
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Strong exception-safety for checked
and unchecked exceptions

Giovanni Lagorioa Marco Servetto a

a. DISI - University of Genova
Via Dodecaneso, 35
16146 Genova, Italy

Acknowledgments This work has been partially supported by MIUR DISCO -
Distribution, Interaction, Specification, Composition for Object Systems.

Abstract “Exception-safety strong guarantee: The operation has
either completed successfully or thrown an exception, leaving the
program state exactly as it was before the operation started.”
David Abrahams [Abr00]
The above definition of strong exception-safety comes from the world of
C++, but it can be applied to any language.

Because the exception-safety strong guarantee plays a central role in
easing the development of robust software, we have designed a type-system
able to capture its essence. The idea is that the state of the reachable
objects at the beginning of a catch block is the same as the beginning of
the corresponding try block.

We present a lightweight type system for Java-like languages that, by
introducing a simple modifier to types, enforces that programs satisfy the
strong guarantee in the presence of checked and unchecked exceptions.

1 Introduction

We illustrate the problem with an example in Java: suppose we need
to model a pub serving beers to customers; the method serve, shown
in Figure 1, takes a Customer c, as argument, and performs this task.
The method first takes the money from c, and then it serves a beer. In the
case there are no more beers to serve, the exception NoBeersException is
thrown. When the customer does not have enough money, the exception
NotEnoughMoneyException is thrown by method getMoneyFrom. Because
the availability of beer is checked (lines 5–6) after the money has been
taken (line 4), this implementation actually steals money when there is no
beer left.

Giovanni Lagorio, Marco Servetto . Strong exception-safety for checked and unchecked exceptions. In
Journal of Object Technology, vol. 10, 2011, pages 1:1–20. doi:10.5381/jot.2011.10.1.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a1
http://dx.doi.org/10.5381/jot.2011.10.1.a1

2 · Giovanni Lagorio, Marco Servetto

1 class Pub {
2 void serve(Customer c) throws NoBeersException,
3 NotEnoughMoneyException {
4 getMoneyFrom(c);
5 if (beers.isEmpty())
6 throw new NoBeersException();
7 serveBeerTo(c, beers.pop());
8 }
9 // . . .

Figure 1 – Class Pub (wrong version).

In this simple example the problem is easy to spot and fix: moving
the check (lines 5–6) at the beginning of the method would fix the issue,
as shown in Figure 2. However, in more complex scenarios, especially
when exceptions are simply propagated, some subtle interactions can pass
unnoticed.

We would like to avoid these situations without being too restrictive:
throwing an exception, like NoBeersException, is the right thing to do
when an error is encountered; the problem is when the exception is thrown
by method serve. When a method execution fails by throwing an excep-
tion, its clients should see no changes in the reachable objects. This is the
spirit of the exception-safety strong guarantee, quoted in the abstract. To
clarify the idea we need to understand, first of all, what an operation is.
Because the first statement actually executed after an exception has been
thrown is the matching catch block, the right granularity for an operation
is the try-catch block, as detailed later on.

A possible, but rather expensive, approach to solve this problem is to
enhance the language with a transaction construct, following the com-
mit/rollback pattern, as it happens in the database world. However,
such an approach looks impractical for general purpose programming lan-
guages, because of the implied computational costs and the impossibility
of rolling back most I/O operations. Moreover, we do not want to alter the
well-known semantics of Java, but simply rule out suspicious behaviours.

Our idea is to allow a method to throw any checked exception (ob-
viously, declared in the method throws clause) as long as there are no
visible side effects for clients. Note that a method is allowed to create and
modify as many objects as it likes, as long as these are not connected to
the objects that are visible to clients.

A well-know C++ idiom, copy-and-swap1, obtains this semantics by
calculating the result in a temporary variable and swapping it with the
actual result at the very end (this works when the swap operation is guar-
anteed not to throw any exception; for more details on the exception safety
of the C++ standard library see the Appendix E of [Str97]).

We present a type system, which can be added on top of any Java-like
1See, for instance, http://en.wikibooks.org/wiki/More_C++_Idioms/Copy-and-swap

Journal of Object Technology, vol. 10, 2011

http://en.wikibooks.org/wiki/More_C++_Idioms/Copy-and-swap
http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 3

1 class Pub {
2 void serve(Customer c) throws NoBeersException,
3 NotEnoughMoneyException {
4 if (beers.isEmpty())
5 throw new NoBeersException();
6 getMoneyFrom(c);
7 serveBeerTo(c, beers.pop());
8 }
9 // . . .

Figure 2 – Class Pub (correct version).

language, that enforces that programs satisfy the exception-safety strong
guarantee by generalizing the idea of the copy-and-swap idiom: methods
can do any operation until they modify some part of the heap reachable
by their clients and, after that, they are forbidden to throw any checked
exception.

This enforces methods to check for error conditions first, ensuring
clients that there are no (visible) side effects when the execution of a
method throws a checked exception. Indeed, in Java there are two kinds
of exceptions: checked and unchecked exceptions.

The former represent exceptional conditions that well-written applica-
tions should anticipate and recover from. A method that may throw a
checked exception C must declare C in the throws clause, and any client
must either catch C , via a try statement, or, in turn, declare C in its own
throws clause.

The latter kind of exceptions represent exceptional conditions that
applications usually cannot anticipate and recover from, these kinds of
exceptions can be thought of as observable bugs. In Java these unchecked
exceptions are further split into (external) errors and (internal) runtime
exceptions, but we do not model this distinction because it is immaterial.

