

JOURNAL OF OBJECT TECHNOLOGY

Pub l i shed by ETH Zur i ch , Cha i r o f So f tware Eng inee r i ng © Jo t , 2010
On l i ne a t http://www.jot.fm

Gholam Reza Shahmohammadi, Saeed Jalili, Seyed Mohammad Hossein Hasheminejad. Identification of
System Software Components Using Clustering Approach. In Journal of Object Technology, vol. 9, no.
6, 2010, pages 77–98. Available at http://dx.doi.org/10.5381/jot.2010.9.6.a4

Identification of System Software
Components Using Clustering

Approach

Gholam Reza Shahmohammadia Saeed Jalilia
Seyed Mohammad Hossein Hasheminejada

a. Tarbiat Modares University, Iran

Abstract
The selection of software architecture style is an important decision of
design stage, and has a significant impact on various system quality
attributes. To determine software architecture based on architectural
style selection, the software functionalities have to be distributed
among the components of software architecture. In this paper, a
method based on the clustering of use cases is proposed to identify
software components and their responsibilities. To select a proper
clustering method, first the proposed method is performed on a
number of software systems using different clustering methods, and
the results are verified by expert opinion, and the best method is
recommended. By sensitivity analysis, the effect of features on
accuracy of clustering is evaluated. Finally, to determine the
appropriate number of clusters (i.e. the number of software
components), metrics of the interior cohesion of clusters and the
coupling among them are used. Advantages of the proposed method
include; 1) no need for weighting the features, 2) sensitivity analysis of
the effect of features on clustering accuracy, and 3) presentation of a
clear method to identify software components and their
responsibilities.

Keywords. Automatic components identification, Clustering of use-
cases, Software architecture.

78 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

1 Introduction

Software architecture is a fundamental artifact in the software life cycle with an
essential role in supporting quality attributes of the final software product. Making
use of architecture styles is one of the ways to design software systems and
guarantee the satisfaction of their quality attributes [1]. After architectural style
selection, only type of software architecture organization is specified. Then software
components and their responsibilities need to be identified. On the other hand,
component-based development (CBD) is nowadays an effective solution for the
subject of development and maintenance of information systems [2]. A component
is a basic block that can be designed and if necessary be combined with other
components [3]. Partitioning software system to components, while effective on
later software development stages, has a central role in defining the system
architecture. Component identification is one of the most difficult tasks in the
software development process [4]. Indeed a few systematic components
identification methods have been presented, and there are no automatic tools to
help experts for identifying the components, and components identification is
usually made based on expert experience.

In [4], a hierarchical clustering technique is proposed based on graph using edge,
i.e. class relationships can be weighed according to their types. To identify business
object component, the technique uses the concept of resemblance degree between
business objects. The resemblance degree depends on the relationship among the
objects either dynamics or statics. The static relationships between business objects
can be classified as general, compound, aggregation and association, and have
different weights. The technique is composed of two steps: 1) The object-activity
relation matrix is used to calculate the dynamic resemblance degree, and 2) To
identify business object components, the technique uses a hierarchical clustering
technique based on business object relation graph according to the edge strength
metric. The strength of edge considers both cohesion and coupling between
business objects. However, the technique could be impractical to medium/big
systems since it relies on the number of possible pairs of business objects.

In [5], software components have been determined using use case model, object
model, and dynamic model (i.e. collaboration diagram). For clustering related
functions, the functional dependency of use cases is calculated and related use cases
are clustered.

In [6], the static and dynamic relationships between the different classes in the
UML domain model are used for clustering related classes in components. Static
relationship measures the relationship strength using different weights, and
dynamic relationship measures the frequency of message exchange at runtime. To
compute the overall strength of relationship between classes, the results of static
and dynamic relationships between classes are combined.

79 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

In [7], a method to decompose requirements to components is presented. In
this work hierarchical clustering algorithms are used for partitioning a system. Also
they demonstrate different ways of defining and populating the input matrix to
feed into the clustering technique.

