
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, ©JOT 2011

Online at http://www.jot.fm.

SPath: an extensible query-language
for Scala
Nicholas Nguyena

a. http://nicnguyen.github.com

Abstract Scala combines the functional and object-oriented paradigms and
is good at supporting embedded domain-specific languages. Scala presents
therefore an opportunity for designing a new kind of query-language that
belongs to the family of XPath-like query-languages, for querying semi-
structured data that is stored within internal memory. In the terminology
of XPath, a relation between the nodes of a tree, is called an axis and their
purpose is to provide a way of navigating between the nodes within a tree.
An XPath query is then, approximately, a path of axis-steps, resembling a
directory path in a file-system. XPath has 13 axes. However, it is natural
to extend the notion of axis to any relation on tree-nodes, by allowing
queries with user-defined axes. The effect of the approach that has been
taken in this article is an alternative syntax and semantics for user-defined
axes, compared with XPath 2.0.

It also turns out that separating the query-language from specific types
of trees, enables reuse with any tree data-structure that conforms to the
composite design-pattern.

SPath is an XPath-like query-language based on Linear Temporal Logic
that has been implemented as a domain-specific language, embedded into
Scala.

Keywords Scala, SPath, domain-specific languages, linear temporal logic

1 Introduction.

Semi-structured data has become ubiquitous in object-oriented software development.
Indeed, for the modern software developer, it may seem as though XML pervades
everywhere from web-services and domain-modeling, to the more mundane use of
configuration files. Query-languages for XML are also widely supported in terms of the
W3C specifications for XPath 1.0 [W3Cb], XPath 2.0 [W3Cc] and XQuery [W3Cd], as
well as their implementations. The implementations of XPath within object-oriented
languages vary from strict adherence to the specifications [jsr04, xqj09] to variations
that are loosely based on the essential features of XPath such as in Scala [OSV08] and
LINQ-to-XML for C# [Mic]. Both Scala and C# share the similar style of allowing
user-defined functions to appear in the path of a query, as defined by XPath 2.0.

Nicholas Nguyen. SPath: an extensible query-language for Scala. In Journal of Object Technology,
vol. 10, no. 13, 2011, pages 1–37. doi:10.5381/jot.2011.10.1.a13

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a13
http://dx.doi.org/10.5381/jot.2011.10.1.a13
http://dx.doi.org/10.5381/jot.2011.10.1.a13

2 · Nicholas Nguyen

The user-defined functions of XPath 2.0, in essence, specify relationships between
tree-nodes. A query is then, approximately, formed by chaining together a series of
calls to these axis-functions.

This article presents a different approach for writing queries with user-defined axes,
in a new query-language called SPath. The main advantages that SPath brings are:

• The syntax for user-defined axes in SPath are treated in the same way as the
syntax for the core axes of XPath 1.0. In XPath 2.0, the syntax for user-defined
axes and the core axes, is different.

• When the axis-relations are decoupled from the type of the document-tree that is
to be queried, as they are in SPath, then the query-language can be reused with
any tree data-structure that has been implemented according to the composite
design-pattern.

• SPath is an extension of the conditional axes of [Mar04b], with user-defined axes.
User-defined axes can also be conveniently defined in terms of SPath queries,
which introduces higher-order axes.

This article is organised as follows. The next section provides a brief overview of
XML and XPath. The syntax for a core subset of XPath 2.0 is presented in Section 2.1.
Conditional axes [Mar04b] are explained in Section 2.2.

Section 3 presents an overview of SPath and a translation from the core XPath
2.0 of Section 1, into SPath. Section 4 presents two examples of SPath for querying
native XML documents in Scala.

The remainder of the article presents SPath in detail. Section 5 introduces SPath
as an extension of LTL in which formulas are annotated with arbitrary node-relations.
These node-relations represent user-definable axes. Section 6 summarises the imple-
mentation of query evaluation in SPath and its theoretical worst-case running time.
SPath is examined with the XPathMark performance test [Fra07] and a separate
comparison with Scala’s native XML API. The SPath queries based on XPathMark
are in Appendix A. Section 7 presents the embedding of SPath into Scala. Section 8
concludes the article by comparing SPath with previous work from the literature.
Further work for SPath is outlined in Section 9.

Query evaluation in SPath makes use of the classic algorithm of [GPV+95] for
translating an LTL formula into an automaton. The adapted algorithm is presented
in Appendix B. Proofs are attached in Appendix C.

2 Background.

2.1 The document object model, XML and XPath 2.0.

The XPath specifications are defined in terms of a conceptual model for document-trees.
That is, the nodes of the trees are labeled with tags; have attributes and siblings are
ordered, but the trees do not conform to a particular API or specification for XML.
XPath trees are node-labeled in contrast to being edge-labeled. The node-labeled
approach affects the way trees are addressed within path expressions and how values
at nodes are accessed, as described in [MSB03]. The document order is the order that
nodes are encountered, when the serialised document is read in one pass as a stream
from start to end. The document order is the same as the preorder traversal of the
tree.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 3

NodeTest ::= QName | ∗
AxisStep ::= Axis::Filter
Filter ::= NodeTest([Predicate])?

PathExpr ::= AxisStep(/AxisStep)∗

Predicate ::= PathExpr
| Predicate and Predicate
| Predicate or Predicate
| not Predicate

Axis ::= FunctionCall | ForwardAxis | ReverseAxis
FunctionCall ::= QName(.)
ForwardAxis ::= self | child | descendant | descendent-or-self

| following | following-sibling
ReverseAxis ::= parent | ancestor | ancestor-or-self

| preceding | preceding-sibling

Figure 1 – A core syntax for a subset of XPath 2.0.

The document object model (DOM) defines a general interface for document-trees.
Its interface enables navigation and manipulation of trees that are represented by
more specialised formats such as XML or XHTML. The DOM specification [W3Ca] is
language and platform neutral, due to it being defined using the interface definition
language (IDL). Of most relevance to this work is that the DOM defines trees using
the composite pattern [GHJV95]. In particular, in the following IDL code fragment
from the DOM specifications, the Node interface, which represents tree nodes has an
attribute, childNodes, to access the children of a node. This attribute has the type
of a NodeList, which is composed, recursively, of an ordered list of Node.

interface Node {
...
readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
...

}

interface NodeList {
Node item(in unsigned long index);
readonly attribute unsigned long length;

};

Similiarly, the parentNode attribute of the Node interface provides a reference to
a node’s parent. In Section 7.2, SPath is shown to be compatible with any tree API,
which at a minimum, provides access to a node’s children in document order, such as
the attribute childNodes.

The Node interface represents all kinds of objects within an XML document, such
as elements, attributes, text nodes, CDATA, comments and processing instructions.
The value of a node’s nodeType attribute, has a value of an enumerated type and
determines which kind of XML object is represented by a node.

The formal syntax for a core of XPath 2.0 is shown in Figure 1 1. The syntax is
a core subset of unabbreviated XPath that is based on the XPath 2.0 specification

1The syntax is defined in BNF extended with the regular-expression operators, ? and ∗.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

4 · Nicholas Nguyen

[W3Cc]. The core of the XPath language consists of path expressions, PathExpr,
for location steps and predicates, Predicate, which act like filters on tree nodes.
Predicates can also contain path expressions, recursively. An axis step consists of an
axis, a node test and an optional predicate. A node test can be either an element
name or ∗, which matches any element node. The syntax in Figure 1 has just one
feature of XPath 2.0, namely function calls can occur in location steps. The function
call QName(.) applies the function QName to its argument ., which is bound to the
current context node.

The axes are divided into forward and reverse axes, according to the relative
position, in document order, of the context node to which an axis is applied and the
nodes returned by the axis.

An example query in XPath 2.0, generated by the syntax in Figure 1 is:

descendant-or-self::A[child::B or parent::D]/child::C

This query returns a set of element nodes labeled C. The query can be explained in a
top-down manner starting at the root of the document-tree. Evaluation begins at the
root and searches for descendant nodes labeled with A, which have either a B child
or a D parent. The C children of such A nodes are then returned as the result-set of
the query, in document order. In the abbreviated syntax of XPath, this query can be
written as:

//A[B or parent::D]/C.

For more detail about XPath 2.0 and its data model, the reader is referred to [W3Ce],
[W3Cc], [Kay04]. Readers interested in a formal semantics for evaluating XPath
queries may wish to refer to [Mar04a].

2.2 Conditional axes.

Conditional axes have been proposed by Maarten Marx in [Mar04b, Mar04a]. A
conditional axis takes the form: do a step along the child axis until test holds at the
resulting node. Conditional axes are not present in XPath 1.0 but can be expressed in
XPath 2.0 using variables, conditional constructs and recursive user-defined functions.
However, direct support for conditional axes are a desirable feature for XPath-like
query languages because they preserve the simple path-like syntax of XPath 1.0, and
eliminate the boilerplate-code that is needed for implementing a conditional axis with
variables and a looping construct. In SPath, a conditional axis takes the form \\(f,
test) 2, and can be specified with any user-defined axis, f, in addition to XPath’s
core axes.

3 An overview of SPath.

An overview of the different stages and components within SPath is displayed in
Figure 2. The user defines the SPath query, which is translated into an LTL formula
and then compiled into an automaton. The evaluation engine runs the query on the
document and returns a node-set in document order.

The remainder of this section aims at providing an intuition of the semantics of
SPath queries by showing how XPath 2.0 queries are translated into SPath.

2SPath abbreviates \\(f, ∗) with \\(f) and \\(child, test) with \\(test), where val ∗ = _
=> true.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 5

SPath
query

LTL
formula

Automaton
construction

Document
tree

Query
evaluator

Query
result

- -
PPq

��1

-

Figure 2 – The different stages and components of evaluating a query in SPath.

3.1 Translating XPath 2.0 into SPath.

In this section, the core subset for XPath 2.0, defined in Section 1 is translated into
the XSPathLite extension of SPath, for querying Scala’s native XML documents.
XSPathLite is instantiated on scala.xml.Node. In Figure 3, each symbol in the
grammar for XPath 2.0 from Section 1 is assigned a translation function. The target
domain of these translation functions is the SPath class Query, which represents LTL
formulas. Each XPath axis is mapped to a similarly named Scala function, each with
the type aliased by axis.

The translation assumes that SPath’s axis-functions, the class Query and the
following definitions are in the current scope. These definitions are brought into the
current scope, i.e. imported, by a mixin composition of the trait XSPathLite.

type axis : Node => Iterable[Node]
Element : Query
% : Query
\ : (axis, Query) => Query
not : Query => Query

An axis is modeled as a function from tree nodes to ordered sets of tree nodes.
Element represents a query that matches element nodes with specific labels. The
query, %, is an SPath predicate that matches any element node. The function \ is an
entry function for starting a path expression. The translation also makes use of the
following methods, which are defined in the class Query :

\ : (axis, Query) => Query
and : Query => Query
or : Query => Query
? : Query => Query

The function \ allows a path expression to be extended and is similar to the
function \ that is imported from the trait XSPathlite. The function ? creates an
SPath predicate from a query and is intended to model an XPath predicate of the
form, [Predicate].