We expect the proposed approach to be applicable to the full Java
language in single-threaded programs; however, this paper only formalizes
the above idea on a minimal Java subset that includes constructs having
non trivial interactions with exception safety; in particular, we do not
model inheritance and casts.

The model presented in this paper is an extension of our model for
checked exceptions [LS10], with the addition of unchecked exception han-
dling and let expressions.

The paper is structured as follows: Section 2 describes our formaliza-
tion and sketches the proof of soundness, while Section 3 concludes and
considers some extensions that are subject of further work.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

4 · Giovanni Lagorio, Marco Servetto

p :: = D

D :: = class C {field meth}
field :: = T f ;
meth :: = T m(T x) modif throws Tr {return e; }
Tr :: = C
e :: = x | o | e.m(e) | e.f | e1.f = e2 | T x = e1; e2

| new C (e) | throw e | try e catch(C x) e ′

T :: = modif C
modif :: = rw | ro

Figure 3 – Syntax

2 Our approach

We have designed a simple type system, which can be added on top of
any Java-like language, and instantiated it over a language inspired by
Featherweight Java [IPW01] and similar calculi. The formalized language,
shown in Figure 3, is a minimal imperative class-based language without
inheritance and casts but including two simple constructs for exception
handling: throw and try-catch.

The inclusion of inheritance and casts in the model should be quite
natural and not particularly interesting. The only non-standard feature to
be checked is that a method overriding a read-only ro-method (described
below) must be declared ro as well.

For the sake of simplicity, try blocks are followed by exactly one catch
clause. Programs p, as usual, consist of a sequence of class declaration D ;
the overbar notation indicates a (possibly empty) sequence, that is, D is
an abbreviation for D1 . . .Dn.

Class declarations D consist of a class name C , followed by a sequence
of field and method declarations. Field declarations field are standard,
while method declarations meth include a modifier modif , discussed be-
low, before the throws-clause. A throws-clause contains a sequence of
class names, Tr , which corresponds to the checked exceptions that can
be thrown by the method. In this language the class Throwable is not
modelled, so we simply assume the set of classes to be partitioned into
three kinds: non-throwable, checked and unchecked classes. Method bod-
ies consist of a single expression. Expressions e can be: arguments x ,
object identifiers o2, method invocations, field accesses, field assignments,
let expressions, instance creations, throw expressions or try-catch ex-
pressions.

A let expression T x = e1; e2 introduces the local variable x of type
T , initialized by the value of e1, for evaluating expression e2, which is the
result of the whole let expression.

Types T consist of an access modifier, modif , which can be either ro
(read-only) or rw (read-write), and a class name C . The access modi-
fier ro has the same meaning as readonly of Javari [TE05], that is, the

2For the sake of simplicity we do not distinguish between source expressions, that is, the ones
that can appear in the source code, and runtime expressions, which are a superset of the former.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 5

read-only property of a reference r propagates to the whole object graph
reachable by r. This semantics is called transitivity of constness in [Boy06].
This modifier is similar to const of C++, but in C++ the constness of
a pointed/referenced object o does not propagate to the objects point-
ed/referenced by o. In other words, C++ const is shallow.

Accessing a field f through a ro-reference yields a ro-reference, regard-
less of the declared access modifier for f . Trying to modify a field through
a ro-reference is, obviously, forbidden.

On a ro-reference only ro-methods, that is, methods annotated with a
ro modifier, can be invoked; these methods receive the (implicit) param-
eter this as a ro-reference, so they cannot modify the state of the object
itself or of any of the (directly or indirectly) referenced ones.

The rw-references correspond to usual references, as in Java: they can
be written to, and the result of accessing a field on a rw-reference yields
the type (class name and modifier) of the corresponding field declaration.

Note that modifier ro does not correspond to final of Java; indeed,
final deals with the assignability concept [TE05], which is unrelated to
exception handling. So, we do not model it even if doing that would not
be hard.

During method invocations we logically split the heap into two parts:
the client connected heap, which consists of all (directly or indirectly)
reachable objects starting from the target of the invocation or any of its
arguments, and the unconnected heap, which consists of all other objects,
including those created during the execution of the invocation and not
connected (yet?) to the first ones.

In the same way, when executing a try-catch statement, we can again
split the heap into the connected heap, that is, the reachable heap existing
before the execution of the try block, and the unconnected heap, which
includes all other objects.

The intuitive idea is that if an exception is thrown and propagated,
either outside a method body or a try block, no changes to the heap should
be observable.

Reduction

Reduction and typing rules refer implicitly to a program p. We indicate
with p(C) the declaration of class C in p, and with p(C .m) or p(C .f)
the declaration of the member m or f in p(C). Moreover, the auxiliary
function mBody(C .m) retrieves the parameter list and body of method m
in C .

The reduction is standard and given by a small-step semantics, where:

µ | e−→µ′ | e ′

has the meaning “the reduction of expression e, in a heap µ, produces an
expression e ′ and a (possibly) updated heap µ′”.

In order to model unchecked exceptions, (unchkd) allows, non deter-
ministically, to rewrite any expression into the throw of an OutOfMemory
object, which we use to model the canonical example of an unchecked
exception.

