
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c⃝ JOT 2011

Online at http://www.jot.fm.

Slicing Techniques for UML Models

Kevin Lanoa Shekoufeh Kolahdouz-Rahimia

a. Dept. of Informatics, King’s College London

Abstract This paper defines techniques for the slicing of UML models,
that is, for the restriction of models to those parts which specify the
properties and behaviour of a subset of the elements within them. The
purpose of this restriction is to produce a smaller model which permits
more effective analysis and comprehension than the complete model, and
also to form a step in factoring of a model. We consider class diagrams,
single state machines, and communicating sets of state machines.

Keywords Slicing, UML, Model transformation

1 Introduction

Slicing of programs has been a widely-used analysis technique for many years [31, 9]
and has also been used for reverse-engineering and re-factoring of code. In general
this technique considers a specific point within the program code, such as the end
point of the program, and a set of variables of interest at this point, and calculates a
subset of the program statements which can affect the variables at the selected point,
discarding any statements which do not contribute to the values of the variables of
interest at the selected point.

With the advent of UML and model-based development approaches such as Model-
Driven Development (MDD) and Model-Driven Architecture (MDA), models such as
UML class diagrams and state machines have become important artifacts within the
development process, so that slicing-based analysis of these models has potential
significance as a means of detecting flaws and in restructuring these models.

Slicing techniques for specification languages such as Z [32] and Object-Z [3] have
been defined, based on variants of the concepts of control and data dependence used
to calculate slicing for programs. However, UML contains both declarative elements,
such as pre- and post-conditions, and imperative elements, such as state machines and
activities, so that slicing techniques for UML must treat both aspects in an integrated
manner.

In the formulation of Harman and Danicic [8], slicing is generalised to include any
form of software artifact: a slice is considered to be a transformed version S of an
artifact M which has a lower value of some syntactic complexity measure, but an
equivalent semantics with respect to the sliced data:

S <syn M ∧ S =sem M

Kevin Lano, Shekoufeh Kolahdouz-Rahimi. Slicing Techniques for UML Models. In Journal of Object
Technology, vol. 10, 2011, pages 11:1–49. doi:10.5381/jot.2011.10.1.a11

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a11
http://dx.doi.org/10.5381/jot.2011.10.1.a11
http://dx.doi.org/10.5381/jot.2011.10.1.a11

2 · K. Lano and S. Kolahdouz-Rahimi

The form of slicing used depends on the type of analysis we wish to perform on
M : S should have identical semantics to M for the properties of interest, but may
differ for other properties. The slicing may be structure-preserving, so that S has the
same structure as M although containing only a subset of its elements, or may be
amorphous, with a possibly completely different structure [8].

We will consider techniques for the structure-preserving and amorphous slicing of
class diagrams and state machines. Model transformations will be used to perform
slicing, each transformation will produce a target model satisfying the <syn and =sem
relations with respect to the source model, so that the successive applications of the
transformations will result in a slice which also satisfies these relations compared to
the original model.

Existing work on UML model slicing has focussed upon unstructured state ma-
chines, considered in isolation from other UML models [11, 1]. However in practical
systems, state machines usually depend upon some data model such as a class dia-
gram, and use mechanisms such as state nesting and intercommunication by message
passing.

We will extend the techniques of [1] to encompass the combined slicing of class
diagrams and state machines, and communication between state machines. In this
paper we will focus specifically on reactive systems, consisting of finite configurations
of objects representing system components, such as controllers, linked together in an
acyclic manner.

In general, applying slicing at a high level of abstraction simplifies the calculation
of the slice, and means that it is possible to detect specification flaws at an early
development stage, thus reducing development costs.

Slicing may also be used to compare a new version of a system with a previous
version, to establish that the behaviour of the new version is consistent with the previ-
ous version. Slicing can be used to modularise and decompose a system, particularly
to factor large control algorithms into smaller and more cohesive parts.

Section 2 considers the slicing of abstract class diagram models consisting of classes,
associations, attributes and constraints. Section 3 considers the slicing of class dia-
grams which additionally contain operations and are linked to state machines to define
object life histories. Section 4 defines slicing techniques for state machines for classes
or operations, Section 5 defines slicing techniques for systems of communicating state
machines. Section 6 evaluates the approach on application case studies. Finally,
Section 7 considers related work.

2 Slicing of Constraint-based Class Diagrams

We consider first the most abstract form of UML specification using a class diagram
to define the structure of classes and associations, and constraints in OCL to define
behaviour by means of invariant constraints of classes. At this initial stage in the
development process no explicit operations are considered, and the model can be
regarded as a computation-independent model (CIM) in terms of the model-driven
architecture (MDA) [24]. The semantics of such a model M consists of the set of
possible value assignments which can be made to the features of the model, that is,
the set of possible objects of each class and the values of the attributes and association
ends of these objects.

The range of UML constructs considered here corresponds to the UML-RSDS
subset of UML, which is specifically oriented to the specification and design of reactive

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 3

systems [17]. For such class diagrams there is an axiomatic semantics, which defines
the meaning of a class diagram M as a set ΓM of sentences in a first-order logic which
extends OCL [20]. We write ΓM |= ψ for a sentence ψ of the language of M to mean
that ψ is true in each possible instantiation of M .

In this paper we will further restrict consideration to reactive system specifications,
in which attributes of classes are categorised as representing sensors (input data), ac-
tuators (output data) or internal data. In such systems classes represent (the types of)
particular system components such as controllers or subcontrollers (which determine
what actions to take when particular input events are received), or data stores holding
data used in the processing. Associations are unidirectional and their end properties
are readOnly (that is, they cannot be modified after initialisation). Instances of the
classes represent specific controller or data store instances, the client-supplier relation
between these objects must be acyclic.

Figure 1 shows an example of this style of specification, for a lift control system.
The lift actuators are dm and lm and the lift sensors are fps, dest , dos and dcs.
maxfloor is an internal constant parameter.

<<enumeration>>
DMState

opening
closing
stopped

<<enumeration>>
LMState

up

stop
down

dest is the next destination floor

maxfloor is the highest floor number

dos = true if the lift doors are fully open
dcs = true if the lift doors are fully closed

fps is the current floor position of the lift

lm is the lift motor state
dm is the motor state

Lift
maxfloor: Integer {readOnly}
fps: Integer
dest: Integer
lm: LMState
dm: DMState
dos: Boolean
dcs: Boolean

Figure 1 – Abstract lift control system

The data features of such a system are all the attributes of classes in the system,
and all member end properties of associations.

In the lift example, there are the following class invariant constraints of Lift :

(dest > fps and dcs = true implies lm = up) and
(dest < fps and dcs = true implies lm = down) and
(dest = fps implies lm = stop) and
(dest = fps and dos = true implies dm = stopped) and
(dest = fps and dos = false implies dm = opening) and
(dest ̸= fps and dcs = false implies dm = closing) and
(dest ̸= fps and dcs = true implies dm = stopped) and
(dcs = false implies lm = stop) and

(dos = true implies dcs = false) and
0 ≤ dest and dest ≤ maxfloor and

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

4 · K. Lano and S. Kolahdouz-Rahimi

0 ≤ fps and fps ≤ maxfloor

These constraints implicitly define the behaviour of the lift. For example, the first
constraint expresses that if the destination is above the current floor and the doors
are fully closed, then the lift will be moving upwards.

A specific configuration of this system will consist of a number of unconnected lift
components l1 : Lift , l2 : Lift , etc. Each instance has a copy of the data features of
Lift : l1.dest , l1.fps, etc., and these satisfy the class invariants instantiated for this
instance, ie.:

l1.dest > l1.fps and l1.dcs = true implies l1.lm = up

and so forth.
A more complex system is a reactive system which controls a robot with two light

sensors lsleft , lsright , a distance sensor distance, and two motors, mleft , mright , for
the left and right wheels of the robot. Figure 2 shows the physical robot configuration,
Figure 3 the class diagram of a control system which combines line-following behaviour
(the robot is steered so that it remains on dark areas of a surface and avoids light
areas) with collision avoidance (the robot is halted if it comes too close to an obstacle)
via a subsumption combinator [2].

lsright

lsleft
distance

mleft
mright

Figure 2 – Robot configuration

The LineFollower constraints are:

lsleft = on and lsright = off implies mleft = on and mright = half
lsleft = on and lsright = on implies mleft = on and mright = on
lsleft = off and lsright = on implies mleft = half and mright = on
lsleft = off and lsright = off implies mleft = on and mright = on

where half indicates half speed, so that in the first case the robot steers to the
right if it detects a dark area (lsright = off) under its right sensor lsright and light
(lsleft = on) under its left lsleft . In this specification there are only sensors and
actuators (mleft and mright), so that the component has no memory: its output
is determined by the current values of its sensors. We could introduce an internal
variable direction to describe more complex behaviour (separate modes of reversing
and forward movement).

Collision avoidance is specified by:

dist < 10 implies mleft = off and mright = off
dist ≥ 10 implies mleft = none and mright = none

These are then combined by subsumption, with collision avoidance having priority
over line following.

The combinator is specified as:

in1 = none implies out = in2
in1 ̸= none implies out = in1

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 5

LineFollower

CollisionAvoidance

lsleft: LSState
lsright: LSState
mleft: MState
mright : MState

0..1

0..1

0..1

0..1

1

1 cb2

in1 : State
in2 : State
out : State

distance: Integer
mleft: State
mright: State

off
on

LSState
<<enumeration>> <<enumeration>>

nonehalf

cb1 1

1

cb2

cb1

<<enumeration>>
MState State

Combinator

Figure 3 – Robot control system abstract class diagram

The combinator cb1 arbitrates between the line follower and collision avoidance
commands for mleft , with the collision avoidance component having priority (in1
input to cb1). cb2 likewise arbitrates commands for mright .

The motivation for slicing such specifications is to facilitate validation and con-
sistency analysis: if we wish to prove some validation property φ of a specification,
it should be sufficient to consider only those data features upon which the features
of φ depend, rather than all features of the specification. In UML-RSDS we trans-
late specifications into the B language to perform validation via proof and animation
[16]. The complexity of such proofs can be reduced by only translating the parts
of a specification directly relevant to a given property, enabling automated proof of
correctness.

Slicing will be carried out upon class invariants by considering the predicates P
of which they are composed. A predicate is a truth-valued formula, not containing
the and operator except in the antecedent of a top-level implication. We assume that
invariants have been expressed in the form of a conjunction of predicates, as in the
examples above.

Class invariant predicates are classified as either assertions: properties which are
expected to be invariant for objects of the class, but which should not or cannot be
maintained by modifying data features (for example, they are environmental assump-
tions rather than behaviour obligations of the system), or as effective: defining what
changes of actuator or internal data are necessary when a sensor or internal data fea-
ture changes value. There are also system-level constraints defining the configuration
of the system: what components it consists of, and how these are connected.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

6 · K. Lano and S. Kolahdouz-Rahimi

Effective predicates have the form

L implies R

where R is a formula f = e, with f an internal or actuator attribute or variable.
The occurrence of f in this formula is termed a writable occurrence of f , and f is

called the writable feature or writable variable of the constraint. L may be omitted.
L is the test part of the predicate, e the value part, these should normally refer only
to sensor and internal data.

Assertions do not contain writable occurrences of actuator or internal data. Nor-
mally they contain only internal and sensor data. In the lift system

dos = true implies dcs = false

is an assertion, because it relates the values of two sensors.
Configuration constraints declare specific objects (components) and define the

links between them, for example:

lf : LineFollower
ca : CollisionAvoidance
cb1 : Combinator
cb2 : Combinator
lf .cb1 = cb1
lf .cb2 = cb2
ca.cb1 = cb1
ca.cb2 = cb2
lf .mleft = cb1.in2
lf .mright = cb2.in2
ca.mleft = cb1.in1
ca.mright = cb2.in1

for the robot controller.
The variables VariablesM of a system M are the distinct instances c.att of at-

tributes att of its classes, where c is an instance in the system of the class C that
owns att . Attribute instances equated by the configuration constraints are considered
to be the same variable, so the robot control system has 9 variables:

{lf .lsleft , lf .lsright , lf .mleft , lf .mright , ca.distance, ca.mleft , ca.mright , cb1.out , cb2.out}

lf .mleft , lf .mright , ca.mleft , ca.mright , are internal variables of the complete system,
lf .lsleft , lf .lsright , ca.distance are sensors, and cb1.out , cb2.out actuators.

The last five predicates of the lift invariants are assertions, the others are effective.
Together, the effective constraints define the permissible states of the lift actuators
dm and lm in all possible combinations of sensor settings (the lift sensors are fps,
dest , dos and dcs). All predicates of the robot controller are effective except for the
configuration constraints.