The fact that Query is the target domain for most of the translation, is a charac-
teristic of the fluent-interface pattern for embedded domain-specific languages [Fow10].
The XPath query from Section 1:

descendant-or-self::A[child::B or parent::D]/child::C

can now be translated into the SPath query:

\(descendantOrSelf, A ? (\(child, B) or \(parent, D))) \(child, C)

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

6 · Nicholas Nguyen

[[•]]NT : NodeTest −→ Query
[[•]]F : Filter −→ Query
[[•]]P : Predicate −→ Query
[[•]]PE : PathExpr −→ Query
[[•]]A : Axis −→ axis

[[QName]]NT = Element(QName)
[[∗]]NT = %

[[NodeTest]]F = [[NodeTest]]NT

[[NodeTest[Predicate]]]F = [[NodeTest]]NT ?([[Predicate]]P)

[[PathExpr]]P = [[PathExpr]]PE

[[Predicate1 and Predicate2]]P = [[Predicate1]]P and [[Predicate2]]P
[[Predicate1 or Predicate2]]P = [[Predicate1]]P or [[Predicate2]]P
[[not Predicate]]P = not([[Predicate]]P)

[[Axis0::Filter0/Axis1::Filter1 . . ./Axisk::Filterk]]PE =
\([[Axis0]]A,[[Filter0]]F)\([[Axis1]]A,[[Filter1]]F). . .\([[Axisk]]A,[[Filterk]]F)

[[QName(.)]]A = QName
[[child]]A = child
[[self]]A = self

[[following]]A = following
[[preceding]]A = preceding
[[ancestor]]A = ancestor

[[parent]]A = parent
[[descendant]]A = descendant

[[following-sibling]]A = followingSibling
[[preceding-sibling]]A = precedingSibling
[[ancestor-or-self]]A = ancestorOrSelf

[[descendant-or-self]]A = descendantOrSelf

Figure 3 – Translating a core subset of XPath 2.0 into SPath.

where A is defined as: val A = Element("A") and B, D and E are defined in a similar
way. Here, Element is a companion object of the Element class, which has an apply
method that creates a new Element object with its label set to the argument, e.g.
"A" such that A.label == "A". Just as the XPath query can be abbreviated as:

//A[B or parent::D]/C.

so too, the SPath query can be abbreviated as:

\\(A ?(\(B) or \(parent, D)))\C

This abbreviated SPath query uses the overloaded function \, which has child as
a default axis. For example, \(B) is syntactic sugar for \(child, B). The function
\\ represents a conditional axis [Mar04b] and is defined in Sections 5 and 7 in terms
of the underlying LTL expressions. An SPath query e is evaluated at the document-
node n with the function $, as in, $(n, e), which returns a result-set of nodes in
document order. The type of the result set is Iterable[Node] such the nth item of
the iteration appears before the (n+1)th item in the order of the document. The
syntax for evaluating queries in SPath is borrowed from [jQu].

3.2 Translating attributes.

XPath has an attribute axis and an abbreviated syntax for comparing attribute values.
Attributes were not included in the translation and are treated here separately. For

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 7

example, attribute::id eq "1" selects the attribute nodes, of the context node,
that are named id and have a value equal to 1. In abbreviated XPath, this are written
as @id = "1".

Elements are defined in SPath as predicates. The query Element("A") represents
a propositional function that is true for a node that has label "A". In SPath, attributes
are defined in a similar way to elements such that Attribute("id") represents a
propositional function that is true for a node n when n has an attribute named "id".
The Attribute class also defines the method:

def == : String => Query

that takes a string value and returns a predicate-query. For example, suppose

val id = Attribute("id")

then, by invoking the method == on id, using Scala’s infix notation as follows,

id == "1"

returns a predicate that is true for a node n when n has an attribute named id and
its value is equal to "1".

Elements and attributes can be combined. For example, the A elements that have
an id attribute with value "1" can be specified in SPath as A(id == "1"). This
is possible because the Element class extends Function[Predicate, Query] and
overrides its apply method, returning the conjunction of itself and its argument, i.e.
in this example, A and (id == "1"). Finally, Attribute has a method @@ that maps
a Node to its attribute value. For example, id @@ n returns "1" for the element node
val n = .

3.3 Translating absolute path expressions.

The syntax for XPath 2.0 in Section 2 has only relative path expressions, i.e. path
expressions that begin at the context node. The XPath specification includes absolute
path expressions, which start at the root of the document that contains the context
node. An absolute path expression in XPath begins with either / or //. SPath also
defines absolute path expressions by accessing the root node from any context node
within a document. This is done by using a conditional axis that follows the parent
axis from the context node until a node that does not possess a parent i.e. the root
node. This traversal from the context node to the root node is expressed in SPath by
the query

\\(parent, root)

where root is a predicate that matches the node without a parent. This query applies
the parent axis-function to the context node until reaching the root node. The
absolute XPath expressions //A and /A are thus coded in SPath as

\\(parent, root)\\A and \\(parent, root)\A

and are abbreviated by ∼\\(A) and ∼\(A), respectively.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

8 · Nicholas Nguyen

3.4 Translating the context position and size into SPath.

The syntax for XPath in Figure 1 allows a maximum of one predicate within an
AxisStep. This differs from XPath, which allows any number of predicates in the
form of [Predicate1]...[Predicaten]. Multiple predicates are particularly useful
when specifying the context position. For example, the XPath queries:

//A[B and position() = 3]
//A[B][position() = 3]

are distinguished with respect to the document:

<x>

</x>

The first query returns an empty result but the second query returns a singleton
node-set that contains the node . The translations of the two
XPath queries above, in SPath are:

\\(A)$nth(3)?(\(B))
\\(A?(\(B)))$nth(3)

The context function $nth returns an instance of the class AxisStep(f:axis), which is
a subclass of Query. The axis f evaluates the query that receives the method invocation
at the context node and applies a transformation to the resulting node-set. For example,
in the first query, $nth(3) returns an axis that evaluates \\(a) and creates a view
from the third item of the resulting node-set. Instances of AxisStep(f:axis) are
interpreted within the DSL for SPath, as the query \(f). In general, the user can define
a context function for any transformation on ordered node sets with the $context
method in the class Query:

$context(Iterable[Node] => Iterable[Node]) : AxisStep

SPath also defines the context functions $ltrim(n:Int) and $rtrim(n:Int), which
remove the specified number of nodes from the left and right of the context node-set.

Predicates over the context size can also be generated by the overloaded context
function:

$context(Int => Boolean) : Predicate

which takes a function as an argument that maps the size of the node-set to a Boolean
value. For example the context function $size is defined as follows:

$size(i:Int) = $context((s:Int) => s == i)

The following XPath query selects the A-node descendants that have exactly 3 B
children:

//A[count(B) = 3]

and is written in SPath as follows:

\\(A)?(\(B)$size(3)).

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 9

val department =
<department>

<students>
<student id="1" name="John"/>
<student id="2" name="Jill"/>

</students>
<courses>

<course id="1" tid="1" name="Object-Oriented Programming">
<students>

<student id="1"/>
<student id="2"/>

</students>
</course>
<course id="2" tid="2" name="Logic">

<students>
<student id="1"/>

</students>
</course>

</courses>
<tutors>

<tutor id="1" name="Jane"/>
<tutor id="2" name="Jake"/>

</tutors>
</department>

(a) Modeling a many-to-many relationship in XML for the domain department-of-education.

1 import xspath.XSPathLite
2 object ManyToManyRelationExample extends XSPathLite {
3 val student = Element("student")
4 val students = Element("students")
5 val courses = Element("courses")
6 val course = Element("course")
7 val tutor = Element("tutor")
8 val department = Element("department")
9 val tutors = Element("tutors")
10 val id = Attribute("id")
11 val tid = Attribute("tid")
12 val name = Attribute("name")
13 def courseAxis : axis = n => n.label match {
14 case student.label => $(n, ∼\\(courses)\course ?(\\(student(id == id @@ n))))
15 case tutor.label => $(n, ∼\\(courses)\course(tid == id @@ n))
16 case _ => empty
17 }
18 def tutorAxis : axis = n => n.label match {
19 case student.label => $(n, \(courseAxis)\tutorAxis)
20 case course.label => $(n, ∼\\(tutors)\tutor(id == tid @@ n))
21 case _ => empty
22 }
23 def studentAxis : axis = n => n.label match {
24 case tutor.label => $(n, \(courseAxis)\studentAxis)
25 case course.label =>
26 $(n, ∼\(students)\student(id on ∼\\(courses)\course(id == id @@ n)\\student))
27 case _ => empty
28 }
29 }

(b) A specialised query language for the domain department-of-education.

Figure 4

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

10 · Nicholas Nguyen

1 import xspath.XSPathLite
2 object EmployeesExample extends XSPathLite {
3 val employee = Element("employee")
4 val id = Attribute("id")
5 val mgrId = Attribute("mgrId")
6 val manager : axis = n => $(n, \(parent)\employee(id == mgrId @@ n))
7 val reports : axis = n => $(n, \(parent)\employee(mgrId == id @@ n))
8 def main(args: Array[String]) {
9 val company =
10 <company>
11 <department>
12 <employees>
13 <employee id="1" />
14 <employee id="2" mgrId="1" />
15 <employee id="3" mgrId="1" />
16 <employee id="4" mgrId="2" />
17 <employee id="5" mgrId="2" />
18 <employee id="6" mgrId="3" />
19 <employee id="7" mgrId="3" />
20 </employees>
21 </department>
22 </company>
23 val result1 = $(company, \\(employee(id == "7"))\\(manager, not(mgrId)))
24 println(result1 map id)
25 val result2 = $(company, \\(employee(id == "1"))\reports\\reports)
26 println(result2 map id)
27 }
28 }

Figure 5 – A specialised query language for the employee domain.

4 Examples.

This section presents two examples of SPath being used to query XML documents
in Scala. The examples are written from the perspective of a user of SPath. Both
of the examples make use of XML documents that contain attributes that reference
the attributes of other elements. This technique is used to reduce the size of XML
documents. For example, instead of duplicating an element everywhere it is needed
within the data, a reference to its unique identity can be put in place of the element.

Example 4.1 Querying a many-to-many relation in XML.

The XML document in Figure 4(a) shows data that models the relationship between
students, courses and tutors within a department of education.

A student can enroll on many courses, each course is taught by one tutor and
each tutor can teach many courses. In this example, the problem will be to retrieve
the implicit relationships from the document, of student-tutor and tutor-student.
Figure 4(b) shows the full code listing that extends XSPathLite and creates the
attribute, element and axis definitions that are domain-specific to the department-of-
education schema. The class XSPathLite is needed for querying Scala’s native XML
documents and was introduced in Section 3.

The first step is to define the boilerplate for elements and attributes of the document
on lines 3 to 12. These are required for writing queries in the axis definitions on lines
13 to 28. Next, the idea is to define the axes for the single-step relationships for

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 11

student-course, tutor-course and their inverses. The transitive relations, student-tutor
and tutor-student, can then be defined simply, in terms of the single-step relations.
First, the course-axis defines the courses of both a student and a tutor on lines 13 to
17. The tutor-axis can be defined in a similar way on lines 18 to 22, except that now,
the transitive relationship for the tutors of a student, is simply the composition of the
course-axis with the tutor-axis. The student-axis is defined for tutors and courses on
lines 23 to 28.

The students of a tutor is defined in a similar way, as the composition of the
course-axis with the student-axis, on line 24. The students of a course is defined as
the students that appear as listed on the course on line 26. A selected student must
join its id attribute with a student element beneath the required course. The join
is specified by using the on method of the id attribute. The on method returns a
predicate that is true for a student that has an entry under the course with a matching
id attribute.