A heap µ maps object identifiers o to object states os:

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

6 · Giovanni Lagorio, Marco Servetto

(i
n
v
k
)

µ | o.m(o)−→µ | e ′
µ(o) = new C (. . .)
mBody(C .m) = x , e
e′ = e[o/this, o/x]

(n
ew

)

µ | new C (o)−→µ′ | o
o /∈ dom(µ)
µ′ = µ, o 7→ new C (o)

(f
ie

ld
)

µ | o.fi−→µ | oi
µ(o) = new C (o1 . . . on)

p(C) = {T1 f1 . . .Tn fnmeth}

(a
ss

ig
n
)

µ | o.fi = o′−→µ′ | o′
p(C) = {C1 f1 . . .Cn fn meth}
µ = µ′′, o 7→ new C (o1 . . . , oi, . . . on)
µ′ = µ′′, o 7→ new C (o1 . . . , o

′, . . . on)

(t
-e

x
it

)

µ | try o catch(C x) e−→µ | o
(l

et
-i
n
)

µ | T x = o; e−→µ | e[o/x]

(t
-c

at
ch

)

µ | try throw o catch(C x) e−→µ | e[o/x]
µ(o) = new C (. . .)

(t
-m

is
s)

µ | try throw o catch(C x) e−→µ | throw o
µ(o) = new C ′(. . .)
C 6= C ′

(t
-p

ro
p)

µ | e1−→µ′ | e ′1
µ | try e1 catch(C x) e2−→µ′ | try e ′1 catch(C x) e2

(u
n
ch

k
d
)

µ | e−→µ′ | throw o′
o′ /∈ dom(µ)
µ′ = µ, o′ 7→ new OutOfMemory()

(c
tx

)

µ | e−→µ′ | e ′

µ | E{e}−→µ′ | E{e ′} (p
ro

p)

µ | E{throw o}−→µ | throw o

E :: = � | E .m(e) | o.m(o, E , e) | new C (o, E , e) | E .f
| E .f = e | o.f = E | throw E | T x = E ; e

Figure 4 – Reduction rules.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 7

E :: = mod | P
P :: = safe | danger
Γ :: = x :T P
Σ :: = o:C P

Figure 5 – Types and typing environments

µ :: = o 7→ os
os :: = new C (o)

The reduction rules are shown in Figure 4.
Contextual closure is standard except for the try-catch expressions,

which are handled by their specific rules (t-prop), (t-miss), (t-exit)
and (t-catch).

Typing

Types and typing environments are shown in Figure 5.
Evaluation effects E can be mod to indicate that the evaluation of an

expression may produce (visible) side effects, or P that indicates that the
client connected heap is preserved. The effect P is split into two sub-cases:
danger indicates that the result value is a (possibly indirect) writable link
to the connected heap, safe otherwise.

A variable environment Γ maps variables x to types T , while a memory
environment Σ maps each object identifier to its corresponding class name.
Both Γ and Σ mark elements with a flag P indicating whether an element
represents a (possibly indirect) writable link to the connected heap.

Memory environments are only needed for the proofs, since method
bodies are typechecked in an empty memory environment.

The type judgement for typing heaps has the form Σ ` µ ; µ′, with
the meaning: “the connected heap µ and the unconnected heap µ′ are well
typed w.r.t. the memory environment Σ”.

Typing of expressions is expressed by the judgement:

Γ; Σ; Tr ` e : T E

with the meaning “expression e has type T and evaluation effect E , in a
variable environment Γ, memory environment Σ and in a context where
the list of throwable exceptions is Tr ”.

Obviously, unchecked exceptions can be thrown at any moment. More-
over, the evaluation of an expression, regardless of its effect, can always
throw checked exceptions; if the effect is mod, then the type system ensures
that the checked exception has been thrown before any connected heap
has been changed.

Typing rules are shown in Figures 6 to 8.
Rule (sub-t) models subsumption, assuming the following order re-

lations for effects and types: safe ≤ danger ≤ mod3 and, for any C ,
rw C ≤ ro C .

3Indeed, safe is stronger than danger since safemeans that the visible state has not been changed
(as in danger) and the result is unconnected.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

8 · Giovanni Lagorio, Marco Servetto

(s
u
b-

t) Γ; Σ; Tr ` e : T E

Γ; Σ; Tr ` e : T ′ E ′
T E ≤ T ′ E ′

(v
a
r
-t

)

Γ; Σ; Tr ` x : Γ(x)

(a
d
d
r
-t

)

Γ; Σ; Tr ` o : T P
Σ(o) = C P
T = rw C

(i
n
v
k
-t

) Γ; Σ; Tr ` ek : Tk Ek ∀k ∈ [0..i]
Γ; Σ; [] ` ek : Tk Ek ∀k ∈ (i..n]

Γ; Σ; Tr ` e0.m(e1 . . . en) : T ′E

T0 = modif C
p(C .m) = T ′ m(T1 x1 . . .Tn xn) modif

throws Tr ′ {return _; }
i ∈ [0..n]
Ej 6= mod if j ∈ [0..i)

E =

{
safe if Ei = safe ∀i ∈ [0..n]

mod otherwise

(n
ew

-t
) Γ; Σ; Tr ` ek : Tk Ek ∀k ∈ [1..i]

Γ; Σ; [] ` ek : Tk Ek ∀k ∈ (i..n]

Γ; Σ; Tr ` new C (e1 . . . en) : rw C E

p(C) = {T1 f1 . . .Tn fn meth}
i ∈ [1..n]
Ej 6= mod if j ∈ [1..i)