Before slicing a specification M , it is normalised, so that the class invariants
are in the form of conjunctions of predicates. Formulae P implies R and Q are
rewritten as P implies R and P implies Q , formulae (P and Q) or R are rewritten
as (P or R) and (Q or R), and so forth.

The definition of syntactic reduction we will use for abstract class diagrams M is
the following:

S <syn M

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 7

if S has a subset of the elements of M : the classes of S are a subset of the classes of
M , the components of S are a subset of those of M , likewise for types and variables.
The variables of S have the same types in S and M . This is therefore a structure-
preserving form of slicing.

For such an S , the semantic equality

S =V
sem M

holds for a given set V of variables of M , if V ⊆ VariablesS , and if any value
assignment of the variables of M valid for M is also valid (when restricted to the
variables of S) for S . The relation =V

sem is reflexive and transitive, but not symmetric.
If S <syn M ∧ S =V

sem M , then ΓS |= φ implies ΓM |= φ, for a sentence φ
containing only variables of V , since any instantiation of M can be restricted to an
instantiation of S .

A stronger semantic relation ≡V
sem requires in addition that any value assignment

valid for S can be extended to a valid value assignment for M . This relation is also
transitive and reflexive. The ≡V

sem relation allows us to deduce the reverse implication
between ΓM and ΓS : if ΓM |= φ, for a sentence φ containing only variables of V ,
so does ΓS , since any instantiation of S can be extended to an instantiation of M
satisfying the same S -sentences. In particular if S is weakly satisfiable (that is, it has
at least one class which can be instantiated with an object) then so is M .

The set of variables, components and constraints in a slice S can be determined
by examining the data dependencies of the constraints of the original model.

For =V
sem we only use effective predicates to calculate the set of variables of S :

these are V together with any variables which a variable of V depends on via the
effective predicates. For ≡V

sem it is necessary also to consider all the constraints of M ,
including assertions.

For each constraint predicate p we define the sets of variables read and written in
p, and its internal data dependencies:

• The write frame wr(p) is the set of variables written to in p. If p is effective,
this set is the single writable variable of p, otherwise it is all variables in p.

• The read frame rd(p) is the set of variables read in p. If p is effective this is
the set of all variables occurring in the test or value expressions in p. For other
predicates rd(p) is empty.

• The set of variables used in p is var(p):

var(p) = rd(p) ∪ wr(p)

• The internal data-dependencies of an effective predicate p are then:

dep(p) = rd(p)× wr(p)

and for an assertion predicate

dep(p) = var(p)× wr(p)

The dependency relation ρM of the class diagram is the non-reflexive transitive closure
of the union of the dep(p) for all effective constraint predicates.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

8 · K. Lano and S. Kolahdouz-Rahimi

The slice S has all the effective constraints whose writable variable is in V ′ =
V ∪ ρ−1

M (| V |), and all assertions whose variables are all in V ′. Variables of M which
do not occur in V ′ can be omitted from S . Components which have no variable in
V ′ can also be omitted from S and the configuration constraints.

This slicing definition satisfies the <syn and =V
sem relations, because the elements

and constraints of S are a subset of those of M . In particular, any value assignment
for the variables of M that satisfies the constraints of M will also satisfy those of S
when restricted to V ′.

In the lift example, ρM is the relation

{dest 7→ lm, fps 7→ lm, dcs 7→ lm,
dest 7→ dm, fps 7→ dm, dos 7→ dm, dcs 7→ dm}

A =
{lm}
sem slice S therefore does not need to include dm, maxfloor or dos.
The set of constraints in the slice is:

(dest > fps and dcs = true implies lm = up) and
(dest < fps and dcs = true implies lm = down) and
(dest = fps implies lm = stop) and
(dcs = false implies lm = stop) and

0 ≤ dest and 0 ≤ fps

A property such as

lm = up implies dest > fps

can be proved in ΓS and therefore deduced also for ΓM .
In the robot control example, a proof of

ca.distance < 10 implies cb1.out = off

only needs to consider the six variables in V 1 = {ca.distance, ca.mleft , lf .mleft , lf .lsleft ,
lf .lsright , cb1.out} instead of 9 in the complete system, because V 1 is the set of vari-
ables which {ca.distance, cb1.out} depend upon via ρM . The cb2 component can be
removed.

For the stronger semantic relation ≡V
sem , the slice needs to be defined using the

dependency relation ρ′M , which includes the data dependencies of assertions in the
relation: if variable f occurs in an assertion then it is considered dependent on all
variables in the assertion. ρ′M is then the non-reflexive transitive closure of the de-
pendencies for effective constraints together with the assertion dependencies, and S
is defined as above from ρ′M instead of from ρM .

In the lift example, ρ′M is the relation

{dest 7→ lm, fps 7→ lm, dcs 7→ lm, dos 7→ lm,maxfloor 7→ lm,
dest 7→ dm,maxfloor 7→ dm, fps 7→ dm, dos 7→ dm, dcs 7→ dm}

The resulting set of constraints in the slice for V = {lm} is:

(dest > fps and dcs = true implies lm = up) and
(dest < fps and dcs = true implies lm = down) and
(dest = fps implies lm = stop) and

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 9

(dcs = false implies lm = stop) and

(dos = true implies dcs = false) and
0 ≤ dest and dest ≤ maxfloor and
0 ≤ fps and fps ≤ maxfloor

3 Slicing of Operation-based Class Diagrams

A more explicit form of class diagram specification includes operations of classes,
together with pre- and post-condition constraints to define these operations, and state
machines of classes to define the behaviour of their instances. These specifications can
be considered to be at the platform-independent model (PIM) level in terms of the
MDA. We assume that the client-supplier relation between different classes is acyclic
for such specifications. Operations are assumed to be deterministic.

Explicit specifications M consist of a set of instances (the components of M) of
classes C of M , each class has an associated state machine SMC as its classifierBehavior
(Chapter 15 of [23]), this state machine defines what sequences of operations can be
applied to objects of C , and under what conditions.

Figure 4 shows the metamodel for state machines which we use, this is based upon
a subset of UML state machine notation (Chapter 15 of [23]). Dashed lines indicate
associations which are not part of the metamodel but are used to hold computed data
during the slicing process. st .writes for a statement st is the write frame wr(st) of
st . st .reads for a statement st is the read frame rd(st) of st . We will only consider
transition effects that are sequence statements composed of basic statements: assign-
ments or, for communicating state machines, invocations of operations on supplier
objects. We denote the set of states of a state machine Sm by StatesSm and the set
of transitions by TransitionsSm . VariablesSm is its set of variables.

StateTransition

Statement

effect

outgoing
*

incoming
*

source
1

target
1

guard1

* pathFrom
*

pathToname: String

*dependencySet

Event
name: String

trigger 1

*

*

Expression

isInitial: Boolean

*

refersTo*

* *

writes

reads

* *

Variable

parameters*

0..10..1

deferrableTrigger

*

0..1

FinalState

stateInvariant
0..1

0..1

Figure 4 – State machine metamodel

Individual transitions tr : Transition have the general form

src →op(x)[G]/acts trg

where src = tr .source, trg = tr .target , the invocation of op(x) is tr .trigger , with

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

10 · K. Lano and S. Kolahdouz-Rahimi

parameters x , G = tr .guard and acts = tr .effect (an assignment, skip, operation call
or a sequence of such statements). Implicitly the precondition of op(x) is conjoined
to G , and the complete effect of the transition when it fires is given by the sequence
of the effect of op(x) followed by acts (page 591 of [23]). Therefore in slicing such
specifications, the effects of both the operation execution and the explicit transition
need to be considered.

Typically, the operation postcondition defines local data modifications of the com-
ponent, whilst the transition effect invokes operations of other components.

The state machine c.SMC of an instance c : C has states {c.st | st ∈ StatesSMC },
transitions {c.tr | tr ∈ TransitionsSMC }, with attributes x in tr .effect replaced by
variables c.x in (c.tr).effect , and similiarly for tr .guard . c.tr : c.src → c.trg if tr :
src → trg , and (c.tr).trigger = c.(tr .trigger).

An explicit specification M has an interface MI consisting of the set of operations
which may be externally invoked upon M . For reactive systems this is usually the set
of input sensor events that it reacts to: that is, the union of αN for the components
N = c.SMC of M which have no clients within M , where the set of input events of
state machine Sm is denoted by αSm.

Because operation-based class diagrams and state machines are inter-related, the
slicing definition for such class diagrams depends on the existence of slicing definitions
for state machines. In this section we assume the slicing definition =s,V

sem from Section
4 is used for state machines, and we describe how such slicing affects the class diagram
linked to the state machines.

If an explicit state machine is not provided for a class, then the default behaviour of
the class is a state machine with a single state, and self transitions for each operation
on this state, guarded by the operation preconditions.

Operations may alternatively be defined by a structured activity instead of pre-
conditions and postconditions, using the statement language of Figure 5.

LoopStatement

Statement

Conditional
Statement

BasicStatement

Operation
CallStatement

test1

0..1

ifFalse
0..1
ifTrue
1

0..1 0..1

* actualParameters {ordered}

0..1

1

BoundedLoop UnboundedLoop
Statement

SkipStatement
Statement
Assignment

Statement

Behavior

body 1

0..1

Operation

*

calledOperation1

Constraint

0..1 invariant

1
1

0..10..1
Sequence

Statement
kind: StatKind

Statement

{ordered} *
statements

1

0..1

1 left
1 right

1 target

<<enumeration>>
StatKind

sequence
parallel
choice

initialiser

step

0..1 0..10..10..1

test

variant

0..1

0..10..1 Creation
Statement

OclExpression

Classifier

1creates
Instance
Of

left

0..1

*

Return

returns1

0..1

1

Figure 5 – Statement metamodel

In this section we will define slicing for such combined class diagram and state
machine specifications, by using a function (defined in Appendix A)

slice : Statement × F(Variable) → Statement

which computes the statement slice(stat ,V) which has the same effect on V as stat .
We will extend slice to include slicing of operation definitions as a generalised form

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 11

of statement.
Figure 6 shows a refinement of the lift control system using this style of specifica-

tion.

<<enumeration>>
DMState

opening
closing
stopped

<<enumeration>>
LMState

up

stop
down

dest is the next destination floor

dm is the door motor state
lm is the lift motor state

maxfloor is the highest floor number

dos = true if the lift doors are fully open
dcs = true if the lift doors are fully closed

fps is the current floor position of the lift
Lift

maxfloor: Integer {readOnly}
fps: Integer
dest: Integer
lm: LMState
dm: DMState
dos: Boolean
dcs: Boolean
arrive(fpsx: Integer)
request(fpsx: Integer)
doorstartsopening()
dooropens()
doorstartsclosing()
doorcloses()

Figure 6 – Lift control system refinement

The explicit operations of the lift can be specified as follows:

init()
post:

fps = 0 and dest = 0 and dcs = false and
dos = true and lm = stop and dm = stopped

arrive(fpsx : Integer) /* Lift arrives at floor fpsx */

pre: 0 ≤ fpsx and fpsx ≤ maxfloor
post:

fps = fpsx and
(fpsx = dest implies lm = stop) and
(fpsx = dest implies dm = opening) and
(dcs = false implies lm = stop)

request(destx : Integer) /* Request to go to floor destx */

pre: 0 ≤ destx and destx ≤ maxfloor
post:

dest = destx and
(destx > fps and dcs = true implies lm = up) and
(destx < fps and dcs = true implies lm = down) and
(destx = fps implies lm = stop) and
(destx = fps and dos = true implies dm = stopped) and
(destx = fps and dos = false implies dm = opening) and
(destx ̸= fps and dcs = false implies dm = closing) and
(destx ̸= fps and dcs = true implies dm = stopped)

doorstartsopening()
pre: dcs = true
post:

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

12 · K. Lano and S. Kolahdouz-Rahimi

dcs = false and lm = stop

doorstartsclosing()
pre: dos = true
post:

dos = false

doorcloses()
pre: dcs = false and dos = false
post:

dcs = true and dm = stopped and
(dest > fps implies lm = up) and
(dest < fps implies lm = down)

dooropens()
pre: dos = false and dcs = false
post:

dos = true and dm = stopped

The init operation is implicitly invoked when an object of the class is created ([20],
Chapter 6). An operation is included for each input sensor event of the component.
Such specifications may be derived from the implicit specifications: if the basic effect
of an operation writes to a variable v , setting it to value vx , then:

• All assertions p with v ∈ var(p) are included in the precondition of op, in the
form p[vx/v].

• All effective constraints p with v ∈ rd(p) are included in the postcondition of
op, in the form p[vx/v].

For example, the definition of request , which has the basic effect dest = destx , has
been derived in this manner.

Figure 7 shows the state machine for the Lift class. State invariants such as
dm = opening do not contribute to data or control dependencies.