The following queries can now use these axis-functions, to retrieve the transitive
relationships, of John’s tutors and Jane’s students, as follows:

$(department, \\(student(name == "John"))\tutorAxis)
$(department, \\(tutor(name == "Jane"))\studentAxis)

Example 4.2 Querying an employee-manager relationship.

This is example is based on [Kaya]. The organisation of employees within a
company is represented in XML as a tree using identity referencing instead of XML’s
natural tree structure. The XML document that is being queried in this example is
listed on lines 10 to 22, in the complete working example in Figure 5. The employee
element and its attributes are defined on lines 3 to 5. The manager axis on line 6
maps an employee to its manager and the reports axis maps a manager to its direct
reports, on line 7. The query on line 23 shows SPath’s until-like application of the
manager axis, which traverses the document until reaching a node without a mgrId
attribute, specified by not(mgrId). The second query on line 25 applies the closure
of the reports axis to the employee with id 1, yielding all the employees beneath
employee 1.

5 A foundation for SPath.

This sections reviews LTL and presents the formal language for SPath, which is based
on LTL. For a detailed account of LTL, the reader is referred to [JGP99].

An LTL formula is generated by the following grammar:

e ::= p | X e | e U e | e ∧ e | e ∨ e | ¬ e

An atomic proposition, p, is a function that maps each state in a model to a boolean
truth value:

p : States→ {true, false}

The connectives X and U refer to the future states and the connectives ∧, ∨ and ¬ are
classical logical-connectives for conjunction, disjunction and negation. The meaning
of these formulas is given by the satisfaction rules for LTL that determine when a
sequence of states, π, satisfies a formula, e. The satisfaction relation, π |= e, is defined
by induction on the structure of formulas. Sequences of states in States∗ are ranged

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

12 · Nicholas Nguyen

over by π and modeled as functions from natural numbers (including zero) to states.
The tail of π starting at the index i, is written πi and defined as πi(j) = π(i+ j). The
satisfaction relation for LTL, |=, is defined as follows:

π |= p iff p(π(0)) = true
π |= ¬ e iff π 6|= e
π |= e1 ∧ e2 iff π |= e1 and π |= e2

π |= e1 ∨ e2 iff π |= e1 or π |= e2

π |= X e iff π1 |= e
π |= e1 U e2 iff ∃i : πi |= e2 and ∀j, 0 ≤ j < i : πj |= e1

A proposition, p, is satisfied by the sequence of states, π, whenever p is true for
the first state in π. The rules for logical negation, conjunction and disjunction, define
the intuitive meaning of these connectives. The rule for X requires that e holds for
the subsequence, π1, that starts from the next state. The rule for U requires that e1

holds in zero or more states, from the current state, until a state in which e2 holds
immediately afterwards. The connectives X and U are suitably known as neXt and
Until.

The sequences, π, that form the model of an LTL system are typically generated
by a single binary relation, −→, over the set of states, States. This relation defines
the model from the initial state, π(0). However, in SPath, the states are nodes of the
document-tree and the model may use any number of relations over document-tree
nodes in order to generate sequences, π, which form the LTL model. In particular, it
is natural to annotate the two formulas that can refer to the future, X and U, with
a relation that determines how to generate the next state in the sequence of states.
This is how SPath is defined next.

The syntax of SPath formulas, e, is defined as follows:

e ∈ Expr ::= p | Xχ e | e Uχ e | e ∨ e | e ∧ e

p : TreeNodes→ {true, false}
χ : TreeNodes→ P(TreeNodes)

The syntax assumes two sets of countably infinite identifiers for propositional
functions (ranged over by p) and axis-identifiers (ranged over by χ). An SPath
formula, e, is a negation-free3 LTL formula with alterations to both of the standard
LTL connectives that refer to the future, X and U. These formulas are annotated by
axis-identifiers, ranged over by χ, each defining an axis-function. In SPath, an axis is
modeled as a function from tree-nodes to sets of tree-nodes. The rules that determine
when a sequence of tree-nodes satisfies an SPath formula are the standard LTL rules
with additional constraints on the rules for the logical connectives X and U, as follows:

π |= Xχ e iff π(1) ∈ χ(π(0)) and π1 |= e
π |= e1 Uχ e2 iff ∃i : πi |= e2 and ∀j, 0 ≤ j < i : πj |= e1 and π(j + 1) ∈ χ(π(j))

The rule for Xχ e requires that the second tree-node of π, π(1), follows its predecessor,
π(0), along the axis χ. The rule for e1 Uχ e2 has a similar requirement for all positions
that satisfy e1.

A consequence of the language defined this far is that conflicts can occur between
several axis-functions on a single sequence of tree-nodes, π, during the application of
the satisfaction rules. For example, in the following formula, the rules require both of

3Negative queries are recovered in the Scala DSL for SPath in Section 7.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 13

SPath(p) = true
SPath(e1 ∨ e2) = SPath(e1) & SPath(e2)
SPath(e1 ∧ e2) = (SPath(e1) & Axes(e2) = ∅) or (SPath(e2) & Axes(e1) = ∅)

SPath(Xχ e) = SPath(e)
SPath(e1 Uχ e2) = SPath(e2) & Axes(e1) = ∅

Axes(p) = ∅
Axes(e1 ∨ e2) = Axes(e1) ∪ Axes(e2)
Axes(e1 ∧ e2) = Axes(e1) ∪ Axes(e2)

Axes(Xχ e) = {χ} ∪ Axes(e)
Axes(e1 Uχ e2) = {χ} ∪ Axes(e1) ∪ Axes(e2)

Figure 6 – SPath formulas without branching conflicts.

the axes χ and χ′ to agree on the next tree-node in π from the current state:

Xχ e1 ∧ Xχ′ e2

A similar conflict can occur with the formula, e1 Uχ e2, between the axis χ and the
axes occurring in e1. These conflicts are avoided by considering only the formulas for
which conflicts cannot occur. A formula, e, is conflict-free whenever SPath(e) = true.
The function SPath maps formulas, e, to {true, false} and is defined in Figure 6.

SPath places constraints on the two problem cases for ∧ and Uχ by restricting the
occurrences of axes, using an auxiliary function called Axes. This function returns the
set of axis-identifiers occurring within an SPath formula. It is now possible to define
the query-evaluation algorithm, in the following section, for conflict-free formulas with
the guarantee that only one axis is applicable in each state.

Figure 7 shows an extension of Expr, called SugaredExpr, which adds location steps
to SPath. A translation from SugaredExpr to SPath expressions, Expr, is defined by
the function [[•]]. The crux of the translation rests on the insertion function, insert.
Here, insert(e1, e2) inserts e1 into e2’s rightmost, innermost position beneath
the temporal operators X and U. The top-down translation of sugared expressions is
necessary for constructing de-sugared SPath expressions in the fluent-interface pattern
in Section 7. Applying the translation to the sugared SPath query

(\(χ1, A)\\(χ2, B))\(χ3, C)

yields the de-sugared SPath expression:

Xχ1
(A ∧ (∗ Uχ2

(B ∧ Xχ3
C)))

6 Query evaluation in SPath.

SPath makes direct use of the automaton construction algorithm of [GPV+95] to
evaluate queries. The full construction algorithm that is used in SPath is presented
in Appendix B. The number of states in the automaton construction, A, for a query
e is written |A| and is O(2|e|) where |e| is the size of e [GPV+95]. The exponential
growth of automaton states is caused by splitting states with the formulas e U e’
or e ∨ e’. For example, the following queries generate automata with a number of
states that is exponential in k:

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

14 · Nicholas Nguyen

s ∈ SugaredExpr ::= Expr
| \(χ, s)
| \\(χ, s)
| s \(χ, s)
| s \\(χ, s)

[[•]] : SugaredExpr −→ Expr
[[\(χ, s)]] = Xχ[[s]]

[[\\(χ, s)]] = ∗ Uχ [[s]] where ∗ = n => true
[[s1 \(χ, s2)]] = insert (Xχ [[s2]], [[s1]])

[[s1 \\(χ, s2)]] = insert (∗ Uχ [[s2]], [[s1]])
[[e]] = e

insert : Expr × Expr −→ Expr
insert (e, p) = p ∧ e

insert (e, Xχe1) = Xχ insert (e, e1)
insert (e, e1 Uχ e2) = e1 Uχ insert (e, e2)
insert (e, e1 ∧ e2) = e1 ∧ insert (e, e2)
insert (e, e1 ∨ e2) = insert (e, e1) ∨ insert (e, e2)

Figure 7 – Syntactic sugar for location path steps

(e1 U e1’) ∧ . . .∧ (ek U ek’)

(e1 ∨ e1’) ∧ . . .∧ (ek ∨ ek’)

However, the first form of query is excluded from SPath. The second form of query
generates a state for each truth assignment that satisfies the query. The second form
of query is allowed by SPath. An advantage of using the automaton construction
algorithm of [GPV+95], in SPath, is that it provides a natural solution for implementing
the evaluation of conditional axes [Mar04b]. For example, the conditional axis, e Uχ
e’, applies χ repeatedly until e’. Furthermore, query evaluation by an explicit-state
enumeration enables caching of visited states, thereby terminating on queries such as
\\(self) 4.

Query evaluation in SPath constructs the product-automaton A×D, on-demand.
The complexity of model checking for LTL is proportional to the size of the product
automaton and in the worst case, takes time O(|D| × 2|e|) [GPV+95, LP85] where |D|
is the size of the document D. Useful queries typically generate small automata so the
exponential blow-up of the number of states of the automaton construction for a query
is in practice not as severe as the worst-case. A state within the product-automaton is
a pair, (q, n), consisting of an automaton-state q of A and a node n of the document.
In SPath, π is a finite path of tree-nodes, so the accepting condition of the automata
A is not the Büchi acceptance condition for infinite runs [Hol03]. For SPath, the
accepting states of the automaton are all of the states, q, which have q.next = ∅,
i.e. no formulas hold in the successors of q. These states are guaranteed to exist by
Proposition 6.1.

4 Another example is the evaluation of the query \\(χ) on the document <A> where
val χ = n => if n.label == "A" $(n, \(B)) else $(n, \(parent, A)).

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 15

1 def evaluate(map: Map[Node, Iterable[T]],
result: ListBuffer[T], cache: Cache): Iterable[T] = {

2 if (map.keys.size == 0)
3 return distinct(result)
4 val newMap = HashMap[Node, Iterable[T]]()
5 for ((q,ns) <- map.iterator) {
6 if (q.isFinalNode)
7 result ++= ns
8 else {
9 val ns2 = distinct(ns flatMap q.uniqueAxis)
10 for (q2 <- q.outgoing) {
11 val ns3 = ns2 filter(o => !cache.seen(q2, o) && q2.isSatisfiedBy(o))
12 if (ns3.size > 0) {
13 newMap += q2 -> ns3
14 cache remember(q2, ns3)
15 }
16 }
17 }
18 }
19 evaluate(newMap, result, cache)
20 }

Figure 8 – A standard breadth-first search for the evaluation of SPath queries.

Proposition 6.1 For any SPath formula e, there exists a state q in the automaton
construction for e such that q.next = ∅.