E =

{
safe if Ei = safe ∀i ∈ [1..n]

mod otherwise

(t
h
ro

w
-t

)

Γ; Σ; Tr ` e : modif C E

Γ; Σ; Tr ` throw e : T ′ safe
E 6= mod if checked(C)
(C ∈ Tr or unchecked(C))

(t
ry

-t
)

Γ; Σ; Tr ,C2 ` e1 : T E1

Γ[danger]; Σ[danger]; Tr ,C2 ` e1 : T _
Γ, x2:ro C2 danger; Σ; Tr ` e2 : T E2

Γ; Σ; Tr ` try e1 catch(C2 x2) e2 : T E
checked(C2)
E = max(E1,E2)

(t
ry

-u
-t

)

Γ; Σ; Tr ` e1 : T P1

Γ[danger]; Σ[danger]; Tr ` e1 : T P
Γ, x2:ro C2 danger; Σ; Tr ` e2 : T E2

Γ; Σ; Tr ` try e1 catch(C2 x2) e2 : T E
unchecked(C2)
E = max(P1,E2)

Figure 6 – Typing rules (1)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 9

(f
ie

ld
-c

-t
)

Γ; Σ; Tr ` e : ro C E

Γ; Σ; Tr ` e.f : ro C ′ E
p(C .f) = modif C ′ f ;

(f
ie

ld
-t

)

Γ; Σ; Tr ` e : rw C E

Γ; Σ; Tr ` e.f : T E
p(C .f) = T f ;

(a
ss

ig
n
-t

)

Γ; Σ; Tr ` e1 : rw C P1

Γ; Σ; Tr ` e2 : T E2

Γ; Σ ` e1.f = e2 : T E

p(C .f) = T f ;

E =

{
safe if P1 = safe and E2 = safe

mod otherwise

(a
ss

ig
n
-m

-t
)

Γ; Σ; Tr ` e1 : rw C mod

Γ; Σ; [] ` e2 : T E

Γ; Σ; Tr ` e1.f = e2 : T mod
p(C .f) = T f ;

(l
et

-t
) Γ; Σ; Tr ` e1 : T1 P1

Γ, x1:T1 P1; Σ; Tr ` e2 : T2 E2

Γ; Σ; Tr ` T x1 = e1; e2 : T2 E
E = max(P1,E2)

(l
et

-m
-t

) Γ; Σ; Tr ` e1 : T1 mod

Γ, x1:T1 danger; Σ; [] ` e2 : T2 mod

Γ; Σ; Tr ` T x1 = e1; e2 : T2 mod

Figure 7 – Typing rules (2)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

10 · Giovanni Lagorio, Marco Servetto

(h
ea

p-
t)

Σ ` µ(o) : Σ(o) ∀o ∈ dom(µ)
Σ ` µ′(o) : Σ(o) ∀o ∈ dom(µ′)
Σ ` o : _ danger ∀o ∈ dom(µ)
Σ ` o : _ safe ∀o ∈ dom(µ′)

Σ ` µ ; µ′
dom(Σ) = dom(µ, µ′)
wf (µ;µ′)

(o
bj

-t
)

Σ ` new C (o1 . . . on) : C _
p(C) = {_C1 f1 . . ._Cn fn meth}
∀i ∈ [1..n] Σ(oi) = Ci _

(c
la

ss
-t

)

C ` methi : ok ∀methi ∈ p(C)

` C : ok

(m
et

h
-t

)

Γ; ∅; Tr ` e : T _
C ` meth : ok

meth = T m(T1 x1, . . . ,Tn xn) modif throws Tr {return e; }
Γ = this:modif C , x1:T1 danger, . . . , xn:Tn danger

Figure 8 – Typing rules (3)

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 11

This intuitive notion is extended to pairs of types and effects as follows:

ro C safe = ro C danger ≤ ro C mod

≤ ≤ ≤

rw C safe ≤ rw C danger ≤ rw C mod

Note that ro safe and ro danger are equivalent; this means, for instance,
that a rw danger reference can be passed as argument where a ro safe is
required.

Rules (var-t) and (addr-t) are standard.
Rule (invk-t) typechecks a method invocation, considering that the

receiver is evaluated first, and then the arguments are evaluated from left
to right.

The evaluation order is particularly important because we must find
an argument that is the last allowed to throw exceptions Tr , and the first
allowed to modify the (connected) heap.

We express this non-deterministic choice by finding one i such that the
ith argument meets the above conditions, see the premises of the rule.

The following arguments are typechecked in an empty Tr ; that is, after
the heap has been changed, no checked exceptions can be propagated. In
order to infer the effect E for the whole method invocation, the list of
all effects Ei, i ∈ [0..n] are considered: when all effects are safe, then
E = safe, otherwise E = mod. Since ro C safe = ro C danger this rule
allows the type checker to infer the effect safe in many cases.

Rule (new-t) is analogous to the rule (invk-t); while in the current
limited model we could use a more liberal rule, we chose to use the same
strategy used for method invocations because in Java constructors are
allowed to execute arbitrary code.

The rule (throw-t) typechecks a throw expression; unchecked excep-
tions can be thrown at any time; a checked exception C can be thrown
only if it is contained in Tr and the effect is not mod. We use the predi-
cates checked and unchecked to identify classes representing checked and
unchecked exceptions, respectively. We assume that those two predicates
are disjoint.