In [8], for identifying business stable components, a novel framework is
presented based on Formal Concept Analysis (FCA). In this work, FCA is used to
develop a framework to identify components from use cases and class diagram.

In [9], a development process component is explained based on use cases and
business type models that includes a method to identify business components.
Inter-class relationship is used as the main factor for identifying components. The
core class serves as the center of each clustering, and the responsibility derived
from use cases is used to guide the process.

In [10,11,12] the Business Component Identification (BCI) method, as well as
the further development to BCI-3D, are described by Albani et al.. BCI is the first
and a crucial step in the business component modeling process. It starts by
generating a set of essential elements from the business domain, rather on the basis
of a high-level business domain model. Information about data objects, process
steps and actors, plus their relationships is mapped onto vertices and edges of a
graph. Weights are assigned to the edges depending on the relation type and the
designers preferences. Using a heuristic from graph theory, the graph is partitioned
and components are identified. The BCI-3D tool supports the designer in the
identification process.

Disadvantages of most of these methods are: 1) Lack of validation of the results
of the clustering application on some software systems 2) Lack of an approach for
determining the number of system components; 3) No sensitivity analysis of the
effect of features on accuracy of clustering; 4) High dependency of the method on
expert opinion; 5) Need manual weighting of the features used in clustering and 6)
No evaluation of the effect of using different clustering methods.

Since use cases indicate functionality of a system and a set of related use cases
shows the coherent functionality of the system, allocating the related use cases to
components is a suitable way to determine components of the system. Therefore, in
this paper a method for automatic identification of system software components is
proposed based on the use case model (in analysis phase). In this method, at first
using the system analysis model including use case model, class diagram and
collaboration diagram, some features are extracted. Then, using the proposed
method and applying various clustering methods, use cases are clustered in several
components. To evaluate the clustering methods, the components that result from
clustering are compared to the ones specified by the experts and the method with
most conformity with the expert opinion is selected. In most methods, the number
of clusters (K) is an input parameter of clustering. But for partitioning a system to
some components, the number of these components is not specified beforehand.
Thus, in the proposed method, clustering is repeated for different values of K, and

80 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

then the most appropriate value of K (number of components) is chosen regarding
high cohesion of components and low coupling among them. In order to increase
clustering accuracy, the effect of features on accuracy of clustering is determined
using sensitivity analysis on use case features. Finally, by choosing a proper feature
selection method, minimum features achieving the required accuracy in clustering
are selected.

Next, we present clustering in the second part. The proposed method for
determining components and the evaluation model of the proposed method are
presented in sections 3 and 4, respectively. In section 5, the conclusion is presented
and the proposed method is compared with other methods.

2 Clustering

In order to understand new objects and phenomena, their features are described,
and then compared to other known objects or phenomena, based on similarity or
dissimilarity [13]. All of the clustering methods include three common key steps: 1)
Determine the object features and data collection, 2) Compute the similarity
coefficients of the data set, and 3) Execute the clustering method.

 Each input data set consists of an object-attribute matrix in which objects are
the entities grouped based on their similarities. Attributes are the properties of the
objects. A similarity coefficient for a given pair of objects shows the degree of
similarity or dissimilarity between these two objects, depending on the way the
data are represented. The similarity coefficient could be qualitative or quantitative.
A data object is described by a set of features represented as a vector. The features
are quantitative or qualitative, continuous or binary, nominal or ordinal. A feature
type determines the corresponding measure mechanism.

2.1 Similarity and Dissimilarity Measures

To join (separate) the most similar (dissimilar) objects of a data set X in some
cluster, clustering algorithms apply a function that can make a quantitative
measure among vectors. This quantitative measure is arranged in a matrix called
proximity matrix. Two types of quantitative measures are Similarity Measures, and
Dissimilarity Measures. In other words, for a data set with N input patterns, an
N×N symmetric matrix called proximity matrix can be defined where (i, j)-th
element represents the similarity or dissimilarity measure for the i-th and j-th
patterns (i,j=1,…,N). So, the relationship between objects is represented in a
proximity matrix, in which rows and columns correspond to objects. If the objects
are considered as points in a d-dimensional space, each element of the proximity

81 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

matrix represents the distance between pairs of points [13].