By Proposition 6.2, each state, q, in the automaton construction determines a unique
axis from the future-time subformulas in q.old - i.e. the subformulas that hold at
the state q. The unique axis is used to generate the next document-tree nodes for the
generation of A×D.

Proposition 6.2 For any formula e, if SPath(e) then |Θ(q)| ≤ 1 and |q.next| ≤ 1
for every state q in the automaton construction for e where

Θ(q) = {Xχe | Xχ e ∈ q.old } ∪
{e1 Uχ e2 | e1 Uχ e2 ∈ q.old & e2 /∈ q.old}

Definition 6.3 An automaton construction A accepts π on the run q0. . .qk when
qk.next = ∅; and for k ≥ i ≥ 0, p ∈ qi.old: p(π(i)) = true; and for k > i ≥ 0:
π(i+ 1) ∈ χ(π(i)) where χ is the unique axis in qi.

Corollary 6.4 follows from the correctness proof of [GPV+95].

Corollary 6.4 The automaton A, constructed for the SPath query e, accepts exactly
the same finite sequences of tree-nodes that satisfy e.

The product-automaton is constructed in SPath using a standard breadth-first
search algorithm, which is shown in Figure 8. A state of the automaton, A, is
represented by the class Node, which has the following methods:

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

16 · Nicholas Nguyen

isFinalNode : Boolean
uniqueAxis : axis
outgoing : Iterable[Node]
isSatisfiedBy(o : T) : Boolean

The method q.isFinalNode is true when the node q is an accepting state of
the automaton according to Proposition 6.1. The method uniqueAxis returns the
unique axis of the node according to Proposition 6.2. These methods run in constant
time. The method q.outgoing returns a collection of automaton nodes such that if
q2 ∈ q.outgoing then q −→ q2 is an edge in the automaton A. The expression
q.isSatisfiedBy(o) is true when the document node o satisfies all of the propositions
in q.old, according to Definition 6.3.

The method distinct(it: Traversable[T]): Iterable[T] returns a new col-
lection containing unique document nodes from the argument, it. SPath determines
unique document nodes by wrapping a node o:T in an instance of IdentityWrapper(o),
which overrides equals based on reference equality in Scala, o eq o’; and overrides
hashCode using java.lang.System.identityHashCode.

The evaluation algorithm also makes use of a cache for storing visited states of the
product automaton. The class Cache has two methods,

seen(q: Node, o : T) : Boolean
remember(q:Node, it : Iterable[T])

The method seen(q, o) is true when the cache contains the state of the product
automaton, (q, IdentityWrapper(o)) and runs in constant time. The method
remember(q, ns) stores the states (q, IdentityWrapper(o)) for all o ∈ ns, into
the cache and runs in O(ns.size) time.

The tail-recursive function evaluate, is parameterised by the abstract type, T,
which is the type of the tree-nodes. This function has three arguments. The first
argument is a map from states of the automaton to sets of tree-nodes, representing
the frontier of the search of A×D i.e if (q, ns) ∈ map and n ∈ ns then (q, n) ∈
A×D. The second argument is a result-set of tree-nodes. The third argument is a
cache of visited states of A×D. The function terminates on line 3 when the map is
empty and the recursive call is on line 19. The idea behind the algorithm is to advance
the frontier of the search by one step within one call of evaluate. Each state in the
map is advanced by one step on lines 8 to 17. If the state of the automaton, q, is an
accepting state then its tree-nodes are added to the result-set on line 7. Otherwise the
unique axis-function is applied to the state’s document-nodes, ns, on line 9. The set
of document-nodes that is obtained from applying the axis-function, are then matched
against each automaton-state, q2, on an outgoing edge from the current state q, on
line 11. The new states of the product-automaton are created on line 13. The cache
prevents each state being visited more than once along the depth of the search, on
lines 11 and 14. The selection of distinct states on line 9 prevents each state from
being visited more than once, along the breadth of the search.

The worst-case running-time of query evaluation in SPath needs to take into
account higher-order axis and propositional functions i.e. functions that evaluate
queries. These kinds of propositions and axes were not represented in the formal
syntax of SPath but they occur frequently in the examples.

Informally, the degree of an SPath query, axis or propositional function is the
number of calls to evaluate that can occur on the function-call stack during the
evaluation of the query, axis or propositional function. To make this definition precise,

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 17

axes and propositional functions will now be modeled to represent the nesting of query
evaluation in SPath.

A statement S represents a code block in the host language Scala. A statement
consists of a code block b, which does not evaluate a query; an evaluation of a query
e at the tree-node o, $(o, e); or the sequential composition of statements, S;S’.
Propositional and axis-functions are now represented by a pair, consisting of an object
variable o and a statement S:

p, χ ∈ UserFunctions ::= o => S
S ∈ Statements ::= b | $(o, e) | S;S

The queries occurring in a block of Scala code is defined by the function Queries as
follows:

Queries (b) = ∅
Queries ($(o, e)) = {e}

Queries (S;S’) = Queries(S) ∪ Queries(S’)

These definitions assume that the number of calls to $ at runtime in a code block S is
statically determined by the size of S.

Definition 6.5 The degree of a query, axis or propositional function is written Φ(e),
Φ(χ) and Φ(p) respectively and defined as:

Φ(o => S) = 0 Queries(S) = ∅
Φ(o => S) = Max {Φ(e) | e ∈ Queries(S) } Queries(S) 6= ∅

Φ(e) = 1 + Max {Φ(o => S) | o => S ∈ UF(e)}

where UF(e) are the user functions occurring directly in e:

UF (p) = {p}
UF (Xχ e) = {χ} ∪ UF(e)

UF (e ∨ e’) = UF (e) ∪ UF (e’)
UF (e ∧ e’) = UF (e) ∪ UF (e’)
UF (e Uχ e’) = {χ} ∪ UF(e) ∪ UF(e’)

Definition 6.6 The size of a query expression e and a statement S is defined by |e|
and |S| respectively, as follows:

Xχ e	=	χ	+	e		
e Uχ e’	=	χ	+	e	+	e’
e ∨ e’	=	e	+	e’		
e ∧ e’	=	e	+	e’		
o => S	= 1 +	S				

|b| = 0
|$(o, e)| = |e|
|S; S’| = |S|+ |S’|

Proposition 6.7 The worst-case running-time of query evaluation in SPath is

O((2|e| × |D|)3 × |e|2)Φ(e)

Proposition 6.8 The worst-case space complexity of query evaluation in SPath is

O(2|e| × |D|2 × φ(e))

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

18 · Nicholas Nguyen

Figure 9 – Running times of evaluating SPath queries based on the XPathMark perfor-
mance test. The queries ran on an AMD Phenom 9650 Quad-Core Processor 2.30 GHz.
8.00 GB Memory(RAM)

6.1 Experiments.

SPath has been tested on 35 practical queries, which are based on a subset of the
XPathMark performance test [Fra07]. The XPathMark performance test has 6 sets
of queries, A to F. Sets A to E consist of XPath queries and set F contains XQuery
programs that compute closures with user-defined functions. Set F has been im-
plemented in SPath with conditional axes. The domain of the test is an auction
website [SWK+02]. The main entities within the domain model are open auctions,
bids, persons, regions, categories and items. The document was created by the XMark
data generation tool [xma] with a scale factor of 0.02. The document size is 2.37 MB,
containing 95,392 nodes and 7,384 attributes. The evaluation times of the queries
are shown in Figure 9. The evaluation times show that SPath is usable on practical
queries and that the exponential growth of SPath’s search space has been contained.
The queries of the XPathMark performance test consist mostly of linear paths, which
do not generate exponentially sized automata in SPath.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 19

(a) (b)

(c) (d)

Figure 10 – Running times of evaluating SPath queries (a), (b) and a comparison between
SPath and scala.xml (c) and (d).

A separate experiment was done to show how query-evaluation scales in SPath,
with a comparison to Scala’s XML API. The first kind of queries to be evaluated are
based on [GKP02], which were shown to cause exponential growth in earlier XPath
engines. The SPath version of the queries are formed of a basic query that makes two
steps, first to the children and then back up to the parents, as follows

\(∗)\(parent, ∗)

The basic query is repeated i times:

\(∗)\(parent, ∗) . . . \(∗)\(parent, ∗)︸ ︷︷ ︸
i×

and is evaluated on the simple document:

<A>

The running time of this query is shown in Figure 10(a), and scales better in the size
of the query than naive evaluation, which results in exponential growth [GKP02]. This

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

20 · Nicholas Nguyen

query is similar to the queries B11 to B15 of the XPathMark performance test, which
also repeat 2 location steps i number of times. These examples may seem contrived
but they do make a practical point.

The apparent cause of the exponential growth of the naive algorithm is that it
allows duplicate intermediate results during evaluation. Consider the following natural
language query on the XMark domain model: the names of categories that have an
item being sold in an auction that someone is watching. This query may be written in
XPath as :

/site/people/person/watches/watch/id(open_auction)/itemref/id(item)/incategory/
↪→ id(category)/name

and in SPath as:

site\people\person\watches\watch\watch\$id(open_auction)\itemref\$id(item)\incategory\
↪→ $id(category)\name

Suppose that the naive algorithm evaluates this query on a document that contains
10 people who are all watching the same 10 auctions and each auction sells an item
that belongs to each of the same 10 categories. The resulting node set of categories
would contain 103 nodes that are duplicates of a single category. The final result
set therefore contains a single name. In this query, each intermediate result after a
location step really contains a single node, which can be obtained by selecting distinct
intermediate nodes, as in line 9 of SPath’s evaluation algorithm in Figure 8. Without
distinct on line 9, SPath would perform like the naive algorithm.

The second kind of SPath queries that are evaluated in Figure 10(b) shows that
query-evaluation scales exponentially in the degree of the query. The query being
evaluated is \(xi), where the axis xi is defined as follows:

x0 = n => $(n, \\(∗))
xi+1 = n => $(n, \(xi)\(xi))

The queries were evaluated on a document containing 9 element nodes.
Neither of the first two queries have a direct equivalent in Scala’s XML API and

so it is not possible to create a comparison.
The third query, evaluated in Figure 10(c), can be written in both SPath and

scala.xml and is the following in scala.xml:

doc \\‘_’ . . . \\‘_’︸ ︷︷ ︸
i×

and in SPath:

$(doc, \\(∗) . . . \\(∗)︸ ︷︷ ︸
i×

)

Both queries apply the descendant-or-self axis i times, beginning at the node
doc - the root of an XML document containing 9 element nodes. The size of the
result-set of the scala.xml query increases with i but the result-set of the SPath
query is constantly of size 9, as i increases.

The fourth and final query evaluated in Figure 10(d) is doc \\"A" in scala.xml
and \\(A) in SPath for the element A. These queries were both evaluated on an XML
document representing a full binary tree of height i, in which each A element that is a
parent has 2 children elements labeled A. The running times scale with the document
size 2i, although SPath rises sooner than scala.xml.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 21

7 An embedded DSL for SPath in Scala.

This section explains the embedded DSL in terms of its implementation and charac-
teristics that are shared with typical internal DSL implementations, such as those
described in [Fow10]. In particular, SPath has been implemented with the fluent
interface and expression-builder patterns. These patterns have been coined by Martin
Fowler to describe common techniques for implementing embedded DSLs. SPath’s
embedded DSL benefits from Scala’s syntax and language features, such as closures,
infix notation, symbolic identifiers, traits, mixin composition, objects-as-functions,
implicit conversions and native XML support.