The rules (try-t) and (try-u-t) typecheck a try block for checked
and unchecked exceptions, respectively. In both cases we require that the
try body can be typed in a typing environment where all elements are
marked with danger, indicated by Γ[danger] and Σ[danger], because this
guarantees that if any exception is thrown and caught by the catch, then
its body e2 will see the same state originally seen by e1 (indeed, since
e1 sees the whole heap as danger, it cannot change any already existing
object and throw a checked exception afterwards).

In any case, the resulting effect for the whole expression is inferred
using the original type environment. Since unchecked exceptions can be
thrown at any moment, rule (try-u-t) requires e1 to leave the state un-
changed.

The rules (field-c-t) and (field-t) typecheck a field assignment for
a ro target or rw target, respectively. Note that the result of accessing a
field on a ro target has type ro, regardless the field modifier.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

12 · Giovanni Lagorio, Marco Servetto

An assignment expression e1.f = e2 is well typed only if e1 is of type
rw C , and e2 and the field f in C have type T . When e1 has effect
P1 (assign-t), the evaluation of e2 is allowed to throw. When e1 has
effect mod (assign-m-t), the evaluation of e2 is not allowed to propagate
checked exceptions or catch unchecked exceptions.

Note that rule (assign-t) yields a mod effect when expression e2, whose
effect is danger, is assigned to a writable field f of e. This is needed to
avoid that modifications of objects in the connected heap, made through
other references, pass unnoticed.

Note that modeling the final modifier for fields would amount to
checking, in these two rules, that p(C .f) is not final.

The rules (let-t) and (let-m-t) typecheck a let expression; as it
happens for assignments, when e1 has effect mod (let-m-t), the evaluation
of e2 is not allowed to propagate or catch unchecked exceptions.

Rule (heap-t) typechecks, w.r.t Σ, a well-formed pair of connected
heap µ and unconnected heap µ′, that is, wf (µ;µ′). This predicate holds
when:

dom(µ) ∩ dom(µ′) = ∅
µ(o) = new C (. . . , oi, . . .) implies oi ∈ dom(µ)

µ′(o) = new C (. . . , oi, . . .) implies


oi ∈ dom(µ′)

or
oi ∈ dom(µ) and p(C .fi) = ro _

Rule (obj-t) is used by (heap-t) to check the consistency of a single
object.

Finally, (class-t) checks a single class by checking all its methods
via (meth-t), that checks that the method body e is well-typed in an
environment when all its argument are danger (that is, the worst-case
scenario). Note that the effect of evaluating the body is immaterial, since
it will be inferred depending on the invocation context (that is, different
effects can be inferred for different invocations of the same method).

Typing other constructs

Since the formalized language does not contain statement sequences, if
statements and loops, we would like to informally discuss how they could
be handled by a simple extension, and consider an example that uses them.

Sequences of expressions/statements could be typed, as mentioned be-
fore, in the same way as argument sequences.

Since the execution of an if statement corresponds to the execution
of its guard followed by the execution of one of its branches, the effect of
if (e) s else s′ can be obtained by considering the super-effect (that
is, the less specific4) of the following two sequences: {e;s} and {e;s′}.
This is, of course, an over-approximation, due to the fact that we cannot
statically know which branch will be executed.

Analogously, the execution of a loop, say while (e) s, corresponds
to the execution of the guard e at least once, followed by an arbitrary
number (possibly zero) of executions of the statement s and the guard

4In the formalization we have used the function max to denote the less specific effect.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 13

e. So, the effect of the while-loop can be obtained by considering the
super-effect of the sequence {e;s;e;s} (repeating both e and s twice in
order to over-approximate the global effect of an arbitrary number of loop
executions).

More sophisticated static analysis/verification techniques could be ap-
plied, to both branching and looping constructs, to obtain better approx-
imations in some cases.

Example revisited

Now that we have discussed the type system, we explain why the correct
implementation of the Pub example, shown in Figure 2, would be typeable
(and why the original version, Figure 1, would not).

We assume that there is an extension of our typesystem handling state-
ments, where each type or method without an access modifier is implicitly
considered rw.

Under the following assumptions:

Beers ` boolean isEmpty() ro {...} : ok
Pub ` void getMoneyFrom(Customer c) ro

throws NotEnoughMoneyException {...}
: ok

Beers ` Beer pop() {...} : ok
Pub ` void serveBeerTo(Customer c, ro Beer b) ro {...} : ok

the method serve would be well typed (without requiring any ro modi-
fier).

. . . ; NoBeersException ` if(beers.isEmpty())
throw new NoBeersException();

: safe

. . . ; NotEnoughMoneyException ` getMoneyFrom(c); : mod

. . . ; ∅ ` serveBeerTo(c,beers.pop()); : mod

Pub ` void serve(Customer c) throws NoBeersException,
NotEnoughMoneyException {...}

: ok

Indeed, the if statement is allowed to throw NoBeerException. Then,
method getMoneyFrom has no restrictions (the simple fact that it is well
typed guarantees that if it throws NotEnoughMoneyException, then the
state is still unchanged).

Finally, method serveBeerTo is forbidden to throw any exception since
it is executed after method getMoneyFrom, which has already changed the
state.

Instead, in the original example, the initial invocation of method
getMoneyFrom would make the following if statement ill typed. Indeed,
recall that sequences of statements would be typed as sequences of argu-
ments, so, the statements following one having effect mod could not throw
checked exceptions.

Another example: how does the Pub serve meals?