A history e of an explicit specification M is a finite sequence of invocations of
operations from MI on its components. A history is valid if operations are only
invoked on existing instances, and for which the operation precondition is true at the
point of call, in addition the history actions specific to each instance c of class C
should conform to the state machine c.SMC of c.

For example, if the lift control system consists of a single instance cx : Lift , then

cx .request(10), cx .doorstartsclosing(), cx .doorcloses(), cx .arrive(1)

is a valid history for the system, if cx .maxfloor = 15.

lf .lslefton(), lf .lsrighton(), ca.setdistance(5)

is a valid history for the robot control system example with objects lf : LineFollower
and ca : CollisionAvoidance.

The state machine SMM of a specification M has states all tuples of states from
the state machines of its individual components:

StatesM = Statesc1.SMC1
× ...× Statescn.SMCn

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 13

door closing

idle

doorstartsclosing()

[dm = closing]

request(f)[f /= fps]

dooropens()

door opening

[dm = opening]

travelling

arrive(f)[f /= dest]

arrive(f)[f = dest]

[lm /= stop]

doorstartsopening()

at floor [lm = stop]

[dm = stopped]

doorcloses()

door starts to
open

[dm = opening]

door starts to
close

[dm = closing]

request(f)
 [f = fps]

Figure 7 – Lift state machine SMLift

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

14 · K. Lano and S. Kolahdouz-Rahimi

where the ci are all those components which have no clients within M . Each ci is an
instance of some class Ci of the specification. The initial state of SMM is the tuple of
initial states from these components. The transitions of SMM are derived from those
of each component: if tr : src → trg in ci .SMCi and (s1, . . . , si−1, si+1, . . . , sn) is a
tuple of states from other the components, then

tr ′ : (s1, . . . , si−1, src, si+1, . . . , sn) → (s1, . . . , si−1, trg , si+1, . . . , sn)

is a transition of SMM , with the same trigger, guard and effect as tr .
In the robot control system there are component state machines for the lf , ca,

cb1 and cb2 components (Figure 8). Here lf and ca are the components without
clients. We have omitted some transitions, in the low states there are self-transitions
set2on()/out := on, set2half ()/out := half , etc. The input event set1on can be
removed since it is never invoked in this system.

cb1.high

cb1.set1on()

cb1.set1none()/
cb1.out := cb1.in2

cb1.set1off()/
cb1.out := off

cb1.low

/cb1.set2on(); cb2.set2on()

in
dark

left
light

both
light

right
light

lsleftoff()/
cb2.set2on()

lsleftoff()/
cb1.set2half()

safe

hazard

setdistance(d)
[d < 10]/
cb1.set1off();
cb2.set1off()

setdistance(d)
[d >= 10]/
cb1.set1none();
cb2.set1none()

lslefton()/cb2.set2half()

lsrighton()/
 cb1.set2half()

cb2.high

cb2.set1on()

cb2.set1none()/
cb2.out := cb2.in2

cb2.set1off()/
cb2.out := off

cb2.low

LineFollower CollisionAvoidance Combinator1 Combinator2

lslefton()/
cb1.set2on()

lsrighton()/
cb2.set2on()

lsrightoff()/
cb2.set2half()

lsrightoff()/
cb1.set2on()

Figure 8 – Robot component state machines

When a specification M is sliced to a specification S , each of its component state
machines may be abstracted, because some of their states may be merged (Section
4). Such state merging corresponds to an abstraction map σN : StatesN → StatesN ′

where N is the original component, and N ′ the sliced component. This mapping
can then be lifted to an abstraction map σ from StatesM to StatesS . Likewise for
transitions.

The same notion of syntactic reduction

S <syn M

as in Section 2 is used for operation-based class diagrams, with the additional require-
ment that the operations of each class C of S are a subset of the operations of C in
M , and the predicates of each operation postcondition Postop of C in S are a subset
of the corresponding set of postcondition predicates for op in M . The input events
of M and S should be the same: MI = SI .

Semantic equivalence

S =s,V
sem M

holds with respect to a given state tuple s in StatesM , and set V ⊆ VariablesS if:

1. any valid history e : seq(MI) of M with end state s is also a valid history of S
with end state σ(s)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 15

2. if e is applied to both models, starting from the same initial values for variables
in the respective initial states, then the values of the variables in the slice set
V in S in σ(s) are equal to the values of these variables in s in M .

Formally:

∀ e : seq(MI); ∀ v0, v ·
initialM [VariablesM = v0] −→M

e s[V = v] ⇒
σ(initialM)[VariablesS = v ′

0] −→S
e σ(s)[V = v]

where src[P] −→N
e trg [Q] denotes that there is a sequence of transitions in N triggered

in order by the event sequence e, starting from state src with P true, and ending with
state trg with Q true in trg . v ′

0 is the subset of values of v0 used to initialise VariablesS .
The relation =s,V

sem is reflexive and transitive, but not symmetric.
The slice S can be determined by examining the data dependencies of the con-

straints of the original model, and the state machines of its components.
For each postcondition predicate p of an operation op we define the sets of variables

read and written in p, and its internal data dependencies:

• The write frame wr(p) is the set of variables written to in p. If p is effective,
this set is the single writable variable of p, which cannot be an input parameter
of op, otherwise it is the set of variables of p not in pre form v@pre in p, and
that are not input parameters.

In particular, for the basic effect sv = svx of an operation setsv(svx : T), the
write frame is {sv}.

• The read frame rd(p) is the set of variables read in p. If p is effective this is
the set of all variables occurring in the test or value expressions in p. For a
predicate p

E implies v = e

v@pre is included in rd(p) since in the case that E is false, the value of v remains
v@pre by default.

For other predicates rd(p) is the set of variables which are either in pre form,
or are input parameters.

• The internal data-dependencies of a postcondition predicate p are then:

dep(p) = rd(p)× wr(p)

The write frame wr(op) of an operation op is the union of wr(p) for the predicates
p in its postcondition. For example, wr(arrive) = {fps, lm, dm}.

Control dependency in a program or specification occurs when the value of a vari-
able v at a certain point influences which updates will be applied to a variable w [27].
For example, in:

if v > 0 then w := 2 else w := 3

w is control dependent upon v .
The variables in the predicates in the postcondition of an operation can be con-

sidered to be control dependent on the variables in the predicates in the precondition

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

16 · K. Lano and S. Kolahdouz-Rahimi

[3]. The rationale for this is that pre : P post : Q can be interpreted as “if P holds,
carry out the updates specified by Q , else perform an arbitrary update". Similarly,
the effects of a transition are considered to be control dependent upon the transition
guard.

At the level of particular variables, f , g , there is a direct dependency of f on g in
an operation op, if:

• g 7→ f is in some dep(p) for a postcondition predicate p of op.

Let rop be the (non-reflexive) transitive closure of this relation. Then the depen-
dency relation ρop of op includes the pairs:

• g 7→ f if g occurs in the precondition and f is in wr(p) for some postcondition
predicate p (control dependency)

• g 7→ f if g is an input parameter of the operation, or is a variable not in wr(op),
and g 7→ f is in rop

• g 7→ f if g@pre 7→ f is in rop

• x 7→ x if x ̸∈ wr(op). (x is not modified by op, so its value at the end of the
operation is determined by its value at the start.)

The meaning of this relation is that the value of g at the start of the operation may
affect the value of f at the end. Initial values of variables not in ρ−1

op (| V |) cannot
affect the value of any variable in V at termination of the operation.

The ρop dependencies of arrive in the lift control system are therefore:

{maxfloor 7→ fps, fpsx 7→ fps, fpsx 7→ lm,
dest 7→ lm, fpsx 7→ dm, dest 7→ dm, dcs 7→ lm,
lm 7→ lm, dm 7→ dm,maxfloor 7→ lm,maxfloor 7→ dm,
dest 7→ dest , dcs 7→ dcs, dos 7→ dos,maxfloor 7→ maxfloor}

Slicing of statements from the activity language of Figure 5 can be carried out
using standard data-slicing processes for procedural programs. For example, we have:

slice(x := e,V) =
x := e if x ∈ V
skip otherwise

and

slice(S1; S2,V) = slice(S1,V1); slice(S2,V)

where V1 is the set of variables whose values at commencement of an execution of S2

can affect the values of V at the end of the execution: dependents(S2,V) = V1. The
definition of slice and dependents is given in Appendix A.

We can extend this definition to calculate the slice of operation executions, for
operations op(x : X) defined by precondition Preop and postconditions Postop , as
follows. slice(op(x : X),V) is defined by precondition Preop and postcondition Post ′op ,
where Post ′op includes all predicates p of Postop such that wr(p)∩(r−1

op (| V |)∪V) ̸= {}.
In other words, such that p may affect the values of V at termination of op.

For example, the slice of arrive with V = {dm} is:

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 17

arrive(fpsx : Integer) /* Lift arrives at floor fpsx */

pre: 0 ≤ fpsx and fpsx ≤ maxfloor
post:

(fpsx = dest implies dm = opening)

Compared to the dependency analysis of constraint-based class diagram specifi-
cations, additional dependencies between variables are included because the updated
variables of operation postconditions are assumed to be dependent upon the variables
of the precondition. But dependencies may be reduced because we take account of the
restrictions of state machines of components in limiting the sequences of operation
executions that can occur.

The following algorithm is used to compute a slice of a complete specification M ,
with respect to a state s and set V of variables of SMM .

We associate a set Vx of variables to each state x of SMM .

1. Initialise each Vx with the empty set of variables, except for the target state s,
which has the set V of variables.

2. For each transition tr : s1 → s2 of SMM , add to Vs1 the set

var(tr .guard) ∪ ρ−1
op (| dependents(tr .effect ,Vs2) |)

of variables upon which Vs2 depends, via the version of the operation op ex-
ecuted by this transition (with precondition the conjunction of tr .guard and
Preop). The overall effect of the transition is the sequential composition of
Postop and tr .effect (page 591 of [23]), so we need to compose ρop and dependents(tr .effect).
Both the guard and Preop contribute to the control dependencies.

The second step is iterated until a fixed point is reached. Each Vx then represents
the set of variables whose value in state x can affect the value of V in state s, on one
or more paths from x to s, by either control or data dependence. (Parameter values
of operations along the paths may also affect V in s). More generally, for any two
states x and y , the set Vx includes the set of variables whose value in state x can
affect the value of Vy in state y , on any path from x to y .

Each transition effect and operation occurrence can then be sliced, as described
above. This may produce different versions of the operation invoked at different
points of the state machine, ie, slice(op(x : X),W) for different sets W of variables.
To resolve this, we could combine the different postconditions of these versions into a
single postcondition, conditioned by state membership of the source state:

post:

(in s1 implies Post1) and ... and
(in sm implies Postm)

where the Posti are the postconditions of the different versions. However, this adds
to the syntactic complexity of the operation. Instead, we take the union of the sets
of predicates in the different Posti as the overall sliced definition of op.

Let V ′ be the union of the Vx sets, for all states x on paths from the initial state
of SMM to s. The set of variables retained in the slice S will be set equal to V ′.

If the lift system is sliced with V = {dm}, then V ′ is the set of all variables of
the lift, with lm removed.

The new class invariant constraints are:

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

18 · K. Lano and S. Kolahdouz-Rahimi

(dest = fps and dos = true implies dm = stopped) and
(dest = fps and dos = false implies dm = opening) and
(dest ̸= fps and dcs = false implies dm = closing) and
(dest ̸= fps and dcs = true implies dm = stopped) and

(dos = true implies dcs = false) and
0 ≤ dest and dest ≤ maxfloor and
0 ≤ fps and fps ≤ maxfloor

The sliced init and request operations of the lift are:

init()
post:

fps = 0 and dest = 0 and dcs = false and
dos = true and dm = stopped

request(destx : Integer)
pre: 0 ≤ destx and destx ≤ maxfloor
post:

dest = destx and
(destx = fps and dos = true implies dm = stopped) and
(destx = fps and dos = false implies dm = opening) and
(destx ̸= fps and dcs = false implies dm = closing) and
(destx ̸= fps and dcs = true implies dm = stopped)

The transformation we have described above does produce a semantically correct
slice S of a model M , using the definition =s,V

sem of semantic equivalence, because, if
e is a valid history of M , ending in the slice target state s, and V a set of variables
of M , then:

• e is also a valid history of S , ending in σ(s), since the triggers of each transition
in the models are the same: only their effects have been simplified, and their
guards potentially weakened.

• The variables retained in S are the union V ′ of the sets Vx of the variables
upon which V in s depends, for each state x of any path to s, and hence V ′

contains Vx for each state x on the history e, and in particular for the initial
state

• since the values of the variables of V ′ in the initial state are the same for S and
M , and the values of operation parameters are also the same in the application
of e to S and M , the values of V in s in M at termination of the response to e
are the same as their values in σ(s) in S .