Similarity Measures. The Similarity Measures are used to find similar pairs of

objects in X. sij is called similarity coefficient. The higher the similarity between
objects i and j, the higher the sij value. For all objects i and j, a similarity measure
must satisfy the following conditions:

• 0 ≤ sij ≤1
• sii = 1
• sij = sji
Dissimilarity Measures. Dissimilarity Measures are used to find dissimilar pairs

of objects in X. The dissimilarity coefficient, dij, is small when objects i and j are
alike, otherwise, dij becomes larger. A dissimilarity measure must satisfy the
following conditions:

• 0 ≤ dij ≤ 1
• dii = 0
• dij = dji
Typically, distance functions are used to measure continuous features, while

similarity measures are more important for qualitative features [13]. Selection of
different measures is problem dependent [13]. For binary features, the similarity
measure is commonly used. Let us assume that a number of parameters with two
binary indexes are used for counting features in two objects. For example, n00 and
n11 denote the number of simultaneous absence and presence of features in two
objects respectively, and n01 and n10 count the features presented only in one
object. The equations (1) and (2) show two types of commonly used similarity
measures for data points. w=1 for simple matching coefficient, w=2 for Rogers and
Tanimoto measure and w=1/2 for Gower and Legendre measure are used in
equation (1). These measures compute the match between two objects directly.

 (1)
)(01100011

0011

nnwnn
nn

Sij +++
+

=

Equation (2) focuses on the co-occurrence features while ignoring the effect of
co-absence. w=1 for Jaccard coefficient, w=2 for Sokal and Sneath measure and
w=1/2 for Gower and Legendre measure are used in equation (2).

(2))(011011

11

nnwn
nSij ++

=

2.2 Clustering Methods

In this section, some of the main clustering methods are introduced.

A- Hierarchical Clustering (HC). In this method, hierarchical structure of data is

82 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

organized according to a proximity matrix. HC algorithms organize data into a
hierarchical structure according to the proximity matrix. The results of HC are
usually depicted by a binary tree or dendrogram. The root node of the dendrogram
represents the whole data set and each leaf node is regarded as a data object. The
intermediate nodes, thus, describe the extent that the objects are proximal to each
other; and the height of the dendrogram usually expresses the distance between
each pair of objects or clusters, or an object and a cluster. The ultimate clustering
results can be obtained by cutting the dendrogram at different levels. HC
algorithms are mainly classified as agglomerative methods and divisive methods
[13]. Agglomerative clustering starts with N clusters and each of them includes
exactly one object. A series of merge operations then follow that finally lead all
objects to the same group. Based on the different definitions for distance between
two clusters, there are many agglomerative clustering algorithms. Let Ci and Cj be
two clusters, and let |Ci| and |Cj| denote the number of objects that each one have.
Let d(Ci,Cj) denote the dissimilarity measures between clusters Ci and Cj , and d(i,
j) the dissimilarity measure between two objets i, and j where i is an object of Ci
and j is an object of Cj. The simplest method is single linkage (SLINK) technique.
In the SLINK method, the distance between two clusters is computed by the
equation (3). The common problem of classical HC algorithms is lack of robustness
and they are, hence, sensitive to noise and outliers. Once an object is assigned to a
cluster, it will not be considered again, which means that HC algorithms are not
capable of correcting possible previous misclassifications [13].