Let us introduce, into class Pub, the new method process, shown in Fig-
ure 9, that takes a meal order order, consisting of a sequence of MenuItems,

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

14 · Giovanni Lagorio, Marco Servetto

1 rw DishList process(ro MealOrder order) rw
2 throws MissingIngredientException {
3 rw Ingredients ingr=new Ingredients();
4 for(ro MenuItem mi : order)
5 ingr.addAll(mi.getIngredients());
6 this.checkAvailability(ingr);
7 this.kitchen.removeAll(ingr);
8 return prepare(order);
9 }

10

11 void checkAvailability(ro Ingredients i) ro
12 throws MissingIngredientException {
13 /* ... */
14 }
15

16 rw DishList prepare(ro MealOrder o) ro {
17 /* ... */
18 }

Figure 9 – Method process

and processes it by: finding the needed ingredients (lines 3–5), checking
their availability (line 6), removing them from the kitchen (line 7) and,
finally, preparing the requested dishes (line 8). The method is annotated
with rw because the state of the pub needs to be changed in order to re-
move the ingredients from the kitchen. The annotation of the return type
is, in this case, arbitrary.

The parameter order is ro, so it cannot be modified.
The effect of creating and initializing the local variable ingr is safe;

indeed, the initialization expression is safe by (new-t), so the following
statements “see” a new variable ingr of type rw Ingredients safe by
(let-t).

The method addAll is invoked on an unconnected target and (we as-
sume that) its parameter is declared ro; in these settings the effect of
the method invocation is safe (by rule (invk-t) in Figure 6, with i = 1
because the argument is typed safe). Ignoring, for simplicity, the effects
of the iteration variable mi, the global effect of the for-loop is safe.

The auxiliary method checkAvailability5 ensures that all needed
ingredients ingr are available, throwing MissingIngredientException
when this is not the case. The effect of invoking checkAvailability is
safe, since both the method and its parameter are ro.

The invocation of removeAll, on the field this.kitchen, has effect
mod.

Finally, the method returns the requested dishes by invoking the aux-
5The implementation of methods checkAvailability and prepare, and the declaration of the

field kitchen and its method removeAll, have been omitted for the sake of brevity.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 15

1 class TestRunner {
2 enum Result { OK, FAIL };
3

4 Vector<Result> run() ro {
5 Vector<Result> results = new Vector<Result>();
6 for(Test test : this.allTests)
7 results.add(this.runSingleTest(test));
8 return results;
9 }

10

11 Result runSingleTest(ro Test test) ro {
12 try {
13 test.run(); // run must preserve the (visible) heap
14 } catch (AssertionError ae) {
15 return Result.FAIL;
16 } catch (Throwable t) {
17 return test.shouldThrow(t) ? Result.OK:Result.FAIL;
18 }
19 return test.shouldThrow() ? Result.FAIL:Result.OK;
20 }
21 }

Figure 10 – Class TestRunner

iliary method prepare. This method invocation is not allowed to throw
any checked exception, since the invocation of removeAll has changed the
(client visible) state.

Unchecked exception example: a test runner

It seldom makes sense to catch unchecked exceptions; one example where
this is actually useful is when writing a test runner, that is, a program
which needs to control the execution of test methods, which may contain
“arbitrary” (and probably wrong) code.

In the class TestRunner, shown in Figure 10, an extremely simplified
test runner, the method run runs a series of tests, contained in the in-
stance variable allTests, and collects their results into the local variable
results.

If the execution of a test throws AssertionError, then the test fails,
otherwise we must consider different cases depending whether the test is
supposed to throw some exception (this fact is encoded in the auxiliary
overloaded method shouldThrow). Let us discuss how this class would
be typed; method run initializes the local variable results with a new
object, so the resulting effect would be safe. Then, the for loop up-
dates such a variable by invoking add, which modifies an unconnected
object. The argument expression has also effect safe, since the method
runSingleTest receives two ro references: the implicit argument this

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

16 · Giovanni Lagorio, Marco Servetto

and the local variable test. Therefore, the loop is well-typed since the
effect of its body is safe.

The interesting method is runSingleTest, containing a try block that
catches the unchecked exceptions AssertionError and the special excep-
tion Throwable. In Java Throwable and Exception are special since the
roots of unchecked exceptions, Error and RuntimeException, are their
direct subclasses.

To integrate those special exceptions in our model we would have to
typecheck their catch with the rule (try-u-t). Such a rule is applicable in
this case since the body of the try consists of an expression having effect
safe.

Exception-safety strong guarantee

To formally encode the Abrahams’s quote (shown at the beginning of this
paper), we need to understand: what an operation is, what it means to
complete successfully/throw a (checked or unchecked) exception and what
the program state is.

A single reduction step is not meaningful as an operation; this concept
is usually mapped to method invocations. However, this intuitive solution
is not adequate since there is no way to guarantee the property in the
presence of unchecked exceptions. Moreover, it is irrelevant to have a
corrupted state if no part of the program can observe it. So, it is important
to guarantee that the state has been preserved when an exception is caught.

Therefore, we choose to map the operation concept to the try block,
which has the right granularity. With this perspective, the focus is on
propagating an exception instead of on throwing an exception. In par-
ticular, to complete successfully means to propagate no exceptions, and
to throw an exception means to propagate an exception outside the try
block.

So, leaving the program state exactly as it was before the operation
started corresponds to having the state of the reachable objects at the
beginning of a catch block as it was at the beginning of the corresponding
try block. This is formally expressed by Theorem 2.