4 State Machine Slicing

Both classes and operations can have their behaviour defined by state machines
(termed behavioural state machines in Chapter 15 of [23]). For class behaviour, the
state machine will have a set of input events, corresponding to the call events of the
operations of the class.

Reactive systems will also have a state machine, consisting of the concurrent com-
position (product) of the state machines of their components, as described in the

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 19

previous section. If M is the state machine SMP of a system P , then αM ⊆ PI (M
can only respond to invocations of operations of P).

State machines may also generate output events, the set of output events for a
state machine M is denoted by out(M). We assume that αM and out(M) are disjoint,
to avoid circularities in message processing. Objects of classes (including components
in a reactive system) have a behaviour defined by the state machine of their class.

Operations may have their effect defined by a state machine, instead of a postcon-
dition or activity. Such state machines do not have operation call triggers on their
transitions, instead their transitions are triggered by completion of the transition
source state. αM is therefore the empty set for such state machines. Operation state
machines will also have a final state, representing termination of the operation whose
effect they define.

Care must be taken concerning the state machine notation considered, and the
semantics adopted, since the computation of the slice will differ from version to version.
Three alternative semantics can be used, in the case that there is not a complete
set of guards covering all possibilities of an event occurrence in a given state (page
553 of [23]): skip/ignore semantics, precondition/exception semantics and blocking
semantics:

1. Skip/ignore semantics: if a logical case is missing for the transitions triggered
by an operation, leaving a particular state, then the operation is permitted to
execute in this case, but has no effect on any data or the current state.

2. Precondition semantics: alternatively, an attempt to execute the operation in
such a case may result in arbitrary behaviour.

3. Blocking semantics: execution of the operation in such a case is not permitted,
the caller of the operation will be blocked until the guard of an explicit transition
for the operation from the state becomes true, or until a state is reached where
the operation can be accepted.

Skip semantics is used for general state machines and precondition semantics for
protocol state machines in UML (page 581 of [23]). Blocking semantics can be used
to protect a shared resource from incorrect use in a concurrent execution environment.
The defer e declaration in a state asserts that e is blocked in the state if e is invoked
when no guard of an explicit transition from the state triggered by e is true (page
569 of [23]).

A skip-free sequence of input events for a state machine with skip semantics is a
sequence which causes no implicit skips to take place. sf (M) is the set of skip-free
input sequences in seq(αM).

In this section and Section 5.1 we will assume skip semantics for all state ma-
chines, with no occurrences of defer . We will also assume that the state machines are
deterministic. Our transformations preserve determinism and completeness of state
machines.

In Figure 4 the association member end properties pathFrom, pathTo and dependencySet
are derived from the other features. For example, the algorithm to compute forward
reachability, pathTo can be defined as:

for t : TransitionsM do

t .source.pathTo := { t .target } ;

while any x .pathTo changes do

for t : TransitionsM do

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

20 · K. Lano and S. Kolahdouz-Rahimi

t .source.pathTo := t .source.pathTo ∪ t .target .pathTo

Slicing can be carried out for both class and operation state machines, using data
and control flow analysis to remove elements of the machine which do not contribute
to the values of a set of features in particular states of the machine, particularly the
final state of the machine, if there is such a state. This is termed data-based slicing
of state machines.

Figure 9 shows a simplified state machine for the Alaris GP infusion pump [4],
which is a widely-used intravenous infusion device. We have added a state invariant
vtbi > 0 to the infusing state, as this is a safety property which should be proved
about this state. Likewise, we would need to check that an undesirable condition such
as rate = 0 is not possible in this state (the infusion rate cannot be 0).

initial

setVTBI

selectBag

OnHold

Infusing

bt2()
bt1()

select(b: Bag)/vtbi := b.capacity

bt3()

[vtbi > 0]
run()

run()
[vtbi <= 0]

hold()/

tick()[vtbi=0]/

up()/vtbi := vtbi+incdown()/vtbi :=
vtbi − inc

tick()[vtbi > 0]/

bt2()/
display := "VTBI"

bt1()/display :=
"ON HOLD"

bt3()/
display :=
"ON HOLD"

display :=
"ON HOLD"

display := "MAIN"

vtbi := vtbi − rate*tinc;
dispensed := dispensed +

rate*tinc

[vtbi > 0]

up()/rate :=
rate +

rinc

down()/
 rate :=
 rate − rinc

Figure 9 – Alaris infusion pump state machine

Slicing techniques for state machines based on control and data-flow analysis have
been defined by Korel [11] and Clark [6]. These use graph-theoretic structural prop-
erties of the state machine. Our approach to data-based state machine slicing uses
instead the semantic concept of path-predicates, as used in static analysis tools such as
SPADE [26]. This technique assigns to each program path a predicate which defines
how the values of variables at the end state of the path relate to the values at the
start state, over all executions of the path. These predicates have the form

Cond1 ⇒ v ′ = f1(v) ∧ ... ∧ Condn ⇒ v ′ = fn(v)

for some exclusive conditions Condi on the starting state variables v , and v ′ represent
the values of the variables at the end of the path. These identify a precise semantic
relation between variables on each path, however their calculation is impractical for
general state machines with loops.

An algorithm for computing path predicates for loop-free state machines is as
follows (disregarding the preconditions and postconditions of operations). Assuming
that x .stateInvariant is initially true for all states, we set it to v ′ = v for final states,
where v is the tuple of variables of VariablesM of interest.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 21

while any x .stateInvariant changes do

for tr : TransitionsM do

tr .source.stateInvariant :=
conjunction(tr .source.stateInvariant ,

implication(tr .guard , wpc(tr .effect , tr .target .stateInvariant)))

where wpc : Statement × Expression → Expression is the usual weakest-precondition
operator (Appendix A). conjunction(e1, e2) constructs the OCL expression that rep-
resents the conjunction of its arguments, etc. Algebraic simplification can be used at
each step to reduce the complexity of expressions. Figure 10 shows an example of
this derivation.

op()[x > 1]/y := z +1

/y := y + 1

op()[x <= 1]/y := z + 2

s2

s3

s4

{y’=y}

{y’=y}

{y’=y+1}

s1
{x>1 => y’=z+2 &
 x<=1 => y’=z+2}

Figure 10 – Example of weakest precondition derivation

Alternatively, path conditions [29], which give information on the path-dependent
data dependencies can be used.

As described in the previous section, we approximate path predicates and path
conditions by assigning a set Vx of variables to every state x , such that Vx includes
all variables which may affect a certain set V of variables in a specific state s or in all
states. Vx corresponds to x .dependencySet in Figure 4. For loop-free state machines,
Vx contains var(x .stateInvariant) as computed by the above algorithm.

The initial step of data-based slicing computes the sets Vx by repeated iteration
over the transitions of the state machine.

An alternative form of slicing a state machine M is to compute its behaviour
when its sets of input events or output events are restricted. The initial step of such
event-based slicing [21] is to remove transitions triggered by the omitted input events,
for input event slicing, and to remove invocations of the omitted output events from
transition actions, for output event slicing.

Event-based and data-based slicing are inter-related, because data slicing of a
client component in a reactive system may remove certain events from its output
event set, so that its suppliers may be input event sliced on this reduced set of re-
quested events (if they have no other clients that could send the events). For example,
the input events set1on, set1half , set2none can be removed for the cb1 and cb2 com-
binator components in Figure 8 since they are never invoked.

Conversely, data slicing of a supplier component may remove all transitions trig-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

22 · K. Lano and S. Kolahdouz-Rahimi

gered by certain events, so that its clients may be output event sliced on these events
(if they have no other suppliers receiving the events).

For either data-based or event-based slicing, the following transformations can be
subsequently applied to simplify the sliced state machines: (i) removing unreachable
states and their incident transitions, (ii) slicing transitions to remove actions that can-
not affect the values of Vtrg in the target state trg of the transition (for data-based
slicing), (iii) replacing unmodified variables by their initial values, (iv) deleting transi-
tions with false guards, (v) merging transitions with the same source, target, actions
and trigger, (vi) R-merging states: combining pairs of states that have equivalent
sets of outgoing transitions, (vii) G-merging states: combining groups of states with
equivalent behaviour.

For data-based slicing, this sequence is followed by a recalculation of the Vx sets
and repetition of the simplification steps, until no further reduction in the state ma-
chine can be made1.

The criteria for data-slicing a state machine M are: S <syn M if S has fewer
elements (states, transitions, transition actions, etc) than M . Formally, if

Q(M) = sM + tM + vM + aM

is defined as a measure of the size of M , where sM is the number of states #StatesM
of M , tM is the number of transitions #TransitionsM in M , aM is the number of basic
transition action statements and vM the number of variables #VariablesM , then we
require Q(S) < Q(M). There should be an abstraction mapping

σM : StatesM → StatesS

of states, such that σ respects initial states:

σ(initialM) = initialS

and an abstraction mapping

σM : TransitionsM → TransitionsS

of transitions, such that σ respects triggers, sources and targets:

σM (tr).trigger = tr .trigger
σM (tr).source = σM (tr .source)
σM (tr).target = σM (tr .target)

for any tr : TransitionsM .
The σM mappings are total functions on the reachable states and executable transi-

tions of M : unreachable states and transitions of M may be deleted, as may transitions
with false guards, but these do not contribute to the semantics of M .

In addition, αS = αM and VariablesS ⊆ VariablesM .
Syntactically, the slice is structure-preserving except for cases where elements of

M are deleted or merged.
We define three versions of semantic equivalence, in each case V ⊆ VariablesS is

assumed:
1The data dependencies need to be recalculated because the set of states and the set of state

machine paths may have changed.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 23

• S =s,V
ssem M if for all skip-free sequences e of input events of M , starting from

S and M in their initial states, with the same values for common variables in
the initial states, the state σ(s) is reached by S as a result of the sequence e
whenever s is reached by M as a result of e, and then the values of the variables
V of interest are the same in the two models, as are the sequences sent of sent
messages:

∀ e : sf (M); ∀ v0, v ; ∀ sq : seq(out(M)) ·
initialM [VariablesM = v0] −→M

e s[V = v , sent = sq] ⇒
σ(initialM)[VariablesS = v1] −→S

e σ(s)[V = v , sent = sq]

where src[P] −→N
e trg [Q] denotes that there is a sequence of transitions in N

triggered in order by the event sequence e, starting from state src with P true,
and ending with state trg with Q true in trg . v1 are the initial values for the
elements of VariablesS defined by VariablesM = v0.

In addition, all skip-free input sequences of M should be skip-free input se-
quences of S2:

sf (S) ⊆ sf (M)

=ssem is reflexive and transitive (Appendix B).

• S =s,V
sem M is the same except that all input sequences e : seq(αM) of events of

M are considered, and the second condition is not required. These definitions
are therefore equivalent for complete state machines.

• S =s,V=v
wsem M if s[V = v] is reachable in M iff σ(s)[V = v] is reachable in S :

∃ e : seq(αM); v0 · initialM [VariablesM = v0] −→M
e s[V = v] ≡

∃ e ′ : seq(αS); v ′
0 · σ(initialM)[VariablesS = v ′

0] −→S
e′ σ(s)[V = v]

=sem and =ssem essentially express that S can simulate M ’s behaviour on the
variables V , for paths ending at s. A client of S will be unable to distinguish S ’s
behaviour from that of M if it can only observe the end-to-end transformation of data
values (v0 at the start to v at the end).

The sequence of sent output events (invoked operations) is also preserved by this
form of slicing, so again an observer will be unable to distinguish sequences of execu-
tions of S and M by their output behaviour.

The first semantic definition =ssem enables any analysis which concerns the value
of the slice variables V in the selected state s, over all skip-free paths to this state, to
be performed on the slice S , and the result will then also apply to M . In particular, if
predicate P can be proved to be a state invariant of s in S , then it will also be a state
invariant of s in M . (Each event sequence e leading to s in M has a corresponding
skip-free subsequence e ′ leading to s, with identical functionality. e ′ then also reaches
s in S .)

In the Alaris GP example, we can take V as the set {vtbi} of variables of the state
invariant property that we wish to prove. Data-based slicing on this set simplifies the
model, by eliminating variables such as display .

2In the case of state machines for operations, the empty sequence is the only case that needs to
be considered for e.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

24 · K. Lano and S. Kolahdouz-Rahimi

The second definition =sem is more general, however it does not permit the use of
the most powerful forms of state merging to reduce the size of state machines.

The third definition =wsem is relevant for hazard analysis of a system: if we want
to identify how a potentially hazardous situation V = v can occur in M , it is sufficient
to apply the analysis to a =wsem slice S .

For example, in the infusion pump example, it should never be possible to have
rate = 0 in the infusing state. Again, slicing using the set V = {rate}, according to
=wsem , substantially reduces the size of the model to be analysed.

Transformation (i) removes all states x which cannot occur in paths from the initial
state to the state s of interest, together with their incoming and outgoing transitions.