Figure 11 shows a partial code-listing of the trait QueryExpression, which imple-
ments the SPath expressions Expr and SugaredExpr. Lines 8 to 34 implement Expr
as case classes of the class Query. The inner class Query implements the insertion
function, from Figure 7, on lines 12 to 19. The two expression from SugaredExpr,
s\\(χ, s’) and s\(χ, s’), are implemented as methods of the class Query, on lines
20 and 21. The remaining two expressions, \\(χ, s) and \(χ, s), are implemented
at the top level, on lines 36 and 37.

The SPath operator \->, defined on lines 27 and 42, is like an iterator for SPath.
The expression \->(f, e) matches the next document nodes along the axis f that
satisfy e.

The trait QueryExpression implements a variant of the fluent-interface pattern of
[Fow10]. A fluent interface typically breaks the command-query design principle of
[Mey88]. In this principle, only command methods may change the abstract state of
objects, whereas query methods have no side-effects on abstract state. An abstract
state refers to the observable state of an object, through its interface. However, in
a typical fluent interface, each method returns the receiving object (a query) and
changes its abstract state (a command). In SPath, each method of the fluent interface,
builds and returns a new Query, which contains the current receiving object of the
method call. The newly created Query object is then used for building even larger
expressions. In this way, SPath chains method calls for building query expressions.

The expression-builder pattern, as described in [Fow10] sometimes separates the
methods of the fluent interface, from the model, by using a builder class that wraps
the model. In SPath however, the builder methods are defined directly in the Query
class. This does not mix command-query and fluent interfaces because the execution
code for the model i.e. the query evaluator, is defined in the trait LtlAlgorithm,
which is described below.

In [GKP02, Mar04a, CDGLV09], the core axes of XPath are defined in terms of
a minimal set of relations on tree nodes, e.g. the axes can be defined in terms of
right-sibling and child. Here right-sibling returns a single node that is the
immediate sibling to the right of the context node. This axis does not exist in XPath
but enables a simple definition of XPath’s core axes. Figure 12 shows the core axes
defined as regular expressions over XPath expressions, assuming the axes self, child
and right-sibling. SPath’s implementation of XPath’s core axes is based on the
definitions in Figure 12.

Figure 13 shows a partial code-listing of the trait SPath. The trait SPath is an
abstract class that cannot be directly instantiated. The core axes are defined as SPath
queries on lines 10 to 17. These definitions depend only on the abstract methods,
parent and children on lines 2 to 3. The implementations of parent and children
depend on the particular API for the document-trees. The type of the nodes of the
document-trees are parameterised by the parametric type T in all of SPath’s abstract

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

22 · Nicholas Nguyen

1 trait QueryExpression[T] {
2 type axis = T => Iterable[T]
3 type predicate = T => Boolean
4 def ∗= Predicate(_ => true)
5 def defaultAxis: axis
6 def not : Query => Query
7 def exists : Query => Query
8 class Query {
9 def and(e: Query) = And(this, e)
10 def or(e: Query) = Or(this, e)
11 def U(f: axis, e: Query) = Until(f, this, e)
12 def insert(e : Query) : Query =
13 this match {
14 case And(e1, e2) => And(e1, e2 insert e)
15 case Or(e1, e2) => Or(e1 insert e, e2 insert e)
16 case Until(f2, e1, e2) => Until(f2, e1, e2 insert (e))
17 case X(f1, e1) => X(f1, e1 insert (e))
18 case _ => this and e
19 }
20 def \\(f: axis, e: Query) : Query = this insert(∗U (f, e))
21 def \(f: axis, e: Query) : Query = this insert(X (f, e))
22 def \\(f : axis) : Query = \\(f, ∗)
23 def \(f : axis) : Query = \(f, ∗)
24 def \\(e : Query) : Query = \\(defaultAxis, e)
25 def \(e : Query) : Query = \(defaultAxis, e)
26 def ?(e : Query) : Query = this insert exists(e)
27 def \->(f : axis, e : Query) = this insert X(f, not(e) U (f, e))
28 }
29 case class Predicate(p: T => Boolean) extends Query {
30 def evaluate(n : T) = p(n)
31 }
32 case class And(val l: Query, val r: Query) extends Query
33 case class Or(val l: Query, val r: Query) extends Query
34 case class Until(f: axis, val l: Query, val r: Query) extends Query
35 case class X(f: axis, val next: Query) extends Query
36 def \\(f: axis, e: Query): Query = ∗U (f, e)
37 def \(f: axis, e: Query): Query = X(f, e)
38 def \\(f: axis): Query = \\(f, ∗)
39 def \(f: axis): Query = \(f, ∗)
40 def \(e: Query): Query = \(defaultAxis, e)
41 def \\(e: Query): Query = \\(defaultAxis, e)
42 def \->(f : axis, e : Query) = X(f, not(e) U (f, e))
43 }

Figure 11 – The representation of SPath queries in Scala.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 23

self
child
right-sibling
parent = child−1

left-sibling = right-sibling−1

descendant = child::∗(/child::∗)∗
descendant-or-self = self::∗(/child::∗)∗
ancestor = parent::∗(/parent::∗)∗
ancestor-or-self = self::∗(/parent::∗)∗
following-sibling = right-sibling::∗(/right-sibling::∗)∗
preceding-sibling = left-sibling::∗(/left-sibling::∗)∗
following = (/parent::∗)∗(/right-sibling::∗)+ (/child::∗)∗
preceding = (/parent::∗)∗(/left-sibling::∗)+ (/child::∗)∗

Figure 12 – The core axes of XPath, defined in terms of regular expressions over XPath
queries, assuming the primitive axes self, child and right-sibling.

classes e.g. QueryExpression, SPath and LTLAlgorithm.
A user of the trait SPath therefore needs to do three things: instantiate the

parametric type T for the chosen document-tree and implement the abstract methods
parent and children. This usage pattern is covered in more detail in Section 7.2.

The evaluation function $, defined on lines 22 to 32, first checks that the query is
free from branching conflicts, according to Figure 6. It then constructs the automaton
for e by calling the function buildAutomaton, defined in LtlAlgorithm, but not listed
in this article. The evaluation function $ returns a function that maps a tree-node to
the result-set of the query. The result-set is sorted by document order on line 29 when
the evaluation is not nested inside another evaluation i.e. when the counter, depth,
reaches zero.

The syntax for SPath in Section 5 does not include negative queries. Therefore,
negation is introduced into the embedded DSL on line 33 of the trait SPath by the
function, not. This function takes a query and returns a Predicate that is true when
the result of evaluating the query is empty. The function, exists on line 34 is defined
in a similar way, but is true when the result is not empty. The function ? of class
Query, is SPath’s analog of XPath’s predicate, and is defined in terms of exists, on
line 26 of Figure 11.

7.1 Extending SPath’s fluent interface.
Adding new methods to the Query class is possible by using Scala’s implicit conversions.
For example, a new operation, \\+, which is syntactic sugar for one-or-more steps
along the child-axis is defined in a new class EnhancedQuery:

class EnhancedQuery(q:Query) {
def \\+ (q2 : Query) = q\(child)\\(child, q2)

}

An implicit conversion from Query to EnhancedQuery is defined as follows:

implicit def enhancedQuery(q:Query) = new EnhancedQuery(q)

An SPath query can now be written with the new operation: \(A)\\+ B

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

24 · Nicholas Nguyen

1 trait SPath[T <: AnyRef]
extends QueryExpression[T] with LltAlgorithm[T] {

2 def parent: axis
3 def children: T => IndexedSeq[T]
4 override def defaultAxis = children
5 def ?(p: predicate) = Predicate(p)
6 val leftSibling : axis = n => sibling(position(n) - 1)(n)
7 val rightSibling : axis = n => sibling(position(n) + 1)(n)
8 val self : axis = n => List(n)
9 val child = children
10 val descendant = $(\(child)\\child)
11 val descendantOrSelf = $(\\(child))
12 val ancestor = $(\(parent)\\parent)
13 val ancestorOrSelf = $(\\(parent))
14 val followingSibling = $(\(rightSibling)\\rightSibling)
15 val precedingSibling = $(\(leftSibling)\\leftSibling)
16 val following = $(\\(parent)\rightSibling\\rightSibling\\child)
17 val preceding = $(\\(parent)\leftSibling\\leftSibling\\child)
18 def root : Predicate = ?(n => parent(n).size == 0)
19 def ∼\\ (e : Query)= \\(parent, root)\\e
20 def ∼\ (e : Query)= \\(parent, root)\e
21 def $(n : T, e: Query) : Iterable[T] = $(e)(n)
22 def $(e: Query) : T => Iterable[T] = {
23 if (!SPath(e))
24 throw new Exception("SPath expression contains branching conflicts.")
25 val q = buildAutomaton(e)
26 (o:T) => {
27 val r = q(o);
28 if (depth == 0)
29 documentOrder(r, o)
30 else r
31 }
32 }
33 override def not = (e : Query) => ?(n => $(n, e).size == 0)
34 override def exists = (e : Query) => ?(n => $(n, e).size > 0)
35 }

Figure 13 – Partial listing of trait SPath.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 25

7.2 Instantiating SPath with concrete documents.

SPath uses the template pattern [GHJV95] and Scala’s parametric polymorphism to
enable SPath to be reused with any kind of sibling-ordered, tree data-structure. The
abstract class SPath must therefore be extended before querying specific types of trees.
SPath is concretised by instantiating its parametric type T with the type of nodes of a
specific document API, and implementing both of its abstract methods, children and
parent. The implementation of these abstract methods require the API’s tree-nodes
to have pointers to their children and parent nodes. Concrete extensions of SPath are
immediately ready for querying the selected type of documents.

However, to enable SPath to be used with tree data-structures without pointers
to parent nodes, a further abstract extension to SPath has been created. This
abstract extension of SPath is called SPathLite, because it is lighter in terms of its
dependencies on abstract methods that need to be overridden by users. A concrete
extension of SPathLite needs only to override the abstract children method of SPath
and instantiate the parametric type T. SPathLite has its own implementation of the
parent method.

SPathLite does some book keeping to generate the parent relation. The missing
parent-relation can be generated completely before evaluation or on-the-fly during
the evaluation. The latter is possible since when evaluation starts at the root of the
document, every evaluation-step along the parent-axis from a node n, is preceded by a
step along the child-axis from n’s parent to n or one of n’s siblings. SPathLite counts
the number of evaluations on the stack and clears the parent-relation when the depth
counter reaches zero.

The instantiation of SPathLite on scala.xml.Node has been named XSPathLite.
This extension is used in all of the queries in this article. SPath has also been success-
fully instantiated on org.w3c.dom.Node and java.awt.Component. The XSPathLite
extension of SPath has an implementation of the XPath function id. The XPath
function call id(QName) returns the element node of the document that has its id
attribute value equal to the value of the context node’s attribute, QName. XSPathLite
indexes each element node by its id attribute. The SPath function $id(a:Attribute)
creates an axis that maps the context node to the referenced node by retrieving it
from the index in constant time. Examples of $id appear in Appendix A.