Lemma 1 (substitutability)

x :T danger; ∅; Tr ` e : T ′ mod implies ∅; o:T safe; Tr ` e[o/x] : T ′ safe

Lemma 2 (pure-preservation)

If Σ ` µ ; µ′ and ∅; Σ; Tr ` e : _ danger, then the expression e preserves
the heap µ, that is,

µ, µ′ | e ?−→ µ′′ | e ′ implies µ ⊆ µ′′

The intuition is that µ′ can be modified (and new objects can be created
and modified), but everything that was already in µ is not affected. We say
that an expression produces side effects on a heap µ if it is not preserved.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 17

Proof Sketch: the statement is equivalent to proving that Σ ` µ ; µ′ and
∅; Σ; Tr ` e : T danger, then µ, µ′ | e−→µ, µ′′ | e ′ implies Σ′ ` µ ; µ′′ and
∅; Σ′; Tr ` e ′ : T danger.

By induction over the depth of the expression e. Base (for depth 0
and 1); by case analysis.

One interesting case is o.m(o) with p(C .m); we know that the tar-
get and all arguments have been typed with effect safe, so the resulting
expression contains no writable links to the client connected heap and is
typed safe so the invocation can be safely replaced by the well-typed
method body by Lemma 1.

Inductive step (depth = k, k > 1).
Similar to the inductive step of Lemma 3.

Lemma 3 (subject-reduction)
If Σ ` µ1 ; µ2, ∅; Σ; Tr ` e : T E , ∅; Σ; [] 6` e : T E

and µ1, µ2 | e−→µ′ | e ′

then µ′ = µ1, µ
′
2, Σ′ ` µ1 ; µ′2 and ∅; Σ′; Tr ` e ′ : T E

Proof Sketch: by induction over the depth of the expression e. Base
(for depth 0 and 1); by case analysis. Most cases are trivial, since they
type with Tr = []; for instance, new C (o).

One interesting case is o.m(o) with p(C .m) with a non-empty throw
clause; there are two possibilities: either the target and all arguments
have been typed with effect safe, or some of them is mod. In both cases,
the invocation can be safely replaced by the well-typed method body. In
the former case the resulting expression contains no writable links to the
client connected heap and is typed safe by Lemma 1, in the latter case
o.m(o) is typed mod.

Inductive step (depth = k, k > 1). Cases (invk), (new), (field)
and (assign) never occur: their depth is less or equal than 1. Cases
(try-exit) , (try-miss) and (prop) are trivial. Cases (let-in) and
(try-catch) are similar to the case of method invocation, where the
expression can be safely replaced by the well-typed e2 by Lemma 1.

In case (unchkd), µ1, µ2 is not modified, since a new OutOfMemory

object is allocated into a fresh location o; this resulting heap is triv-
ially well-typed. Moreover, e ′ = throw o is well-typed by (throw-t)
and (addr-t).

Cases (ctx) and (t-prop) are analogous; we only detail (ctx). From
(ctx) e is of the form E{e1}, e ′ is of the form E{e2} and µ1, µ2 | e1−→µ′ |
e2. By case analysis over the shape of the context; we show only one case.
[new C (o, e1, e)] if the whole expression can be typed with Tr = [], then

the case trivially holds.
If e cannot be typed with Tr = [], then by rule (new-t) the expres-
sion e1 has effect P and we can close by Lemma 2.
Otherwise, e1 itself cannot be typed with Tr = [], so if it has effect P
we can close by Lemma 2. If it has effect mod, knowing that the depth
of e1 is less or equal than k, by inductive hypothesis we know that
e2 is typed with the same type and effect of e1 so, by rule (new-t),
we can conclude.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

18 · Giovanni Lagorio, Marco Servetto

Lemma 4 (throw-runs)

If Σ ` µ ; µ′, ∅; Σ; Tr ` e : mod and µ, µ′ | e ?−→ µ′′ | throw o
then µ′′(o) = new C (. . .) and C ∈ Tr or unchecked(C).

Theorem 1 (Checked exception-safety)

If Σ ` µ ; µ′ and ∅; Σ; Tr ` e : T E , then the expression e is safe w.r.t.
the heap µ, that is,

µ, µ′ | e ?−→ µ′′ | throw o and µ′′(o) = new C (. . .), checked(C)
implies µ ⊆ µ′′

Proof Sketch:

By induction on the number of steps of the reduction.

Base: if there are zero steps, then the heap is trivially preserved.

Induction step: if there are n steps, then either:

• ∅; Σ; [] ` e : T E can be derived, then from Lemma 4 we know that
no checked exception can be thrown.

• otherwise, the property holds for the first step by Lemma 3, and for
the n− 1 following ones for the inductive hypothesis.

Theorem 2 (Exception-safety strong guarantee)

If e = try e1 catch(C2 x2) e2, Σ ` µ ; µ′ and Γ; Σ; Tr ` e : T E , then
the expression e is safe w.r.t. the heap, that is,

µ, µ′ | e1
?−→ µ′′ | throw o and µ′′(o) = new C2(. . .) implies µ, µ′ ⊆ µ′′

where the arrow ?−→ is the reflexive and transitive closure of the reduction
arrow.

Proof Sketch: If unchecked(C2) then e has been typed by (try-u-t),
so e1 preserves the whole heap (second premise of the rule) by Lemma 2.

Otherwise, that is, if checked(C1), then e has been typed by (try-t),
so e1 enjoys the checked exception safety property and we conclude by
Theorem 1.