The algorithm for this transformation is:

for x : StatesM do

if s ̸∈ x .pathTo
then remove x and x .incoming and x .outgoing
else if x ̸∈ initialM .pathTo
then remove x and x .incoming and x .outgoing

This transformation is semantically valid with respect to =s
sem , =s

ssem and =s
wsem

since no sequence of input events e which reaches s from the initial state can produce
a path containing x or its incident transitions. The time complexity of this process
is of the order of tM ∗ sM .

For data-based slicing, given a particular state s in a state machine and a set V
of variables of interest in that state, we determine the data slice of the state machine
with respect to s and V by computing for each state x of the state machine, a set
Vx of variables such that: the value of the variables of Vx in state x may affect the
value of a variable in V in state s, but that no other variable in state x can affect V
in state s.

Formally, to each state x is assigned a set Vx of variables, such that, for all possible
paths from x to s, the value of V in s at the end of the path depends only upon the
values of Vx in x at the start of the path.

The sets Vx are computed by an iteration over all the transitions of the state
machine. They are initialised to {} for x ̸= s, and to V for Vs . For each transition

tr : s1 →op(p)[G]/acts s2

the set Vs1 of variables of interest in s1 are augmented by all variables which appear
in Preop and G , and by all variables which may affect the value of Vs2 in s2 as
a result of the class definition of op(p), followed by acts (as described in Section 3).
Dependencies for operation calls in acts are calculated from the definition of the called
operation, as we describe in Section 5 below.

Variables of transition guards G are not added to Vs1 if they cannot affect the
values of variables in Vs2.

Figure 11 shows a simple example of this process, where op has true precondition
and postcondition.

Here x can be removed from the dependency set of s1.
The iteration is repeated until there is no change in any Vx set. The algorithm

can be defined as:

while any x .dependencySet changes do

for tr : TransitionsM do

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 25

op()[x > 1]/y := z +1

/y := y + 1

op()[x <= 1]/y := z + 2

s2

s3

s4

{y}

{y}

{y}

s1
{x,z}

Figure 11 – Example of Vx derivation

tr .source.dependencySet := tr .source.dependencySet ∪
var(tr .guard) ∪ ρ−1

op (| dependents(tr .effect , tr .target .dependencySet) |)

var(tr .guard) can be omitted if tr is the only path from s1 = tr .source to s2 =
tr .target , s1 ̸= s2:

∀ t : s2.incoming − {tr} · s1 ̸∈ t .source.pathFrom

Likewise for self-transitions on x which do not update any variable of Vx .
There can be at most sM ∗ vM iterations of the while loop, so the worst case time

complexity of this process is of the order of tM ∗ sM ∗ vM .
Transformation (ii) uses the sets Vx to slice individual transitions to remove ac-

tions which cannot contribute to the values of the features V in state s. For a
transition

tr : s1 →op(x)[G]/acts s2

all updates in acts which do not affect Vs2 in s2 can be deleted from acts to produce
a simpler transition. This step is close to the usual data-slicing of procedural program
code to remove ineffective statements: tr .effect is replaced by slice(tr .effect ,Vtr .target)
for each transition tr . In addition, op can be data-sliced on dependents(tr .effect ,Vtr .target),
as described in Section 3.

This transformation is semantically valid wrt all three semantic equalities since
only the values of the variables in Vs2 in s2 affect the values of V in s. If a path for
input sequence e contains tr , then it has the same semantic effect on V in s as the
path which replaces tr by its sliced version where only the actions affecting Vs2 in s2
are retained. The time complexity of the transformation is linear in tM , because the
statements of the effect are basic statements.

An example of transition slicing is shown in Figure 12, the action z := x + z can
be deleted since it does not affect the value of y in s2.

Transformation (iii) replaces a variable v by a constant value e throughout a state
machine, if v is initialised to e on the initial transition tinit of the state machine, and

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

26 · K. Lano and S. Kolahdouz-Rahimi

s1 s2

s1 s2

op()/x := 5; z := x + z;
 y := w*x

op()/x := 5; y := w*x

{y}{w}

{w} {y}

Figure 12 – Transition slicing example

is never subsequently modified. Expressions in guards and statements can then be
simplified. Again this transformation is correct wrt the semantic relations because the
original and transformed models have identical semantics. It is a well-known compiler
optimisation strategy. The algorithm for this transformation is:

for v : VariablesM do

if v ∈ tinit .effect .writes and
v ̸∈ (TransitionsM − { tinit }).effect .writes

then

for t : TransitionsM − { tinit } do

(t .guard := t .guard .substitute(v , e);
t .effect := t .effect .substitute(v , e))

The worst case time complexity of this transformation is of the order of vM ∗(tM +aM)
where vM is the number of variables of M and aM is the number of basic transition
action statements of M .

Transformation (iv) deletes all transitions with a false guard. Algebraic reduction
is applied to simplify expressions such as x < 0 and x ≥ 0 to false. Since such
transitions cannot occur in any path, this transformation is semantically valid. The
time complexity of this transformation is linear in tM . This transformation is proved
correct in [14].

Transformation (v) merges all pairs of transitions which have the same triggers,
sources, targets and effects. The guard of the resulting transition is the disjunction
of the original guards. tr1 : s1 →op(x)[G1]/acts s2 and tr2 : s1 →op(x)[G2]/acts s2 can
be replaced by:

tr : s1 →op(x)[G1 or G2]/acts s2

Again, algebraic simplification can be applied, to reduce expressions such as x <
0 or x ≥ 0 to true, thus potentially reducing control dependencies.

The algorithm is as follows:

for x : StatesM do

for t1 : x .outgoing do

for t2 : x .outgoing do

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 27

if t1 ̸= t2 and t1.target = t2.target and
t1.trigger = t2.trigger and t1.effect = t2.effect

then

(t1.guard := disjunction(t1.guard , t2.guard);
delete t2)

This transformation is valid since the semantics of the original and transformed model
are identical. It is of time complexity sM ∗ t2M .

The induced mapping of transitions is:

σ(tr) =
t1 if tr = t2
tr otherwise

if t1 and t2 are merged by the algorithm.
Transformation (vi) implements a generalised version of the R-merge algorithm of

[10] for reduction of non-deterministic automata. It was also described, as ‘Collecting
transitions’ in [14]. If two non-final states have equivalent sets of outgoing transitions
then they can be merged. The incoming transitions of the resulting state are the
union of the separate sets of incoming transitions. Conceptually, the states are being
grouped together because they have identical behaviour.

The algorithm is:

for s1 : StatesM do

for s2 : StatesM do

if s1 ̸= s2 and s1 ̸∈ FinalState and s2 ̸∈ FinalState and
sameOutgoing(s1, s2) and sameOutgoing(s2, s1)

then

for t : s2.incoming do t .target := s1;
delete s2 and s2.outgoing

sameOutgoing(s1, s2) returns true in the case that

∀ t1 : s1.outgoing · ∃ t2 : s2.outgoing ·
t2.trigger = t1.trigger and t2.effect = t1.effect and
t2.guard = t1.guard and
(t2.target = t1.target or

(t2.target = s1 and t1.target = s2) or
(t2.target = s2 and t1.target = s1))

The merged state is initial in the new model if either s1 or s2 were initial in M .
This transformation has time complexity bounded by sM ∗ sM ∗ tM . It is seman-

tically correct since any path which enters s1 or s2 in the original model as a result
of input sequence e enters s1 in the new model as a result of e, with the same values
of variables. Paths within the set {s1, s2} in the original model become paths with
equivalent self-transitions on s1 in the new model. A transition exiting s1 or s2 and
with a target distinct from either, say s3, has an equivalent transition from s1 to s3
in the new model.

The induced abstraction mapping σ of states of M to states of S is:

σ(x) =
s1 if x = s2
x otherwise

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

28 · K. Lano and S. Kolahdouz-Rahimi

Likewise, σ(tr) of an outgoing transition of s2 in the original model is the correspond-
ing outgoing transition of s1 in the transformed model. The state invariant of s1 is
set to be the disjunction of the state invariants of s1 and s2.

Notice that the correctness of transformations (i) to (vi) does not depend on the
assumption that the input sequence e is skip-free. This assumption is needed for
transformation (vii). In addition, the first six transformations are of polynomial time
complexity in terms of the size of M .

Transformation (vii) merges a group K of states into a single state k if:

1. None of the states are final.

2. All transitions between the states of K have no actions. These become self-
transitions on k .

3. All transitions which exit the group K are triggered by events distinct from any
of the events that trigger internal transitions of K . If two transitions that exit
K have the same trigger but different target states or actions, they must be
distinguished by disjoint guard conditions as transitions from k .

4. Each event α causing exit from K cannot occur on states within K which are
not the explicit source of a transition triggered by α.

The induced abstraction mapping σ of states of M to states of S is:

σ(x) =
k if x ∈ K
x otherwise

Similarly, the transitions tr of M have corresponding interpretations as transitions
σ(tr) of S . The state invariant of k is set to be the disjunction of those of the states
of K .

After this transformation is applied, the Vx need to be recomputed, since the set
of states has changed, and additional paths have been added to the state machine.
The transformation is of exponential time complexity in the number of states of M .
The algorithm for general state merging is as follows:

α0 := { t : TransitionsM | t .effect .statements = Sequence{} };
sgroups := { { t .source, t .target } | t ∈ α0 and validGroup({ t .source, t .target }) };
while sgroups changes do

sgroups := sgroups ∪
{ sg1 ∪ sg2 | sg1 ∈ sgroups and sg2 ∈ sgroups and

sg1 ̸= sg2 and sg1 ∩ sg2 ̸= {} and
validGroup(sg1 ∪ sg2) };

result := { gg | gg ∈ sgroups and gg maximal };
mergeGroup(result→any())

validGroup(g) applies the checks in items 1, 2, 3 and 4 above on g . The algorithm
starts with basic groups composed of the end states of actionless transitions, then
tries to merge these into larger groups until no more mergings are possible. The final
step chooses a group that maximises the number of state mergings. This algorithm
is an optimised version of that defined for G-merge in [1]: instead of considering all
possible subsets of StatesM , only the possible candidates for G-merging are considered.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 29

This is considerably more efficient in the common case where only a few mergings are
possible (the size of sgroups is under 10).

The transformation is valid with respect to =s
ssem because if e is an input sequence

with a path which traverses K and ends with s, and has no implicit skips, then a
corresponding path ending with σM (s) in the transformed model can be constructed:

1. A transition to a state within K from a state outside it becomes a transition
with the same guard, source, trigger and actions, and with target k .

2. Explicit transitions of the path within K have corresponding transitions in the
new model, with identical trigger, guards and (skip) actions as self-transitions
on k .

3. A transition tr of the path which exits K must either have a trigger distinct
from the triggers of any of the internal transitions of K (by condition 3 in the
description of G-merging), or tr ’s guard condition is disjoint from the guards of
transitions triggered by tr .trigger which are internal to K (the generalisation of
condition 3). In either case tr is interpreted by a transition with source k and
unchanged trigger, guard, action and target in the new model.

The new path has identical functionality to the original path, and is a path for e in
the new model. The path ends with s if s ̸∈ K , otherwise it ends with k .

Figure 13 shows an example of this transformation.

s1

s2

s3

s4

s5

s6

s7

s8

s9

e2[G1]

e2[G2]

e2[G3]

e1

e3

e1

e4

e2
e3

e2

e5/acts2

e1/acts1

e6/acts3

s1 s

s9

s8

e1/acts1

e6/acts3

e5/acts2
e1

e2

e3 e4

Figure 13 – Merging states transformation (1)

Skip-free input event sequences such as e1, e3, e2, e6 or e1, e1, e2[G3], e4, e2, e2, e3, e5
have the same effect (acts1; acts3 and acts1; acts2 respectively) in the two models,
and produce paths between the same start and end states (s1 to s9 and s1 to s8,
respectively). This holds for any skip-free input event sequence of the original model.

Condition 3 can be generalised to allow events triggering internal transitions of K
to be the same as those triggering transitions that exit K , provided that the guards
of the latter transitions are disjoint from any within K , for each such event. For such

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

30 · K. Lano and S. Kolahdouz-Rahimi

events e, for each transition t that exits K and has t .trigger = e, there must be an
equivalent transition (with the same trigger, target, guard and effect as t) from each
state of K , and likewise the internal transitions triggered by e must be duplicated on
each state of K . Figure 14 shows an example of this case.

s1

s2

s3

s4

s5

s6

s7

op1() op2()[x > y]

op2()[x > y]

op2()[x > y]

op3()

op3()

op3()

op2()[x < y]

op2()[x < y]

op2()[x < y]

s2

s

s7

op2()[x < y]

op3() op3()

op2()[x > y]

s6s1
op1()

op2()[x = y]

op2()[x = y]

op2()[x = y]

op2()[x = y]

Figure 14 – Merging states transformation (2)

Finally, if (disjoint) state invariants are available for the source states of two
transitions in K with distinct source states, the same trigger, but different actions or
target states but overlapping guards, the state invariants can be used to make the
guards disjoint, to satisfy the generalised condition 3 (Figure 15).

