Proceedings of the First International Workshop
on Semantic Web Services and Web Process Composition, pp. 26-42,
July 2004. doi:10.1007/b105145

Journal of Object Technology vol. 10, 2011

http://dx.doi.org/10.1145/643120.643124
http://www.loa-cnr.it/Papers/D07_v21a.pdf
http://dx.doi.org/10.1007/978-3-642-16438-5_26
http://www.ideasgroup.org/foundation
http://www.ideasgroup.org/foundation
http://dx.doi.org/10.1007/978-3-642-16438-5_31
http://dx.doi.org/10.1007/978-3-642-16438-5_31
http://dx.doi.org/10.1007/b105145

35  Ontological Behavior Modeling

[Masolo02] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari:
“WonderWeb Deliverable D18: Ontology Library,” Laboratory for
Applied Ontology, http://wonderweb.semanticweb.org/deliverables/
documents/D18.pdf, 2002.

[OMG00] Object Management Group: “UML 2.0 Superstructure Request For
Proposal,” http://doc.omg.org/ad/00-09-02, September 2000.

[OMG08] Object Management Group: “Business Process Definition MetaModel,”
http://doc.omg.org/formal/2008-11-03, http://doc.omg.org/formal/
2008-11-04, November 2008.

[OMG09] Object Management Group: “Ontology Definition Metamodel,”
http://doc.omg.org/formal/2009-05-01, May 2009.

[OMG10a] Object Management Group: “OMG Unified Modeling Language,
Superstructure,” http://doc.omg.org/formal/2010-05-05, May 2010.

[OMG10b] Object Management Group: “OMG Systems Modeling Language,”
http://doc.omg.org/formal/2010-06-01, June 2010.

[OMG10c] Object Management Group: Unified Modeling Language:
Infrastructure, http://doc.omg.org/formal/2010-05-03, May 2010.

[OMG10d] Object Management Group: “Object Constraint Language 2.2,”
http://doc.omg.org/formal/2010-02-01, February 2010.

[OMG10e] Object Management Group: “MOF Support for Semantic Structures
(SMOF) - Beta 1,” http://doc.omg.org/ptc/2010-11-39, November
2010.

[OMG11] Object Management Group: “Semantics of a Foundational Subset for
Executable UML Models (fUML),” http://doc.omg.org/formal/11-02-
01 , February 2011.

[Ren09] Y. Ren, G. Gröner, J. Lemcke, T. Rahmani, A. Friesen, Y. Zhao, J.
Pan, S. Staab: “Validating Process Refinement with Ontologies,”
Proceedings of International Workshop on Description Logics, July
2009.

[W3C09] World Wide Web Consortium: “OWL 2 Web Ontology Language,
Document Overview,” http://www.w3.org/TR/owl2-overview, October
2009.

Journal of Object Technology vol. 10, 2011

http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf
http://doc.omg.org/ad/00-09-02
http://doc.omg.org/formal/2008-11-03
http://doc.omg.org/formal/2008-11-04
http://doc.omg.org/formal/2008-11-04
http://doc.omg.org/formal/2009-05-01
http://doc.omg.org/formal/2010-05-05
http://doc.omg.org/formal/2010-06-01
http://doc.omg.org/formal/2010-05-03
http://doc.omg.org/formal/2010-02-01
http://doc.omg.org/ptc/2010-11-39
http://doc.omg.org/formal/11-02-01
http://doc.omg.org/formal/11-02-01
http://www.w3.org/TR/owl2-overview

36  C Bock and J. Odell

Journal of Object Technology vol. 10, 2011

complex adaptive syste

About the authors

Conrad Bock is a Computer Scientist at the U.S. National
Institute of Standards and Technology's Engineering
Laboratory, specializing in formal product and process
modeling. He was the founding editor for the Activity and
Action models in the Unified Modeling Language and
Systems Modeling Language at the Object Management
Group, as well as a primary contributor to interaction
modeling in the Business Process Model and Notation. He
can be reached at conrad dot bock at nist dot gov.

James Odell is an international consultant specializing in
applying object-oriented and agent-based techniques to
build process- and event-aware enterprise systems. His
commercial work involves understanding, communicating,
and developing business systems and standards - especially
those involving UML, business process management, data
and meta-data modeling, service orientation, event-driven
approaches, applied ontology, multiagent systems, and
ms. These systems include software, machines, and people

as agents and objects. He can be reached at email at jamesodell dot com.

	1 Introduction
	2 Behavior Semantics in General
	3 Behavior Semantics in UML Currently
	4 Behavior Semantics for UML Future
	4.1 Composition and Time
	4.1.1 Whole-part for Behavior
	4.1.2 Part-part for Behavior

	4.2 Events
	4.3 Participants
	4.4 Object Flow and Messaging
	4.4.1 Inputs and Outputs
	4.4.2 Flow Ordering
	4.4.3 Composition with Flows and Participants

	5 Related and Future Work
	6 Summary
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