8 Conclusion and related work.

Modal and temporal logic has been widely used as a foundation for query-languages on
semi-structured data [Mar04b, BJ07, Mar04a, CG04]. LTL in particular, is expressively
equivalent to first-order logic over linear sequences [GPSS80]. Automata-theoretic
model checking algorithms [GPV+95, Var07] for LTL are readily available for imple-
menting simple query-evaluation with the prospect of a worst-case running-time that is
O(|D|×2|φ|) where |φ| is the size of the query and |D| the size of the document-tree. It
has been straightforward to implement query evaluation in SPath, by an explicit-state
enumeration that is instrumented with SPath’s user-defined axis-functions. Linear-
time query evaluation for Regular XPath [CDGLV09] uses alternating tree-automata.
SPath could also benefit from this algorithm but its application would not improve on
the exponential-time evaluation with user-defined axes in SPath.

The conditional axes of Core XPath [Mar04b] allow transitive closures over single,
atomic axis-relations but disallows transitive closure of sequential compositions of

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

26 · Nicholas Nguyen

axis-relations, which is also not expressible in χuntil. Consequently, queries such as
selecting the nodes that are an odd number of steps away from the context-node,
cannot be expressed in Core XPath. In [Mar04b], Core XPath is shown to be equal in
expressiveness to χuntil, a temporal logic with branching-time reasoning. The χuntil
formula π(φ, ψ) is satisfied whenever there exists a path along the transitive closure of
the primitive axis π, on which ψ holds until φ. Although the formal language SPath is
based on LTL and can reason about a single order of time, it is possible for branching-
time reasoning to be expressed in the Scala DSL for SPath using propositional functions
that evaluate queries. For example, the predicate not(exists(\(not(A)))) is true
at a node n when all of n’s children are A nodes.

TQL [CG04] is a query-language for semi-structured data that is based on the modal
logic for the ambient calculus. The Until formula of LTL, a U b, can be expressed in
TQL as the recursive formula rec $x. a.$x Or b. For example, selecting the nodes
that are an even number of steps away from the context-node can be written in TQL
using a query comprehension:

from $doc |= rec $x. .%.$a.$x Or 0
select $a

which returns the set of all the bindings to $a for the required nodes. However, it
is not straightforward to express the query from Example 4.2 in TQL. A employee’s
manager can be selected using a nested query comprehension, with a variable bound to
the mgrId attribute, but TQL’s syntax does not allow recursive query comprehensions,
which is what this query seems to require in TQL. SPath, in contrast, uses variable
bindings of the host language, Scala, to define the relations between the attributes of
nodes. For example, the following query from Example 4.2,

$(company, \\(employee(id == "1"))\reports\\reports)

bootstraps the host language and the Until operator applies the recursion along
the reports axis, as needed.

The Scrap Your Boilerplate (SYB) pattern [LJ03, L0̈7] for Haskell alleviates
programmers from writing the boilerplate-code associated with writing queries on tree
data-structures. The SYB framework relies on rank-2 polymorphism for traversal over
tree-nodes and provides a variety of combinators for rich traversal strategies. SYB
is more general than SPath in this respect, as different queries may require different
traversal combinators e.g. top-down, bottom-up and partial traversals. In contrast,
users of SPath write declarative queries in an XPath-like syntax and the framework
applies a general search algorithm that can be fine tuned with optimisations.

XQuery 1.0 [W3Cd] incorporates XPath 2.0 featuring function calls as location-path
steps. For example, the user-defined function f may be applied to the context-node
in the path expression /A/B/f(.)/C. When combined with the abbreviated syntax of
XPath 2.0, the expression B//f(.) is effectively expanded to

B/descendant-or-self::node()/f(.).

However, the function call f(.) is applied only once, along the depth of the axis,
compared to an SPath axis as a location-path step, \\(f), which applies f many times.
The implementation of the query from Example 4.2, in XQuery, requires boilerplate
for tree-traversal and cycle-detection to ensure termination such as in [Kaya]. SPath
terminates on cyclic evaluation-paths.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 27

The symbol /, which separates location steps, can be interpreted as a function that
has a type that is similar to the bind function in the list monad of Haskell [Wad92].
The type of / could be interpreted as:

/ : seq a => (a => seq b) => seq b

That is, / takes a sequence of nodes, of type seq a, with each node of type a and a
function that maps values of type a to a sequence of nodes in which each node has
type b. The map is applied to all nodes of type a and the result is the flattening
of the many sequences of nodes of type b into one sequence of nodes of type b. An
implementation of / could be formulated as:

as / f = as.flatMap(f)

In this interpretation of XPath queries, query-evaluation is based on chaining
together a series of function applications. Each function may be either a predefined
axis of XPath or any user-defined function on tree-nodes. Both C# and Scala allow a
functional style for the evaluation of XPath queries. In each case, user-defined functions
within a location step can be emulated through language-specific embeddings, using
either extension methods of C# 3.5 or Scala’s implicit conversions.

Scala’s API for XML implements a subset of XPath for navigating XML documents.
In particular, the class scala.xml.Node has methods for the child and descendant
axes. The parent-axis is absent because nodes do not contain links back to their parent
nodes. The reason for this is most likely due to performance. For example when a
node is shared between documents, the subtree rooted at the shared node does not
need to be copied in memory.

Cω [BMS05] features a special dot-operator for generalised member-access. In
particular, the primitive operator ... for transitive member-access is analogous to
the descendant-or-self axis of XPath. The transitive member-access operator can
also be combined with filter expressions allowing downward queries directly on object
graphs. However, primitive axis-operators preclude the opportunity for extending
the axis-relations in a consistent way without extending the language design. Cω’s
apply-to-all expression resembles XPath’s syntax for location-path steps, enabling new
axis-relations to be defined through extension methods.

LINQ-to-XML and Cω both share a similar semantics for location-path steps with
XPath 2.0. Cω’s streams are always flattened-out and the generalised dot-operator,
when applied to a stream, applies the method-call or code-block to all elements in the
stream.

The XPath 2.0 syntax for function calls within location-path steps could be more
more closely aligned with the syntax of the core axes of XPath 1.0 [Kayb, Jel]. However,
conditional axes could also be included in XPath by using a new syntax similar to
Core XPath [Mar04b, Mar04a], rather than altering the current semantics of //f(.).

9 Further work.

Future work on SPath includes optimising its performance in terms of execution time
and memory usage. Query rewriting, based on semantic equivalence could reduce
the size of queries, thereby reducing the size of automata. The evaluation algorithm
stores each processed state of the product automaton in a cache but only the states
that are reachable from the frontier of the search need to be retained. SPath’s
core axes are implemented as SPath axes, but they could be replaced with more

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

28 · Nicholas Nguyen

efficient implementations. For example, the axes following and preceding can be
implemented simply, with Scala’s non-strict views of an indexed sequence that stores
all the nodes in document order. The automata in SPath are not constructed on-the-fly
because the queries used with SPath so far tend to be small. However, SPath could
be modified to construct the automata on-the-fly, if necessary. Query-evaluation
algorithms with better complexity bounds could also be investigated.

The XSPathLite extension of SPath can be scaled-up to cover more features of
XPath such as its full set of functions and operators.

The domain-specific predicates for XML elements and attributes are currently
written by hand but an IDE-plugin could generate them automatically from an XML
document or schema.

SPath can also be applied to semi-structured documents that are represented by
edge-labeled trees, such as YAML and JSON.

The source code for SPath including the examples in this article, is available from
[spa].

10 Acknowledgment.

I am grateful to the anonymous reviewers for their helpful comments about this work.

References

[BJ07] Michael Benedikt and Alan Jeffrey. Efficient and Expressive Tree Filters.
In FSTTCS’07: Proceedings of the 27th international conference on
Foundations of software technology and theoretical computer science,
pages 461–472, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.1007/
978-3-540-77050-3_38.

[BMS05] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. The Essence
of Data Access in Cω. In Proc. ECOOP 2005, pages 287–311, 2005.
doi:10.1007/11531142_13.

[CDGLV09] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Moshe Y. Vardi. An Automata-Theoretic Approach to Regular XPath.
In Proc. of the 12th Int. Symposium on Database Programming Lan-
guages (DBPL 2009), volume 5708 of Lecture Notes in Computer Sci-
ence, pages 18–35. Springer, 2009. doi:10.1007/978-3-642-03793-1_
2.

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: a Query Language for
Semistructured Data Based on the Ambient Logic. Mathematical.
Structures in Comp. Sci., 14:285–327, June 2004. doi:10.1017/
S0960129504004141.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

[Fra07] Massimo Franceschet. XPathMark: Functional and Performance Tests
for XPath. In XQuery Implementation Paradigms, Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2007. Available from: http://drops.
dagstuhl.de/opus/volltexte/2007/892.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.1007/978-3-540-77050-3_38
http://dx.doi.org/10.1007/978-3-540-77050-3_38
http://dx.doi.org/10.1007/11531142_13
http://dx.doi.org/10.1007/978-3-642-03793-1_2
http://dx.doi.org/10.1007/978-3-642-03793-1_2
http://dx.doi.org/10.1017/S0960129504004141
http://dx.doi.org/10.1017/S0960129504004141
http://drops.dagstuhl.de/opus/volltexte/2007/892
http://drops.dagstuhl.de/opus/volltexte/2007/892
http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 29

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GKP02] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algo-
rithms for Processing XPath Queries. In VLDB, pages 95–106, 2002.
doi:10.1145/1071610.1071614.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On
the Temporal Analysis of Fairness. In Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’80, pages 163–173, New York, NY, USA, 1980. ACM.
doi:10.1145/567446.567462.

[GPV+95] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eind-
hoven, D. Peled, M. Y. Vardi, and Pierre Wolper. Simple On-the-Fly
Automatic Verification of Linear Temporal Logic. In Protocol Specifica-
tion Testing and Verification, pages 3–18. Chapman & Hall, 1995.

[Hol03] Gerard Holzmann. Spin Model Checker, the: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[Jel] Rick Jelliffe. XPath needs virtual axes. Available from: http://
broadcast.oreilly.com/2010/02/xpath-needs-virtual-axes.html.

[JGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[jQu] jQuery. Available from: http://jquery.com/.

[jsr04] JSR 206: Java API for XML Processing (JAXP) 1.3., 2004. Available
from: http://jcp.org/en/jsr/detail?id=206.

[Kaya] Michael Kay. Defining your own Functions in XQuery. Available from:
http://www.stylusstudio.com/xquery/xquery_functions.html.

[Kayb] Michael Kay. Pipedreaming: Could XPath have been better? Available
from: http://saxonica.blogharbor.com/blog/_archives/2010/1/
5/4420740.html.

[Kay04] Michael Kay. XPath 2.0 Programmer’s Reference. Wrox, 2004.

[L0̈7] Ralf Lämmel. Scrap Your Boilerplate with XPath-like Combinators. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’07, pages 137–142,
New York, NY, USA, 2007. ACM. doi:10.1145/1190216.1190240.