The transformation is not valid for =sem . Instead, all actionless self-transitions
can be deleted: this step is valid only for =sem .

The complete algorithm for data-based state machine slicing for =ssem is then:

while some reduction occurs in the model
do

(compute reachability relations;
remove unreachable states and transitions;
compute dependency sets Vx;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 31

[I1]

[I2]

t1

t2

t1

t2

e[G1]/acts1

e[G2]/acts2

e[I2 and G2]/acts2

e[I1 and G1]/acts1

[I1 or I2]

ss1

s2

Figure 15 – Merging states transformation (3)

data − slice transition actions;
replace unmodified variables by their values;
delete unexecutable transitions;
merge transitions;
R − merge states;
G − merge states)

The order of transformations is chosen so that earlier steps may facilitate the ap-
plication of later steps (for example, slicing transition actions and replacing variables
may make explicit cases where two transitions have the same effect, enabling merging
of the transitions). The most time-consuming steps are postponed to the end of each
iteration.

The overall time complexity of the state machine slicing process is polynomial in
the size of the source state machine M , if transformation (vii) is omitted, because the
number of iterations of the transformation process is bounded by

Q(M) = vM + sM + tM + aM

since the iteration is only continued while Q is decreased, and each transformation
application reduces one of these quantities.

The techniques described in this section apply to any state machine in our subset
of the UML state machine language. In particular, they can be applied directly to the
product state machine c1.SMC1× ...×cm.SMCm of the state machines of components
within a reactive system.

However, it is more practical to decompose the slicing of systems by individually
slicing components of the system:

• Concurrent compositions of state machines, such as reactive system specifica-
tions, can be data-sliced by slicing each component state machine separately,
provided there is no explicit communication between the machines.

• Client and supplier machines can be data-sliced separately to produce a data-
slice of their composition.

In the first case, if state machine M is composed of orthogonal regions M1 and
M2, with disjoint sets of variables, αM1 is disjoint from out(M2) and αM2 is disjoint
from out(M1), and there are no references to the states or data of M1 from M2, or

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

32 · K. Lano and S. Kolahdouz-Rahimi

vice-versa, then if M1 is sliced with respect to variables V1 and state s1 of M1 to
produce a slice S1, this machine composed with M2 forms a V1,V2 and (s1, s2) slice
for M , where V2 are all features of M2, and s2 is any state of M2.

An example of this situation is the composition of the state machines for lf :
LineFollower and ca : CollisionAvoidance in the robot control system.

This holds for the general semantic equivalence =s,V
sem . For strict equivalence =ssem

the additional condition that αM1 and αM2 are disjoint is required.
In the second case, if state machine M is composed of orthogonal regions M1 and

M2, with disjoint sets of variables, αM1 is disjoint from out(M2) and αM2 is a subset
of out(M1), and there are no references to the states or data of M1 from M2, or vice-
versa, and αM1 and αM2 are disjoint, then if M1 is sliced with respect to variables
V1 and state s1 of M1 to produce a slice S1, and M2 is sliced with respect to variables
V2 and state s2 of M2 to produce a slice S2, S1 composed with S2 forms a V1,V2 and
(s1, s2) slice for M .

This holds for the general semantic equivalence =s,V
sem and for strict equivalence

=ssem .
The proofs are given in Appendix B.
Our notion of data and control dependency between states is simpler than the

concepts of transition post-domination [27] used in graph-theoretic approaches to
state machine slicing. Instead of computing a possibly very large data-and-control
flow graph, our technique relies primarily on the determination of a set of variables
for each state in the state machine.

5 Slicing of Communicating State Machines

The above slicing approach can be extended to systems which consist of multiple
communicating state machines, attached to linked objects, provided that the com-
munication dependencies M 1 → M 2 (M 1 sends messages to M 2, M 1 is a client of
M 2) form an acyclic directed graph. The data of a state machine then also includes
implicitly the data of all machines directly or indirectly subordinate to it in the client-
supplier hierarchy (ie, the data of objects whose operations are invoked from the state
machine).

5.1 Data-based slicing

For the lift system, we can separate out the door from the lift control class (Figure
16). In this version, the lift sends messages door .atDest(fps = dest) to the door when
the door state needs to change because of lift events.

Figure 17 shows (on the left) the new version of the arrive operation state machine
in this system, and the state machine of the invoked operation atDest (on the right).

The data-dependency calculation for each individual state machine is performed as
in Section 4, except that input parameters of calls are linked to the possible features
that could have been supplied as actual arguments to the call, in any call of the
operation in a superordinate state machine. The data-dependency due to an invoked
operation is calculated from the state machine of this operation, and the features
used as actual parameters. This uses a similar technique as the calculation of inter-
procedural data dependencies for the slicing of sequential programs [9].

In this example, the slice set V = {door .dm} in the final state of the arrive
operation state machine is used as the slice set in the final state of atDest , to calculate

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 33

<<enumeration>>
DMState

opening
closing
stopped

<<enumeration>>
LMState

up

stop
down

Door

10..1

door

atDest(b: Boolean)

dos: Boolean
dcs: Boolean
dm: DMState

doorstartsopening()
dooropens()
doorstartsclosing()
doorcloses()

Lift

fps: Integer
dest: Integer
lm: LMState
maxfloor: Integer {readOnly}

doorcloses()
doorstartsclosing()
dooropens()
doorstartsopening()
request(f: Integer)
arrive(f: Integer)

Figure 16 – Lift with subordinate Door

[b = true]

[b = false]

at
floor

not at
floor [dcs = false]/

 dm := closing

s0

[dcs = true]/dm := stopped

[dos = true]/
 dm := stopped

s1

s2

s3

[f = dest]/
 lm := stop

[f /= dest]

 lm := stop
[door.dcs = false]/

/door.atDest(f = dest)

[door.dcs /= false]

 dm := opening
[dos= false]/

Figure 17 – arrive and atDoor state machines

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

34 · K. Lano and S. Kolahdouz-Rahimi

the dependency of this invocation. This produces the set {b, door .dos, door .dcs} at
the initial state s0 of atDest . The only possible variables whose values can be used
in the parameter b are dest and f , so the actual dependencies from the call are
{dest , f , door .dos, door .dcs}, and this is set as the dependency set in s3, it is also the
dependency set at the start of arrive.

The general procedure for calculating V ′ = dependents(c.op(e),V) for an invoca-
tion of a subordinate component operation c.op(e) is as follows:

1. For each transition tr of the state machine of c, with tr .trigger = op, compute

dependents(p := e, var(tr .guard) ∪ ρ−1
c.op(| dependents(tr .effect ,V) |))

where p are the formal parameters of op.

2. If an implicit skip transition can occur for c.op in c, include the set V .

3. Take V ′ as the union of these sets.

The same concepts of syntactic < and semantic relations = can be used for com-
posite state machines as for single state machines, but taken with respect to the full
data of each state machine, including the data of subordinate (supplier) machines.

These structures of state machines are common in reactive systems, where the
leaf components represent single devices (actuators) which are managed by supervi-
sor controllers in a hierarchy: the top levels of the hierarchy may manage complete
processes whilst the lower levels are responsible for steps within a process [25].

5.2 Event-based slicing

Slicing of an individual state machine M within a hierarchy of communicating state
machines can lead to further simplification of both subordinate (supplier) state ma-
chines and superordinate (client) state machines in the hierarchy, using event-based
slicing.

For machines M ′ directly subordinate to M , input event slicing can be used [21].
This simplifies a state machine by removing certain input events from its behaviour.
The notation M � E denotes M restricted to a set E of input events. If M is the only
client of M ′, all events e which are no longer generated by the slice S of M can be
removed from the input alphabet of M ′ to produce a slice S ′. Transitions triggered
by e in M ′ can be removed, and M ′ simplified to S ′ by using the transformations (i),
(iii) to (vii) above. The same concepts of semantic equivalence are used, except that
we restrict attention to those histories composed of sequences of events from E :

∀ e : sf (M) ∩ seq(E); ∀ v0, v ; ∀ sq : seq(out(M)) ·
initialM [VariablesM = v0] −→M

e s[V = v , sent = sq] ⇒
σ(initialM)[VariablesS = v ′

0] −→S
e σ(s)[V = v , sent = sq]

for =ssem and similarly for =sem and =wsem .
Likewise, if M 1 has M as its only supplier, and directly invokes operations of M ,

if the slice S of M no longer has any explicit transitions for certain input events e
of M , M 1 can be output event sliced, by which invocations of e are removed from
the actions of transitions of M 1. This could then enable transition merging or state
merging transformations to simplify M 1 to S1.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 35

The semantic equality for output event slicing with respect to event set E permits
sent events to be omitted unless they are in E :

∀ e : sf (M); ∀ v0, v ; ∀ sq : seq(out(M)) ·
initialM [VariablesM = v0] −→M

e s[V = v , sent = sq] ⇒
σ(initialM)[VariablesS = v ′

0] −→S
e σ(s)[V = v , sent = sq�E]

for =ssem and similarly for =sem . sq�E is the subsequence of sq consisting of the
events of E .

To calculate the restriction MS � E of an acyclic hierarchy MS of communicating
state machines, we calculate R � E for the machines R without clients in MS , then
for interior machines Mx , compute Mx �

∪
M∈clients(Mx) out(M ′) where the M ′ are

the transformed forms of the clients M of Mx in MS .
More generally, input event slicing could be used when:

• We want to investigate the behaviour of the system when the input set of events
is restricted to a subset (this could also include restricting the range of values
of the parameters carried by these events).

For example, in the robot control system it can be determined that the robot
never turns left if input events for lsright are removed.

• We wish to show that the behaviour of the system on a subset of input events
is identical to another system (such as an earlier version of the same system).

For example, the infusion pump should behave in the same way as a previous
version of the same device when used in the same manner, to avoid potentially
hazardous mistakes by users familiar with the previous version. If the previous
version had no bag selection facility select or operation bt3, input slicing on
these operations reveals that the new version has inconsistent behaviour with
the previous version for histories such as bt2(); bt2(); bt1(), and that states
setVTBI and selectBag cannot be merged.

• The state machine is to be reused in a new environment where certain events
cannot occur.

For example, removing unused events from the Combinator instances in the
robot control system.

If a state machine is placed in an environment in which certain events (operations
invoked on the state machine) cannot occur, we can simplify the state machine by
omitting these events.

In the case that the values of input parameters are restricted, guards which use
these values can be simplified by using these additional constraints. In some cases,
guards may become simplified to false, so that the transition can be deleted.

The complete algorithm for input event state machine slicing is:

delete transitions whose trigger is not in E;

while some reduction occurs in the model
do

(compute reachability relations;
remove unreachable states and transitions;
replace unmodified variables by their values;
delete unexecutable transitions;

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

36 · K. Lano and S. Kolahdouz-Rahimi

merge transitions;
R − merge states;
G − merge states)

The general motivations for output event slicing are:

• We want to inspect the state machine’s modes and effect on one group of output
devices, independently of its effect on certain others.

• We want to factor a large state machine into parallel controllers, which are each
responsible for separate subsystems of a control system, to enable reuse and
greater flexibility [28].

In particular, given a state machine M which sends disjoint sets E1 and E2 of
events to disjoint subordinate groups M 1 and M 2 of components, we can output slice
M on E1 to obtain a local controller S1 of M 1, and output slice M on E2 to obtain a
local controller S2 of M 2, then combine S1 and S2 in parallel to achieve the original
effect of the monolithic controller M .

This is only appropriate for remodularisation if the groups of components in sep-
arate modules do not have required order relations on their actions relative to each
other.

The complete algorithm for output event state machine slicing is:

delete transition actions which are operation calls of excluded events;
while some reduction occurs in the model
do

(compute reachability relations;
remove unreachable states and transitions;
replace unmodified variables by their values;
delete unexecutable transitions;
merge transitions;
R − merge states;
G − merge states)

As an example of output event slicing and refactoring, consider a control system
for a simple gas burner, which has two sensors: a switch sw , flame detector fd , and
three actuators: a gas valve gv , air valve av and ignitor ig (Figure 18).

In this example, the gas valve and air valve must be controlled by the same con-
troller, because it is a safety requirement that the air valve is always on when the
gas valve is on. The ignitor can be controlled by a separate state machine, however.
Therefore we output slice on the actions of the valves, to produce one subcontroller
(Figure 19), and on the actions of the ignitor to produce another subcontroller (Figure
20).

By using the third version of G-merging we can simplify these subcontrollers to
produce the models of Figure 21.