(3)
ji cjci

ji jidccd
∈∈

=
,

),(min),(

B- Squared Error—Based Clustering. Partitional clustering assigns a set of
objects into clusters with no hierarchical structure. The optimal partition, based on
some specific criterion, can be found by enumerating all possibilities. However, this
method is impossible in practice, due to expensive computation. Thus, heuristic
algorithms have been developed in order to seek approximate solutions. One of the
important factors in partitional clustering is the criterion function. The sum of
squared error functions is one of the most widely used criteria [13]. The main
problem of partitional methods is uncertainty of the clustering solution to
randomly selected cluster centers. The K-means algorithm belongs to this category.
This method is very simple and can be easily implemented in solving many
practical problems. But there is no efficient and universal method for identifying
the initial partitions and the number of K clusters. The iteratively optimal
procedure of K-means cannot guarantee convergence to a global optimum. K-means
is sensitive to outliers and noise. Thus, many variants of K-means have appeared in
order to overcome these obstacles. K-way clustering algorithms with the repeated
bisection (RB, RBR) and direct clustering (DIR) are expansion of this method that
are introduced briefly[14].

83 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

RB Clustering Method. In this method, the desired k-way clustering solution is
computed by performing a sequence of k − 1 repeated bisections. In each step, the
cluster is selected for further partitioning is the one whose bisection will optimize
the value of the overall clustering criterion function. In this method, the criterion
function is locally optimized within each bisection. This process continues until the
desired number of clusters is found.

RBR Clustering Method. In this method, the desired k-way clustering solution is

computed in a fashion similar to the repeated-bisecting method but at the end, the
overall solution is globally optimized.

Direct Clustering Method. In this method, the desired k-way clustering solution

is computed by simultaneously finding all k clusters. In general, computing a k-way
clustering directly is slower than clustering via repeated bisections.

C- Graph-based Clustering Method. The clustering problems can be described by

means of graphs. Nodes of a weighted graph correspond to data points in the
pattern space, and edges reflect the proximities between each pair of data points. If
the dissimilarity matrix is defined as a threshold value, the graph is simplified to
an unweighted threshold graph. Graph theory is used for hierarchical and non-
hierarchical clustering [14].

D- Fuzzy Clustering Method. In this method, the object can belong to all of the

clusters with a certain degree of membership. This is mainly useful when the
boundaries among the clusters are not well separated and ambiguous. Moreover,
the memberships may help us discover more sophisticated relations between a
given object and the disclosed clusters. FCM is one of the most popular fuzzy
clustering algorithms [15]. FCM attempts to find a partition (i.e., c fuzzy clusters)
for a set of data points xj∈Rd, j=1,…, N while minimizing the cost function. FCM
suffers from the presence of noise and outliers and the difficulty to identify the
initial partitions.

E- Neural Networks-Based Clustering. In competitive neural networks, active

neurons reinforce their neighborhood within certain regions while suppressing the
activities of other neurons. A typical example is self-organizing feature map
(SOFM)[13].

2.3 Methods to Determine the Number of Clusters

In most methods, the number of clusters (K) is the input parameter of clustering.
But the quality of resulting clusters is largely dependent on the estimation of K. So

84 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

many attempts have been made to estimate the appropriate K. For the data points
that can be effectively projected onto a two-dimensional Euclidean space, direct
observations can provide good insight on the value of K but only to a small scope
of applications.

Most proposed methods have presented formulas that emphasize on the
compactness within the cluster and separation between clusters, and the
comprehensive effect of several factors such as defined squares error, geometric or
statistical feature of data and the number of patterns. Two of them are briefly
introduced as follows:

A- CH Index[13]. This index is computed by equation (4),where N is the total

number of patterns and Tr(SB) and Tr(SW) are the trace of the between and within
class scatter matrix, respectively. The K that maximizes the value of CH(K) is
selected as the optimal.

(4)

B- Ray and Turi index[16]. In this index, the optimal K value is calculated by

equation (5). In this equation, Intra is the average intra-cluster distance measure
that we want to minimize and is computed by equation (6). N is the number of
patterns, and zi is the cluster centre of cluster Ci. Inter is distance between cluster
centers calculated by equation (7). Meanwhile, we want to maximize the inter-
cluster distance, i.e., the minimum distance between any two cluster centers. The
K that minimizes the value of validity measure is selected as the optimal in k-
means clustering.