[LJ03] Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: a Prac-
tical Design Pattern for Generic Programming. In Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages
design and implementation, TLDI ’03, pages 26–37, New York, NY,
USA, 2003. ACM. doi:10.1145/604174.604179.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concur-
rent programs satisfy their linear specification. In Proceedings of the
12th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, POPL ’85, pages 97–107, New York, NY, USA, 1985.
ACM. doi:10.1145/318593.318622.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.1145/1071610.1071614
http://dx.doi.org/10.1145/567446.567462
http://broadcast.oreilly.com/2010/02/xpath-needs-virtual-axes.html
http://broadcast.oreilly.com/2010/02/xpath-needs-virtual-axes.html
http://jquery.com/
http://jcp.org/en/jsr/detail?id=206
http://www.stylusstudio.com/xquery/xquery_functions.html
http://saxonica.blogharbor.com/blog/_archives/2010/1/5/4420740.html
http://saxonica.blogharbor.com/blog/_archives/2010/1/5/4420740.html
http://dx.doi.org/10.1145/1190216.1190240
http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/318593.318622
http://dx.doi.org/10.5381/jot.2011.10.1.a13

30 · Nicholas Nguyen

[Mar04a] Maarten Marx. Conditional XPath, the First Order Complete XPath
Dialect. In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
13–22, New York, NY, USA, 2004. ACM. doi:10.1145/1055558.
1055562.

[Mar04b] Maarten Marx. XPath with Conditional Axis Relations. In EDBT,
pages 477–494. Springer, 2004. doi:10.1007/978-3-540-24741-8_28.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

[Mic] Microsoft. .NET Language-Integrated Query for XML Data.
Available from: http://msdn.microsoft.com/hi-in/library/
bb308960(en-us).aspx.

[MSB03] Erik Meijer, Wolfram Schulte, and Gavin Bierman. Programming with
circles, triangles and rectangles. In XML Conference and Exposition,
2003. Available from: http://research.microsoft.com/en-us/um/
people/emeijer/papers/xml2003/xml2003.html.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima Incorporation, USA, 2008.

[spa] SPath. Available from: https://github.com/nicnguyen/SPath.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse. XMark: a benchmark for XML data
management. In Proceedings of the 28th international conference on
Very Large Data Bases, VLDB ’02, pages 974–985. VLDB Endowment,
2002. Available from: http://dl.acm.org/citation.cfm?id=1287369.
1287455.

[Var07] Moshe Y. Vardi. Automata-Theoretic Model Checking Revisited.
In Proceedings of the 8th international conference on Verification,
model checking, and abstract interpretation, VMCAI ’07, pages
137–150, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.1007/
978-3-642-01702-5_2.

[W3Ca] W3C. Document object model (DOM) technical reports. Available from:
http://www.w3.org/DOM/DOMTR.

[W3Cb] W3C. XML path language (XPath): Version 1.0. Available from:
http://www.w3c.org/TR/xpath/.

[W3Cc] W3C. XML path language (XPath): Version 2.0. Available from:
http://www.w3.org/TR/xpath20/.

[W3Cd] W3C. XQuery 1.0: An XML Query Language. Available from: http:
//www.w3.org/TR/xquery/.

[W3Ce] W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition).
Available from: http://www.w3.org/TR/xpath-datamodel/.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’92, pages 1–14, New York, NY, USA,
1992. ACM. doi:10.1145/143165.143169.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.1145/1055558.1055562
http://dx.doi.org/10.1145/1055558.1055562
http://dx.doi.org/10.1007/978-3-540-24741-8_28
http://msdn.microsoft.com/hi-in/library/bb308960(en-us).aspx
http://msdn.microsoft.com/hi-in/library/bb308960(en-us).aspx
http://research.microsoft.com/en-us/um/people/emeijer/papers/xml2003/xml2003.html
http://research.microsoft.com/en-us/um/people/emeijer/papers/xml2003/xml2003.html
https://github.com/nicnguyen/SPath
http://dl.acm.org/citation.cfm?id=1287369.1287455
http://dl.acm.org/citation.cfm?id=1287369.1287455
http://dx.doi.org/10.1007/978-3-642-01702-5_2
http://dx.doi.org/10.1007/978-3-642-01702-5_2
http://www.w3.org/DOM/DOMTR
http://www.w3c.org/TR/xpath/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-datamodel/
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 31

[xma] XMark data generator. Available from: http://www.xml-benchmark.
org/generator.html.

[xqj09] JSR 225: XQuery API for Java (XQJ), 2009. Available from: http:
//jcp.org/en/jsr/detail?id=225.

Journal of Object Technology, vol. 10, no. 13, 2011

http://www.xml-benchmark.org/generator.html
http://www.xml-benchmark.org/generator.html
http://jcp.org/en/jsr/detail?id=225
http://jcp.org/en/jsr/detail?id=225
http://dx.doi.org/10.5381/jot.2011.10.1.a13

32 · Nicholas Nguyen

A SPath queries based on the XPathMark performance test.
A1 site\closed_auctions\closed_auction\annotation\description\text\keyword
A2 \\(closed_auction)\\keyword
A3 site\closed_auctions\closed_auction\\keyword
A4 site\closed_auctions\closed_auction?(\(annotation)\description\text\keyword)\date
A5 site\closed_auctions\closed_auction?(\\(keyword))\date
A6 site\people\person?(\(profile)\gender)?(\(profile)\age)\name
A7 site\people\person?(\(phone or homepage))\name
A8 site\people\person?(\(address))?(\(phone or homepage))

?(\(creditcard or profile))\name

B1 site\regions\∗\item?(\(parent, namerica or samerica))\name
B2 \\(keyword)\(ancestor, listitem)\text\keyword
B3 site\open_auctions\open_auction\(\(bidder)$rtrim(1))
B4 site\open_auctions\open_auction\(\(bidder)$ltrim(1))
B5 site\regions\∗\item $rtrim(1)\name
B6 site\regions\∗\item $ltrim(1)\name
B7 \\(person?(\(profile(income))))\name
B8 site\open_auctions\open_auction(\(bidder)$size(1))\interval
C1 site\people\person?(\(profile)\age >= 18 and ?(\(profile(income < 10000)))
and ?(\(address)\city <> "Dallas"))\name

C2 site\open_auctions\open_auction?(\(bidder)\increase join \(current))\interval
C4 site\people\person(id on (person_id, \(watches)\watch\$id(open_auction)\seller))

\name

C5 \\(id == "person0")
C6 site\people\person\watches\watch\$id(open_auction)\interval
C7 site\people\person?(\(watches)\watch\$id(open_auction)\itemref

\$id(item)\(parent, australia))\name

D1 site\open_auctions\open_auction(\(bidder)$context((s:Int) => s%2==0))\interval
D2 \\(text or bold or emph or keyword)

E1 site\open_auctions\open_auction?(
(((\(bidder)$first)\increase) < (\(bidder)$nth((s:Int) => (s+1)/2)\increase))
and ((\(bidder)$nth((s:Int) => (s+1)/2)\increase) < ((\(bidder)$last)\increase))

)\interval

E2 site\regions\europe\item\description\(\(descendant, keyword)$first)
E3 \\(keyword)\(\(ancestor, listitem)$last)\text\keyword

E4 site\open_auctions\open_auction\bidder?(
\->(leftSibling,bidder)\increase <= \(increase) and
\(increase) <= \->(rightSibling,bidder)\increase)

E5 site\regions\∗\item $ltrim(100)$rtrim(100)\name
F1 \\(bidder)?(\(increase) <= 10 and \->(rightSibling, bidder and \(increase) > 10))
F2 \\(bidder)?(\(increase) <= 10 and \->(leftSibling, bidder and \(increase) > 10))

F3 \\(listitem)\\compose(x, 2)\text\keyword
val x = $(\(parlist)\item)

F4 site\open_auctions\open_auction $range(1,5)\\F4axis\interval
val F4axis = $(\(seller)\$id(person)\watches\watch\$id(open_auction))

F5 site\people\person $range(1,5)\\F5axis\name
val F5axis = $(\(watches)\watch\$id(open_auction)\bidder\personref\$id(person))

F7 site\catgraph\edge(from == "category0")\\F7axis\$id(to)\name
val F7axis : axis = n => $(n, ∼\(catgraph)\edge(from == to @@ n))

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 33

B Automaton construction algorithm adapted from [GPV+95].

The states of the automaton are defined by the class Node, which has six fields:

class Node(name:String, father:String, old:Set[Expr],
new:Set[Expr], next:Set[Expr], incoming:Set[String])

The function expand constructs and links the states of the automaton:

expand: (Node, Set[Node]) => Set[Node]

The automaton states, ns, for an expression e are created by the call:

expand(new Node(new_name(), null, ∅, {e}, ∅, {"init"}), ∅) = ns

The initial states are n ∈ ns with "init" ∈ n.incoming. The transition n −→
n’ exists between n, n’ ∈ ns when n.name ∈ n’.incoming. Let n’=n[old+= η]
abbreviate n’ = n.clone; n’.old += η where clone returns a deep clone of n. The
algorithm is presented in the form of the inference rules, R1 to R6.

R1 expand(n[old += η; new -= η], ns) = ns’
expand(n, ns) = ns’

η = p ∈ n.new

n’ = n
[
old += η;
new -= η += ({µ,ψ} -= old)

]
R2 expand(n’, ns) = ns’

expand(n, ns) = ns’
η = µ ∧ ψ ∈ n.new

R3 expand(n[old += η; new -= η; next += µ], ns) = ns’
expand(n, ns) = ns’

η = Xχµ ∈ n.new

(newi, nexti are defined in Figure 14.)

i ∈ {1, 2}, ni = n

 name = new_name(); father = name;
new -= η += (newi(η) -= old); old += η;
next += nexti(η)


R4 expand(n1,ns) = ns” expand(n2, ns”) = ns’

expand(n, ns) = ns’
η = µ Uχψ,µ ∨ ψ ∈ n.new

n” =


name = father = new_name();
incoming = {n.name};
new = n.next;
old = ∅; next = ∅


R5 expand(n”, ns ∪ {n}) = ns’

expand(n, ns) = ns’

n.new = ∅
6 ∃ n’ ∈ ns.
n’.old = n.old
n’.next = n.next

R6
expand(n, ns) = ns[n’.incoming += n.incoming]

n.new = ∅
∃ n’ ∈ ns.
n’.old = n.old
n’.next = n.next

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

34 · Nicholas Nguyen

η new1(η) new2(η) next1(η) next2(η)
µ Uχψ {µ} {ψ} {µ Uχψ} ∅
µ ∨ ψ {µ} {ψ} ∅ ∅

Figure 14 – newi, nexti for i ∈ {1, 2} - used in R4.

C Proof sketches.

Expressions e ∈ Expr are annotated with labels from a set of countably infinite labels
l ∈ Labels, such that each label in e occurs exactly once.

e ∈ LabeledExpr ::= pl | (Xχ e)l | (e Uχ e)l | (e ∨ e)l | (e ∧ e)l

Subexpressions of the expression e are thus uniquely identified and the labels will be
omitted from here on.
An expression context ε is a placeholder for subexpressions:

ε ::= [•] | Xχ ε | ε Uχ e | e Uχ ε | ε ∨ e | ε ∧ e | e ∨ ε | e ∧ ε

The expression e2 is a subexpression of e1 when there exists a context ε such that e1

and ε[e2] are syntactically identical.
Lemma 1. If SPath(ε[e]) then SPath(e).
Proof. By induction on the size of ε.
Definition. The expressions e1 and e2 are distinct when there does not exist ε such
that either e1 = ε[e2] or e2 = ε[e1].
Let Π be the fully expanded tree for the formula eI with SPath(eI):

Π
...

expand(n0, ns0) = ns

where ns0 = ∅ and n0 is the initial node of the construction:

new Node(new_name(), null, ∅, {eI}, ∅, {"init"})

Let Γ be a subpath in Π of height k, starting at the root of Π, in which nk is a fully
constructed initial node that is added to the node set by R5:

Γ expand (nk, nsk) = ns’
...

expand(n0, ns0) = ns

R5

Each ni for k ≥ i ≥ 1 are the same-time descendants of n0, such that, ni.name =
ni−1.name or ni.father = ni−1.name. Γ is constructed by the rules R1, R2, R3 and
R4.
Lemma 2. If e ∈ ni.new then ∃e’ ∈ ni−1.new, ε :e’ = ε[e].
Proof. Immediately by the rules R1, R2, R3 and R4.
Lemma 3. If e ∈ nk.old then ∃ε:eI = ε[e].
Proof. By Lemma 2, take ε = ε1[. . . εk[•] . . .].
Proof of Proposition 6.2. The proof proceeds to show by contradiction that for nk
in Γ: |Θ(nk)| ≤ 1 and |nk.next| ≤ 1.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 35

Suppose that, in Γ, |Θ(nk)| > 1. Then there exists e1, e2 ∈ nk.old, both of the
form Xχe or e Uχe’ with e’ /∈ nk.old. The expressions e1 and e2 must be either
distinct or not distinct.