5.3 Deadlock detection

Slicing can also be used to simplify state machines to facilitate the detection of po-
tential deadlock situations. A potential deadlock occurs when the current state of
the system has no available transitions for any event in the input event queue of
the system. We extend the semantic model of state machines M to include a queue

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 37

idle igniting

igniteddispersing

fdon()/
 avopen()

swon()/avopen();
 gvopen(); igon()

fdoff()/avclose()

swoff()/igoff();
 gvclose(); avclose()

 igoff()
fdon()/

swon()/gvopen()

swoff()/gvclose()

fdoff()/
igon()

Figure 18 – Original gas burner state machine

idle igniting

igniteddispersing

fdon()/
 avopen()

swon()/avopen();
 gvopen()

fdoff()/avclose()

swoff()/
 gvclose(); avclose()

fdoff()

fdon()

swon()/gvopen()

swoff()/gvclose()

Figure 19 – Valves controller

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

38 · K. Lano and S. Kolahdouz-Rahimi

idle igniting

igniteddispersing

fdoff()
 igoff()

fdon()/fdon()

swon()/igon()

swoff()/igoff()

swon()

swoff()

fdoff()/
igon()

Figure 20 – Controller for ignitor

idle1

swon()/avopen();
 gvopen()

swoff()[fd = off]/
 gvclose(); avclose()

dispersing1

 avopen()
fdon()/

fdoff()/avclose()

swoff()[fd = on]/
 gvclose()

active idle2

igniting

swon()
 [fd = off]/
 igon()

fdoff()[sw = on]/
 igon()

swoff()/
 igoff()

fdon()/
 igoff()

swon()/
gvopen()

swon()[fd = on]

fdoff()
[sw = off]

fdon()
fdoff()

fdon()

swoff()

Figure 21 – Controllers after state merging

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 39

waitingM : Bag(αM) of input events which have been received by M but not yet
accepted (referred to as the event pool in [23], page 569). No order is assumed for
the events in the input event queue, however a specific policy such as ‘first come, first
served’ may be used, which enforces that already-received events must be accepted
before later arrivals.

States may list events as deferred, meaning that the events cannot be accepted in
the state. s.deferrableTrigger is the set of deferred events of state s.

A potential deadlock arises when waitingM is non-empty, and

waitingM ⊆ s.deferrableTrigger

for the currently active state s of M .
An appropriate slicing definition for simplifying the analysis of potential deadlocks

is: S <dsyn M is S <syn M together with the condition that

∀ st : StatesM · st .deferrableTrigger = σM (st).deferrableTrigger

S =s
dsem M is S =

s,{}
sem M , together with the condition that waitingM at state s equals

waitingS at state σM (s).
We can therefore deduce that, for potential deadlock detection:

1. Only states with deferrableTrigger non-empty need to be considered for s.

2. Transformations (i), (iii), (iv) and (v), deleting unreachable states, deleting tran-
sitions with false guards, transition merging and replacing variables by constants
preserve potential deadlocks.

3. Only variables that affect which state is active need to be considered: that is,
we can take the initial slice set Vx (for data-based slicing) for each state x equal
to the set of variables in the guards of its outgoing transitions.

4. R-merging of two states is valid provided the additional condition that they
have the same deferrableTrigger sets is true.

5. Non-blocking leaf components L in a reactive system can be removed (that is,
components whose states all have empty deferrableTrigger sets), provided their
data and states are not referred to in their clients. Clients of L can then be
output event sliced on αL.

We can deduce that: A state s of M has a potential deadlock in M iff σ(s) has a
potential deadlock in a slice S of M computed using these transformations.

We illustrate these transformations on the classic ‘dining philosophers’ example.
Figure 22 shows the class diagram of philosopher, fork and bell components, and
Figure 23 their state machines.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

40 · K. Lano and S. Kolahdouz-Rahimi

Philosopher Fork

Bell

count : Integer pickup()
putdown()

ring()

1

bell

1

1

right

left

0..1

0..1

starteat()
startthink()

0..1

Figure 22 – Dining philosophers system

starteat()/
 left.pickup()

has_one
_fork

think−
ing

eating

startthink()/

right.putdown()

/left.putdown()

down
defer:
 putdown()

up
defer:
pickup()

pickup()

ring()

bell

 putdown()

/right.pickup();
count :=
 count + 1

;
bell.ring()

Figure 23 – Dining philosophers state machines

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 41

Consider a simple configuration with two instances of each class:

b1 : Bell
b2 : Bell
f 1 : Fork
f 2 : Fork
p1 : Philosopher
p2 : Philosopher
p1.bell = b1
p2.bell = b2
p1.left = f 1
p1.right = f 2
p2.left = f 2
p2.right = f 1

An input event sequence

p1.starteat(), p2.starteat()

from the initial system state can lead to the potential deadlock state where both
philosophers are in the has one fork state, and both forks are in the up state with
pickup() in their event queues.

Identification of this system state can be equivalently carried out on the sliced
version of the system. The local variable count of Philosopher can be sliced away, as
can the non-blocking leaf component Bell and its events.

6 Evaluation

State machine slicing for state machines of objects and operations has been imple-
mented in the UML-RSDS tools [17, 22], using the algorithms defined in Sections 3
and 4.

To test the efficiency of the algorithms presented here, we carried out the data and
event-based slicing of a concurrent composition M of multiple copies of a component
N with three states (Figure 24 shows the data slice of this machine for V = {}, and
two copies of N).

The state space of M therefore has 3n states, for n copies. There are n ∗
#TransitionsN ∗ (#StatesN)n−1 transitions in M , ie, n ∗ 3n transitions. This is a
‘worst case’ test of data-slicing, because almost all states can be G-merged, if only
one variable is retained in the slice: the resulting sliced state machine should have
two states as in Figure 24.

Table 1 shows the size of these test cases, and execution time for data and input
event slicing. There are approximately 2sM sets of states which are connected only
by actionless transitions, and are therefore considered by the G-merge algorithm.
However, this number can be bounded by merging sets of states only up to some
limited size at each cycle of the algorithm: iteration of merging eventually achieves
the same effect as attempting to identify and merge a large group of states in the
original state machine.

These tests were executed on a Windows XP laptop with Pentium 4M 2GHz
processor, and 256MB RAM. The final test case produced an out-of-memory error
for data slicing. Test cases 4 and 5 are larger than any considered in [1], and the
efficiency of our G-merge algorithm is higher.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

42 · K. Lano and S. Kolahdouz-Rahimi

Figure 24 – Test case state machine

Test case States Transitions Data slicing (ms) Event slicing (ms)
1 3 3 0 0
2 9 18 20 20
3 27 81 3619 30
4 81 324 67,348 151
5 243 1215 – 359

Table 1 – Test cases

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 43

Data-slicing the flattened state machine M on a.x for a particular component a
reduces M to the two-state data slice of a.N . Likewise, input event slicing to retain
the events a.op1, a.op2 also reduces M to the slice of a.N . In this respect, slicing
is an inverse to flattening, and can extract the components of a flattened product of
state machines from the product.

Further examples of event-based slicing have been carried out on industrial appli-
cations, with substantial reductions in model sizes [1].

7 Related Work

Transformations for simplifying UML state machines and class diagrams are defined
in [13, 14], and transformations to simplify activity diagrams described in [7]. These
are not based upon a reduction of the set of variables or system events, but rely on
semantic equivalence to restructure systems without such reduction: slicing techniques
are more powerful than such transformations in principle since a weaker condition of
semantic equivalence is required.

Similar concepts for event-based slicing of hierarchically organised reactive systems
are described in [5], although individual components are not simplified by this process,
only their interfaces are reduced.

In contrast to the work of [30, 12] on state machine slicing, we do not require the
sliced system of state machines to be equivalent to the original for general temporal
logic properties, but only with regard to the values of features in a particular state.
Thus substantial reduction techniques such as G-merging can be used, and our state
machine slices may be potentially much simpler than the original state machines.

In [19] two additional state machine reduction transformations are described: (i)
path contraction and (ii) AND-factoring. Path contraction is applicable if a state has
a single incoming and outgoing transition, it can then be removed and the transitions
combined, if the outgoing transition has a completion trigger (Figure 25).

s1

s2

s3

s1 s3

op(x)[G]/acts1

/acts2

op(x)[G]/acts1;acts2

Figure 25 – Path contraction

This may be generalised to the case of multiple outgoing transitions from the
second state.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

44 · K. Lano and S. Kolahdouz-Rahimi

In principle, both of these transformations could also be used in our state machine
slicing process, since they preserve the semantic relations whilst reducing syntactic
complexity.

8 Summary

We have defined systematic techniques for the slicing of UML class diagram and
state machine models of reactive systems. These techniques support the reduction of
models to syntactically smaller but semantically related models, either on the basis of
a set of features of interest, or (for state machines) on the basis of a subset of input or
output events of interest. Properties of the original model can be deduced from those
of the sliced model. In addition, models can be factored on the basis of groups of
features or events. Extension of this work to activity diagrams and sequence diagrams
is planned.

References
[1] K. Androutsopoulos, D. Binkley, D. Clark, M. Harman, K. Lano et al, Model projec-

tion: simplifying state-based models in response to restricting the environment, ICSE
2011, doi: http://doi.acm.org/10.1145/1985793.1985834.

[2] R. A. Brooks, Intelligence without representation, Artificial Intelligence (47), pp. 139–
159, 1991.

[3] I. Bruckner, H. Wehrheim, Slicing Object-Z Specifications for Verification, ZB 2005,
LNCS 3455, Springer-Verlag, pp. 414–433, 2005.

[4] Cardinal Health Inc., Alaris gp volumetric pump, technical report, Cardinal Health,
1180 Rolle, Switzerland, 2006.

[5] S. Cheung, J. Kramer, Context constraints for compositional reachability analysis,
ACM Transactions on Software Engineering and Methodology, 5(4), October 1996.

[6] D. Clark, Amorphous Slicing for EFSMs, PLID’ 07, 2007.
[7] R. Eshuis, R. Wieringa, Tool support for verifying UML activity diagrams, IEEE

Transactions on Software Engineering, 30 (7): pp. 437–447, 2004.
[8] M. Harman, D. Binkley, S. Danicic, Amorphous Program Slicing, Journal of Sys-

tems and Software, 68 (1): 45 – 69, October 2003, doi: http://dx.doi.org/10.1016/

S0164-1212(02)00135-8.
[9] S. Horwitz, T. Reps, D. Binkley, Interprocedural Slicing using Dependence Graphs,

Trans on Prog. Lang. and Syst., 12 (1): 26–60, 1990.
[10] L. Ilie, R. Solis-Oba, S. Yu., Reducing the size of NFAs by using Equivalences and

Preorders, CPM 2005, LNCS 3537, pp. 310–321, 2005.
[11] B. Korel, I. Singh, L. Tahat, B. Vaysburg, Slicing of State-based Models, ICSM ’03,

19th IEEE International Conference on Software Maintenance, IEEE Press, 2003.
[12] S. Langenhove, A. Hoogewijs, SVtL: System verification through logic tool support for

verifying sliced hierarchical statecharts, LNCS, Recent Trends in Algebraic Develop-
ment Techniques, pp. 142–155.

[13] K. Lano, J. Bicarregui, Semantics and Transformations for UML Models, UML 98,
Mulhouse, France, June 1998, Springer-Verlag LNCS vol. 1618, 1998, pp. 107–119.

[14] K. Lano, J. Bicarregui, UML Refinement and Abstraction Transformations, ROOM 2
workshop, Bradford University, May 1998.

[15] K. Lano, Logical Specification of Reactive and Real-Time Systems, Journal of Logic
and Computation, vol. 8, no. 5, pp. 679–711, 1998, doi: http://dx.doi.org/10.1093/

logcom/8.5.679.