3 Conclusions and further work

This paper presents an extension of our model for checked exceptions [LS10],
that adds the support for declaring local variables and handling unchecked
exceptions. The main inspiration of this work is [Abr00], where the con-
cept of strong safety w.r.t exceptions has been defined.

In the C++ community this concept is very popular [Str01], but it is
neglected in other language communities. As a notable exception, Spec#
offers instruments to grant some variations of the strong safety [LS04].
While their work makes heavy use of Spec#-specific concepts, ours is
applicable to any Java-like language.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

Strong exception-safety for checked and unchecked exceptions · 19

Both the exception mechanism [ALZ01] and the introduction of a
const/readonly modifier in Java-like languages has already been stud-
ied; see, for instance, the language Javari [TE05], [HP09], or Boyland’s
work [Boy06] for a survey. However, in this paper, we are not interested
in the modifier per-se, but we see it as a tool for enforcing that programs
satisfy the exception-safety strong guarantee.

Li et al. [LHR06] describe an approach, which combines static analysis
and model checking, to ensure that no resources are leaked even in the
presence of exceptions.

Jacobs and Piessens [JP09] have proposed a language extension, called
failboxes, that facilitates writing sequential or multithreaded programs
that preserve intended safety properties without leaking resources. Our
model does not consider multithreading and, as it is, with multithreading
our proposed type checking cannot guarantee the “standard” definition
of the exception safety strong guarantee. Indeed, when an exception is
thrown, our type system can only guarantee that the current thread has
not modified the client visible state; however, other threads may have
already altered it.

Further work includes the treatment of “global variables” (that is,
static fields), which could be accessed and/or modified by any method.
This could be achieved by allowing methods to declare the fact that they
intend to modify the global state via a modifier, similar to ro modifier
used to indicate that a method is read-only.

Because our proofs are not obvious, we plan to encode them in a
machine-checkable form, and include the treatment of a larger Java subset.

Once gained the confidence that there are no pitfalls in our reasoning,
due to some unexpected feature interactions, we are going to implement
our system to evaluate its applicability on real-world open-source projects.

We are interested, first of all, in seeing how much the existing code
can be typed as it is (or with little changes). Then evaluating, in the part
of code that cannot be typed, what is the source of the problem; that is,
whether our type system is too restrictive or there is an actual bug.

For the implementation we plan to rely on some existing tools for
extending an existing typechecker for Java, like the Checker Framework6.

Acknowledgments We would like to warmly thank our reviewers for
their careful work and helpful advice.

References

[Abr00] David Abrahams. Exception-safety in generic components. In
Mehdi Jazayeri, Rüdiger Loos, and David R. Musser, editors,
International Seminar on Generic Programming,Selected Pa-
pers, volume 1766 of Lecture Notes in Computer Science, pages
69–79. Springer, 2000.

[ALZ01] Davide Ancona, Giovanni Lagorio, and Elena Zucca. A core
calculus for Java exceptions. In ACM SIGPLAN Conference

6http://types.cs.washington.edu/checker-framework/

Journal of Object Technology, vol. 10, 2011

http://types.cs.washington.edu/checker-framework/
http://dx.doi.org/10.5381/jot.2011.10.1.a1

20 · Giovanni Lagorio, Marco Servetto

on Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA 2001), SIGPLAN Notices. ACM Press,
October 2001.

[Boy06] John Boyland. Why we should not add readonly to Java (yet).
Journal of Object Technology, 5(5):5–29, 2006.

[HP09] Christian Haack and Erik Poll. Type-based object immutabil-
ity with flexible initialization. In ECOOP’09 - Object-Oriented
Programming, Lecture Notes in Computer Science. Springer,
2009.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

[JP09] Bart Jacobs and Frank Piessens. Failboxes: Provably safe ex-
ception handling. In Sophia Drossopoulou, editor, ECOOP
2009 - Object-Oriented Programming, 23rd European Con-
ference, Genoa, Italy, July 6-10, 2009. Proceedings, volume
5653 of Lecture Notes in Computer Science, pages 470–494.
Springer, 2009.

[LHR06] Xin Li, H. James Hoover, and Piotr Rudnicki. Towards auto-
matic exception safety verification. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Meth-
ods, 14th International Symposium on Formal Methods, Hamil-
ton, Canada, August 21-27, 2006, Proceedings, volume 4085 of
Lecture Notes in Computer Science, pages 396–411. Springer,
2006.

[LS04] K. Rustan M. Leino and Wolfram Schulte. Exception safety for
C#. In 2nd International Conference on Software Engineering
and Formal Methods, pages 218–227. IEEE Computer Society,
2004.

[LS10] Giovanni Lagorio and Marco Servetto. Strong exception-safety
for Java-like languages. In 12th Intl. Workshop on Formal
Techniques for Java-like Programs, ACM International Con-
ference Proceedings Series, 2010.

[Str97] Bjarne Stroustrup. The C++ Programming Language: Third
Edition. Addison-Wesley Publishing Co., Reading, Mass., 1997.

[Str01] Bjarne Stroustrup. Exception safety: Concepts and techniques.
In Advances in Exception Handling Techniques, Lecture Notes
in Computer Science, pages 60–76. Springer, 2001.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: adding
reference immutability to Java. ACM SIGPLAN Notices,
40(10):211–230, October 2005.

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a1

	Introduction
	Our approach
	Conclusions and further work
	Bibliography