Inter
IntraValidity = (5)

2

1

1 ∑∑
= ∈

−=
k

i Cx
i

i

zx
N

Intra (6)

KijandKizzInter ji ,...,11,...,2,1),min(
2

+=−=−= (7)

3 Automatic Determination of System Software Components

In this section, the proposed method for clustering use cases, or in other words,
automatic determination of system software components is presented. Software
functions clustering is done using artifacts of requirements analysis phase, so all
features of the use case model, class diagram and collaboration diagram (if any) are
used in clustering.

85 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

Each use case indicates a section of system functionality. So, use cases are the
main way to express system functionality. Each use case is composed of a number
of scenarios in the system, producing a measurable value for a particular actor. A
set of use cases describes the complete functionality of the system. Each actor is a
coherent set of roles played by the users during interaction with use cases [17].
Each use case diagram shows interaction of the system with external entities and
system functionality from user viewpoint. Considering the above statements,
software components of the system are identified by relying on identification of
coherent use cases of the system. Thus, use cases of the system are stimulators of
the proposed method to identify software components of the system.

The stages of the proposed method are: 1) Extraction of use cases features, 2)
Construction of proximity matrix of use cases and 3) Clustering system use cases,
which are individually introduced.

3.1 Extraction of Use Cases Features

By evaluation of artifacts of requirements analysis phase including use case model,
class diagram and collaboration diagram, the following features can be defined for
use cases clustering. Features 1 to 4 are binary and other features are continuous.
1– Actors. Use cases initiated or called by the same actor are more related than

other use cases because the actors usually play similar roles in the system. So,
each actor is considered as a feature, taking a value 1 or 0 based on its presence
or absence in the use case.

2 – Entity classes. Use cases working with the same data are more related than
other use cases. So, each entity class is considered as a feature taking a value 1
or 0 based on its presence or absence in the use case.

3 – Control classes. In each use case, the class or classes are responsible for
coordination of activities between interface classes and entity classes, known as
control classes. Use cases controlled by the same control class are more related
than other use cases. Each control class is considered as a feature taking a value
1 or 0 based on its presence or absence in the use case.

4 – Relationship between use cases. Based on relationship between use cases, the
following features can be extracted:
• If several use cases Ui are related to Ui use case in an extend relationship, a

new feature is added to existing use cases features and its value is 1 for Ui and
related use cases, and 0 for other use cases.

• If several use cases are specialized from a generalized use case, a new feature is
added to existing use cases features and its value is 1 for them and 0 for other
use cases.

• If Ui and Uj use cases are related through include relationship, the relationship
between Uj and use cases other than Ui should be investigated. Uj may also be

86 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

included by Uk (as shown in Figure 1). In this case, if Ui has a relatively
strong relationship with Uk (at least 2 or more shared features), a new feature
is added to the existing use cases features and its value is 1 for Ui and Uj and
0 for other use cases.

Figure1. Include relationship between use cases

5 – Weight of Control Class(WCC). Considering the number of entity classes and

interface classes managed by each control class, a weight is assigned to each
control class using equation (8), where Neci and Nici are, the number of entity
and interface classes under control of control class i respectively; and m and l
are total number of entity and interface classes of the system, respectively.

∑∑
==

+

+
= l

j
j

m

j
j

ii
i

NicNec

NicNec
WCC

11

 (8)

6 –Association Weight of Use Case(AWUC). This feature is calculated by equation
(9), where Ncci is the number of control classes of each use case, Naeci is the
number of relationships between entity classes of the use case and Neci is the
number of entity classes of the use case (each control class has an association
with entity classes of the use case). The variable u is the number of use cases of
the system and the denominator of the fraction is total dependency of all use
cases of the system.