Journal of Object Technology, vol. 10, 2011

http://doi.acm.org/10.1145/1985793.1985834
http://dx.doi.org/10.1016/S0164-1212(02)00135-8
http://dx.doi.org/10.1016/S0164-1212(02)00135-8
http://dx.doi.org/10.1093/logcom/8.5.679
http://dx.doi.org/10.1093/logcom/8.5.679
http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 45

[16] K. Lano, D. Clark, K. Androutsopoulos, UML To B: Formal Verification of Object-
oriented Models, IFM 2004, Springer-Verlag LNCS vol. 2999, pp. 187–206, doi: http:

//dx.doi.org/10.1007/978-3-540-24756-2_11.
[17] K. Lano, Constraint-Driven Development, Information and Software Technology, 50,

2008, pp. 406–423, doi: http://dx.doi.org/10.1016/j.infsof.2007.04.003.
[18] K. Lano, A Compositional Semantics of UML-RSDS, SoSyM, vol. 8, no. 1, February

2009, pp. 85–116, doi: http://dx.doi.org/10.1007/s10270-007-0064-x.
[19] K. Lano, Slicing of UML state machines, AIC ’09 Proceedings, pp. 63–69, Moscow,

August 2009.
[20] K. Lano (ed.), UML 2 Semantics and Applications, Wiley, 400 pages, 2009.
[21] K. Lano, Event slicing of communicating state machines, Dept. of Computer Science,

King’s College London, October 2009.
[22] K. Lano, S. Kolahdouz-Rahimi, Specification and Verification of Model Trans-

formations using UML-RSDS, IFM 2010, doi: http://dx.doi.org/10.1007/

978-3-642-16265-7_15.
[23] OMG, UML superstructure, version 2.3. OMG document formal/2010-05-05, 2009.
[24] OMG, Model-Driven Architecture, http://www.omg.org/mda/, 2004.
[25] F. J. Ortiz, D. Alonso, B. Alvarez, J. A. Pastor, A Reference Control Architecture for

Service Robots Implemented on a Climbing Vehicle, Ada Europe 2005, Springer LNCS
vol. 3555, pp. 13–24.

[26] Praxis Ltd., The SPADE Program Analyser, 2008.
[27] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, A New Foundation for Con-

trol Dependence and Slicing for Modern Program Structures, ACM Trans. Prog. Lang.
and Sys. Vol 29, No 5, August 2007, doi: http://doi.acm.org/10.1145/1275497.

1275502.
[28] A. Sanchez, E. Aranda-Bricaire, F. Jaimes, E. Hernandez, A. Nava, Synthesis of

product-driven coordination controllers for a class of discrete-event manufacturing
systems, Elsevier Science preprint, 2009.

[29] G. Snelting, T. Robschink, J. Krinke, Efficient path conditions in dependence graphs
for software safety analysis, ACM Transactions on Software Engineering and Method-
ology, vol. 15, no. 4, October 2006, pp. 410–457, doi: http://doi.acm.org/10.1145/

1178625.1178628.
[30] J. Wang, W. Dong, Z.-C. Qi, Slicing hierarchical automata for model checking UML

statecharts, ICFEM, 2002.
[31] M. Weiser, Program slicing, IEEE Transactions on Soft. Eng., 10, July 1984, pp. 352–

357.
[32] F. Wu, T. Yi, Slicing Z Specifications, ACM Sigplan, vol. 39 (8), August 2004.

About the authors
Kevin Lano is the Reader in Software Engineering at King’s College London. He is the
author of over 100 conference and journal papers, and several books. His research covers the
fields of formal specification, semantics of software modelling languages, model transforma-
tion and model verification.

Shekoufeh Kolahdouz-Rahimi is a PhD student in the Department of Informatics at
King’s College London. Her research interests are in the comparison and analysis of model
transformation languages and approaches.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.1007/978-3-540-24756-2_11
http://dx.doi.org/10.1007/978-3-540-24756-2_11
http://dx.doi.org/10.1016/j.infsof.2007.04.003
http://dx.doi.org/10.1007/s10270-007-0064-x
http://dx.doi.org/10.1007/978-3-642-16265-7_15
http://dx.doi.org/10.1007/978-3-642-16265-7_15
http://www.omg.org/mda/
http://doi.acm.org/10.1145/1275497.1275502
http://doi.acm.org/10.1145/1275497.1275502
http://doi.acm.org/10.1145/1178625.1178628
http://doi.acm.org/10.1145/1178625.1178628
http://dx.doi.org/10.5381/jot.2011.10.1.a11

46 · K. Lano and S. Kolahdouz-Rahimi

Acknowledgments The work carried out in this paper was supported by the SLIM EP-
SRC project. In particular, David Clark, Kelly Androutsopoulos, David Binkley and Mark
Harman have assisted us in the refinement of the state machine slicing concepts presented
here.

A Definition of slicing and data dependency for statements
Write and read frames for statements can be defined as follows:

wr(x := e) = {x}
rd(x := e) = var(e)

wr(S1; S2) = wr(S1) ∪ wr(S2)
rd(S1; S2) = rd(S1) ∪ rd(S2)

wr(if E then S1 else S2) = wr(S1) ∪ wr(S2)
rd(if E then S1 else S2) = var(E) ∪ rd(S1) ∪ rd(S2)

The function

dependents : Statement × F(Variable) → F(Variable)

gives the set V ′ of variables whose values at the start of an execution of the statement may
affect the values of the supplied variables at the end of the execution.

dependents(x := e, V) =

V if x ̸∈ V
rd(e) ∪ (V − {x}) otherwise

dependents(S1; S2,V) = dependents(S1, dependents(S2,V))

dependents(if E then S1 else S2,V) = rd(E) ∪ dependents(S1,V) ∪ dependents(S2,V)

dependents(c.op(e),V) =∪
tr :TransitionsN∧tr.trigger=op dependents(p := e, (var(tr .guard) ∪ ρ−1

c.op(| dependents(tr .effect ,V) |)))

where N is the state machine which supplies c.op to the caller, and p are the formal param-
eters of op. If implicit skip transitions of N can occur in response to c.op, then V is also
added to the result set.

The function

slice : Statement × F(Variable) → Statement

computes the slice of the statement with respect to the variables V .

slice(x := e, V) =

skip if x ̸∈ V
x := e otherwise

slice(S1; S2,V) = slice(S1, dependents(S2,V)); slice(S2,V)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 47

slice(if E then S1 else S2,V) =

slice(S1,V) if slice(S1,V) = slice(S2,V)

if E then slice(S1,V) else slice(S2,V) otherwise

Weakest preconditions are defined as follows:

wpc(x := e, P) = P [e/x]

wpc(S1; S2,P) = wpc(S1,wpc(S2,P))

wpc(if E then S1 else S2,P) =

(E ⇒ wpc(S1,P)) ∧
(¬ E ⇒ wpc(S2,P))

Notice that dependents(Stat ,V) = var(wpc(Stat ,V = v ′)) where the v ′ are considered
as constants, for statements without operation calls.

B Proofs of theorems

B.1 Transitivity of semantic equivalence
<syn is transitive because if R <syn S and S <syn M , then

Q(R) < Q(S) ∧ Q(S) < Q(M)

so Q(R) < Q(M).
The abstraction mappings

τM : StatesM → StatesR

of states and

τM : TransitionsM → TransitionsR

of transitions are defined as the compositions of the abstraction mappings σM from M to S
and σS from S to R.

In addition, αR = αM and VariablesR ⊆ VariablesM .
Therefore R <syn M .
For s,V

sem , assume that S =s,V
sem M and R =

σM (s),V
sem S , where V ⊆ VariablesR.

Then:

∀ e : seq(αM); ∀ v0, v ·
initialM [VariablesM = v0] −→M

e s[V = v] ⇒ σM (initialM)[VariablesS = v1] −→S
e σM (s)[V = v]

where v1 are the initial values for VariablesS defined in v0, and

∀ e ′ : seq(αS); ∀w0,w ·
initialS [VariablesS = w0] −→S

e′ s ′[V = w] ⇒ σS (initialS)[VariablesR = w1] −→R
e′ σS (s ′)[V = w]

where s ′ = σM (s).
Then if e ∈ seq(αM), and

initialM [VariablesM = v0] −→M
e s[V = v]

take w = v , w0 = v1 in the second definition, and e ′ = e, then:

initialS [VariablesS = v1] −→S
e σM (s)[V = v]

since σM (initialM) = initialS , so

σS (initialS)[VariablesR = w1] −→R
e τM (s)[V = v]

as required. Likewise if sent messages sent are also considered.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

48 · K. Lano and S. Kolahdouz-Rahimi

B.2 Slice factorisation
Let M be a state machine with two orthogonal regions M1 and M2, with disjoint sets of
variables, and with no reference between these regions to the state or data of the other
region.

Select any state s2 of M2.
If S1 is an M1 slice for state s1 of M1 and set V1 of variables of M1, with respect to =sem ,

then any input event sequence e of events of M with

(initialM1 , initialM2)[VariablesM = v0] −→M
e (s1, s2)[V = v]

also has

initialM1 [VariablesM1 = w0] −→M1
e�αM1

s1[V1 = v1]

in M1, where V = V1,V2 and V2 is the set of all variables of M2, so

σM1(initialM1)[VariablesS1 = w ′
0] −→S1

e�αM1
σ(s1)[V1 = v1]

since S1 is a =s1,V1
sem slice of M1. But then

(σM1(initialM1), initialM2) −→S
e (σ(s1), s2)[V = v]

because the events of αM2−αM1 in e have no effect upon the state or data of M1. Therefore
S1 composed with M2 is a =sem slice of M .

This proof needs modification for =ssem slices, because if an event is in both αM1 and
αM2 then e � αM1 may not be skip-free in M1, even if e is skip-free for M .

The additional hypothesis that αM1 and αM2 are disjoint is therefore necessary for
=ssem .

For client-supplier factorisation, assume that S1 =s1,V1
sem M1 and S2 =s2,V2

sem M2:

∀ e : seq(αM1); ∀ v0, v ; ∀ sq : seq(out(M1)) ·
initialM1 [VariablesM1 = v0] −→M1

e s1[V1 = v , sent = sq] ⇒
σ1(initialM1)[VariablesS1 = v1] −→S1

e σ1(s1)[V1 = v , sent = sq]

and

∀ e ′ : seq(αM2); ∀w0,w ; ∀ r : seq(out(M2)) ·
initialM2 [VariablesM2 = w0] −→M2

e′ s2[V2 = w , sent = r] ⇒
σ2(initialM2)[VariablesS2 = w1] −→S2

e′ σ2(s2)[V2 = w , sent = r]

If we take e ′ = sq�αM2 in the second inference, we can conclude that

∀ e : seq(αM); ∀ u0, u ·
(initialM1 , initialM2)[VariablesM = u0] −→M

e (s1, s2)[(V1,V2) = u, sent = r] ⇒
(σ1(initialM1), σ2(initialM2))[VariablesS = u1] −→S

e (σ1(s1), σ2(s2))[(V1,V2) = u, sent = r]

for M and S , as required, where u0 = (v0,w0), u1 = (v1,w1), u = (v ,w).
This holds since M2 receives input events only from M1, and αM = αM1, αM2 ⊆

out(M1).

C Summary of UML and OCL notations used
UML-RSDS is a model-based development and analysis method for software systems. It uses
the following UML models:

• Use case models

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

Slicing Techniques for UML Models · 49

• Simplified class diagram models

• State machine models

• OCL constraints

• Structured activities.

Communication between objects and between state machines is point-to-point from a specific
client to a specific supplier, not broadcast.

The semantics of UML-RSDS is expressed in real-time action logic [15]. For each UML-
RSDS model M we can define (i) a logical language LM that corresponds to M , and (ii) a
logical theory ΓM in LM , which defines the semantic meaning of M , including any internal
constraints of M .

The first-order language LM consists of type symbols for each type defined in M , includ-
ing primitive types such as integers, reals, booleans and strings which are normally included
in models, and semantic types C for each classifier C defined in M . There are attribute
symbols att(c : C): T for each property att of type T in the feature set of a classifier C .
There are attributes C to denote the set of currently existing instances of each classifier C , ie,
its extent. This corresponds to C .allInstances() in OCL. There are action symbols op(c : C,
p : P) for each operation op(p : P) in the features of C [18]. Collection types (sets, ordered
sets, sequences, bags) and operations on these and the primitive types are also included. The
OCL logical operators and , or , implies, not are semantically represented by ∧, ∨, ⇒, ¬ .
∪ denotes union of two collections, returning a collection of the same kind. {x : X | φ(x)}
denotes the subcollection of collection X consisting of the elements that satisfy φ(x).

The theory ΓM includes axioms expressing the multiplicities of association ends, the
mutual inverse property of opposite association ends, deletion propagation through compos-
ite aggregations, the existence of generalisation relations, and the logical semantics of any
explicit constraints in M , including pre/post specifications of operations. For example, if
classifier C generalises classifier D , this is expressed by the axiom D ⊆ C.

For a sentence φ in LM , there is the usual notion of logical consequence:

ΓM ⊢ φ

means the sentence is provable from the theory of M , and so holds in M .
The theory ΓP of a particular configuration P of a reactive system includes constants

c: C for each component instance c of class C , together with semantic representations of its
attributes (ie., the variables of P) and operations.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a11

	Introduction
	Slicing of Constraint-based Class Diagrams
	Slicing of Operation-based Class Diagrams
	State Machine Slicing
	Slicing of Communicating State Machines
	Data-based slicing
	Event-based slicing
	Deadlock detection

	Evaluation
	Related Work
	Summary
	About the authors
	Definition of slicing and data dependency for statements
	Proofs of theorems
	Transitivity of semantic equivalence
	Slice factorisation

	Summary of UML and OCL notations used