Suppose e1 and e2 are distinct. The rules R1, R3 and R4 cannot introduce distinct
subexpressions into an ni.new in Γ. So R2 must have been applied with η of the form
ε1[e1] ∧ ε2[e2]. By Lemma 3, there exists an ε such that eI = ε[η]. By Lemma 1,
SPath(η). But Axes(ε1[e1]) 6= ∅ and Axes(ε2[e2]) 6= ∅. So SPath(η)=false.

Suppose e1 and e2 are not distinct. Then R4 must have been applied in Γ with η
of the form ε1[e1] Uχ e’. A similar contradiction now occurs, because by definition
of SPath, it is required that Axes(ε1[e1])= ∅. So |Θ(nk)| ≤ 1.

Let |Γ|R2 equal the number applications of R2 in Γ. Let |Γ|R4 equal the number
of applications of R4 in Γ, which take the LHS branch of R4. If |Γ|R2 + |Γ|R4 > 1
then |Θ(nk)| > 1. But |Θ(nk)| ≤ 1. So |Γ|R2 + |Γ|R4 ≤ 1. New subformulas are
placed into a node’s next formulas only by the rules R3 and the LHS branch of R4.
So |nk.next| ≤ 1. By definition of the construction and Lemma 3, e ∈ nk.next is
a subformula of eI. By Lemma 1, SPath(e). By R5, the expansion of the successor
of nk is rooted at the premise of R5 and has the same form as Γ. The same proof is
applied to all fully constructed nodes in Π. �
Proof of Proposition 6.1. In Γ, the successor, n, of nk is initialised by R5 with
n.new = nk.next. If |nk.next| > 0 then by Proposition 6.2, there exists an e such
that nk.next = {e}. So n.new = {e}. By application of Lemma 2 and the definition
of the construction, e is a subexpression of eI. Each successor is thus initialised with
a smaller subexpression of its predecessor’s first new expression. So there must exist
a node n’ with new initialised to {e’} such that e’ does not contain a future-time
formula. By definition of the construction, each same-time descendant of n’ has
next = ∅. Furthermore, the algorithm of [GPV+95] discards a node, only when it
contains a contradiction - which is impossible for SPath because it is based on the
negation-free subset of LTL. A descendant of n’ must therefore exist in the node-set
of the automaton construction. �
Lemma 4. For any node n in the automaton construction, A, if Xχe’ ∈ n.old and
n −→ n’ is a transition in A then e’ ∈ n’.old.
Proof. Immediately from the construction. �
Proof of Corollary 6.4. The proof of [GPV+95] is modified by replacing each
formula of the form X

∧
Next(q) with Ψ(q) where

Ψ(q) =

{
true q.next = ∅
Xχ e q.next={e} and χ is the unique axis in q.old

and true is the propositional function n => true. Lemma 4.4 of [GPV+95] is extended
with the premise |ξ| > 1 for the finite sequence ξ. Part 2 of Lemma 4.1 is extended as:
∃j ≥ 0 ∀i 0 ≤ i < j : µ, µ U η ∈ ∆(qi) and η /∈ ∆(qi) and η ∈ ∆(qj). Lemma 4.7 of
[GPV+95] now follows by using the amended Lemma 4.1 and Lemma 4 in the case
Xχe. Lemma 4.9 of [GPV+95] follows by the amended Lemma 4.4, Definition 6.3 and
the definition of SPath’s semantic relation |=. �
Lemma 5. The upper bound for result.size in the function evaluate is S =
|A| × |D|.
Proof. The cache ensures that each state of the product automaton, A × D, is
processed in map at most once. Line 6 can therefore append up to |D| document nodes
to result for each state q in A. It follows that the size of result, when evaluate
terminates on line 3 cannot be larger than S = |A|.|D|. �

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

36 · Nicholas Nguyen

Lemma 6. distinct(it:Traversable[T]) takes time proportional to 4n+ 2 where
n = it.size and uses space proportional to 2.|D|.
Proof. The function distinct creates a HashSet to store unique document nodes
and a ListBuffer for the result. The function traverses over its argument adding each
item to the result if not already contained in the HashSet and then adding each item
to the HashSet. The time is 2 statements to create the HashSet and ListBuffer and
4 statements per item of the Traversable collection. The upper bound for the space
usage of the HashSet and the result is twice the number of document nodes in D. �
Proof of Proposition 6.7. By the definition of Φ, for any e such that Φ(e) > 1:

Φ(e) = 1 + Max{Φ(e’) | o => S ∈ UF(e) & e’ ∈ Queries(S)}

Thus, for such a maximal e’, Φ(e’) = Φ(e)−1. This equality enables the
approximation of the worst case running-time for the evaluation of e, by the recurrence
Ri where i = Φ(e). The running time of each line of the function evaluate of Figure 8
is summarised as follows:

Line numbers Running time for R1 Running time for Ri with i > 1
2, 4, 5, 6, 7, 13, 14 7.S 7.S
3 4.S + 2 4.S + 2
9 S.(4.|D|+ 2) + S.A0 S.(4.|D|+ 2) + S.|e|.Ri−1

11 S2 + S.|e|.P0 S2 + S.|e|2.Ri−1

12 S.|A| S.|A|

where the values P0, A0 and S are defined as:

Quantity Meaning
P0 = 1 Running-time of p with Φ(p) = 0.
A0 = |D| Running-time of χ with Φ(χ) = 0.
|A| = 2|e| Size of automaton for e.
S = |A|.|D| Size of product automaton A×D.

Adding up the columns for R1 and Ri gives:

R1 = 11.S + 2 + S.(4.|D|+ 2) + S.A0 + S2 + S.|e|.P0 + S.|A|
Ri = 11.S + 2 + S.(4.|D|+ 2) + S.|e|.Ri−1 + S2 + S.|e|2.Ri−1 + S.|A|

By induction on i, Ri < (23.S3.|e|2)Φ(e). By definition of S, it follows that
Ri < (23.(2|e|.|D|)3.|e|2)Φ(e). Ri is therefore O((2|e| × |D|)3 × |e|2)Φ(e).

The running times are explained as follows. Lines 2, 4, 5, 6 and 13 each take
constant time. Appending to the ListBuffer on line 7 also takes constant time. The
call to distinct on line 3 executes just once and by Lemmas 5 and 6 takes time
4.S + 2. An upper bound for the number of times lines 2, 4, 5, 6, and 7 execute is
S i.e when each call to evaluate extends a single state of the product automaton by
one transition. Lines 13 and 14 execute at most S times due to the cache-check on
line 11. The running time of applying axis functions on line 9 includes S.(4.|D|+ 2)
i.e by Lemma 5, the time for distinct on a maximum result set of size |D|, applied
for each state in A×D that is of size S. For Ri, the running time of applying S axis
functions of degree 0 is S.A0. For Ri with i > 0, the running time of applying an axis
function for each state of the product automaton is Ri−1, the degree of expressions
evaluated directly by the axis, multiplied by the number of user-defined functions that
are directly evaluated by the axis function, which is bounded by |e|. This is then
multiplied by the number of states S.

Journal of Object Technology, vol. 10, no. 13, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a13

SPath: an extensible query-language for Scala · 37

The running time of line 11 includes the time of applying the filter on each state
(q2, o) where q2 ∈ q.outgoing and o ∈ ns2 with ns2.size ≤ |D|. Thus for a
state (q, n) with n ∈ ns, an upper bound for the number of caches checks is |A|.|D|
(i.e S) where |A| is an upper bound for the outgoing states from q and |D| is an upper
bound for the size of ns2. The total time for cache checks is therefore S2.

The number of propositional functions in q2.old is bounded by |e|. The running
time of each propositional function for R1 of degree 0 is P0. The running time of a
propositional function in Ri−1 is |e|.Ri−1, i.e the number of expression of degree i− 1
that are directly evaluated by the propositional function multiplied by their running
time. Each propositional function is applied at most S times i.e once for each state
due to the cache-check guard on line 11. Line 12 can execute up to S times for each
outgoing state of A. �
Proof of Proposition 6.8. The proof follows a similar structure as the proof of
Proposition 6.7. The space usage for evaluating an expression e with i = Φ(e) is
approximated by the recurrence Ri as follows:

R1 = 3.S + 2.|D|+ S.2.|D|+ S.|D|+ 1
Ri = 3.S + 2.|D|+ S.2.|D|+ S.|D|+Ri−1

R1 is explained from left to right as follows. 3.S is an upper bound for memory
required by the 3 arguments to evaluate; map, result and cache. By Lemma 5 and
6 the memory usage of distinct on line 3 of the function evaluate in Figure 8, is
2.|D|. The total memory usage of distinct on line 9 is S.2.|D|. Each axis application
can return a result with a size up to |D| in each state S, so the total memory required
to store these results is S.|D|. Each propositional function p with Φ(p) = 0 is assumed
to use constant space 1.

Ri is explained in a similar way except that the space required for axis and
propositional functions at level Ri−1 is added to the total. Each axis application and
propositional function executes sequentially so space for one axis or propositional
function at degree i is required at a single moment.

It follows that Ri is O(2|e| × |D|2 × φ(e)). �

About the author

Nicholas Nguyen is a software developer interested in object-
oriented research and current practices. Contact him at nnguyen@
hotmail.co.uk, or visit http://nicnguyen.github.com.

Journal of Object Technology, vol. 10, no. 13, 2011

mailto:nnguyen@hotmail.co.uk
mailto:nnguyen@hotmail.co.uk
http://nicnguyen.github.com
http://dx.doi.org/10.5381/jot.2011.10.1.a13

	Introduction.
	Background.
	The document object model, XML and XPath 2.0.
	Conditional axes.

	An overview of SPath.
	Translating XPath 2.0 into SPath.
	Translating attributes.
	Translating absolute path expressions.
	Translating the context position and size into SPath.

	Examples.
	A foundation for SPath.
	Query evaluation in SPath.
	Experiments.

	An embedded DSL for SPath in Scala.
	Extending SPath's fluent interface.
	Instantiating SPath with concrete documents.

	Conclusion and related work.
	Further work.
	Acknowledgment.
	Bibliography
	SPath queries based on the XPathMark performance test.
	Automaton construction algorithm adapted from fly.
	Proof sketches.
	About the author