∑
=

++

++
= u

j
iii

iii
i

NecNaecNcc

NecNaecNcc
AWUC

1
)(

(9)

7 –The similarity rate of each use case with other use cases. This feature is
computed in terms of binary features (1 to 4 features) using equation (2) and
coefficient of Jaccard. In this equation, n11 is the number of binary features with
a value of 1 in both use cases, n01 is the number of binary features having a
value of 0 for the first use case and 1 for the others; and the inverse relation
exists for n10. Since similarity of each use case with the other (N-1) use cases is
calculated, (N-1) features are added to existing features.

Ui

Uk

Uj

include

include

87 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

3.2 Constructing Proximity Matrix of Use Cases

As mentioned in section 2, clustering is done based on either features matrix or
proximity matrix (similarity/dissimilarity) of objects. As discussed in the previous
step, some of the features are continuous and some are binary. In clustering objects
with mixed features (both binary and continuous features), we can either map all
these features into the interval (0, 1) and use distance measures, or transform them
into binary features and use similarity functions. The problem of both methods is
the information loss [13]. We can construct similarity matrix for binary features
and dissimilarity (distance) matrix for continuous features, then convert
dissimilarity matrix to similarity matrix, and use equation (10) to combine them in
a single similarity matrix [18]. w1 and w2 values are positive weights determined
concerning the importance of matrices. Also, s1 and s2 are binary and continuous
similarity matrices, respectively.

21

2211),(),(),(
ww

jiswjiswjis
+
+

= (10)

Thus, proximity matrix is created as follows:
A – Constructing similarity matrix of binary features. The similarity matrix of

binary features (features 1 to 4) is formed using equation (2) and coefficient of
Jaccard.

B – Constructing distance matrix of continuous features. For continuous features
(features 5 to 7), the cosine distance measurement is used in which for each X
matrix with dimensions m×n, the distance between every two feature vectors
of xr and xs is calculated using equation (11).

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ssrr

sr
rs xxxx

xxd
''

'.1

(11)
C – Converting distance matrix of stage (B) to similarity matrix. Distance matrix

of stage (B) is converted to similarity matrix by converting each distance
element to similarity element using equation (12) in which dij is the distance
between i and j use cases.
Sij = 1-dij (12)

D – Combining similarity matrices of stages (A) and (C). Using equation (10), the
similarity matrices of stages (A) and (C) are combined.

3.3 Clustering System Use Cases

In Section 3-2, use cases similarity matrix was established. This matrix, which is
created by the programs written in Matlab tool, is the main input of most
clustering methods used in this study. For clustering use cases of the system, the

88 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

following clustering methods are used: (1) RBR, (2) RB, (3) Agglomerative
(Agglo), (4) Direct, (5) Graph-based, (6) FCM and (7) Competitive Neural
Network (CNN). The best clustering method is chosen based on the assessment
performed in Section 4.

4 Evaluation of the Proposed Method

In the previous section, the method proposed to determine the system software
components was described. Several clustering methods have been used in our
proposed method. To select the best clustering method, first the results of
partitioning the functionalities of several software systems to their components are
compared to expert opinion using the introduced methods. Then, the method with
most conformity with the expert opinion will be selected. In addition, using criteria
based on high cluster cohesion and low cluster coupling, the suitable number of
clusters is determined. In addition , the effect of each feature on accuracy of
clustering is determined using sensitivity analysis. Finally, the set of features close
to the optimum that contribute to clustering precision while being minimal is
determined.

In methods (1) to (5), clustering is done based on the similarity matrix using
CLUTO tool and various optimization functions [14, 19, 20]. CLUTO is a software
package for clustering low and high dimensional datasets and for analyzing the
characteristics of different clusters. In most clustering methods of CLUTO, the
clustering problem is treated as an optimization process, which seeks to maximize
or minimize a particular clustering criterion function defined either globally or
locally over the entire clustering solution space. CLUTO provides seven different
criterion functions (h2, h1, g'1, g1, e1, i2, i1) that can be used in both partitional
and agglomerative clustering methods. In addition, CLUTO provides some of
traditional local criteria such as SLINK that can be used in the agglomerative
clustering. Also, CLUTO provides graph-partitioning-based clustering algorithms.
In FCM and CNN methods, clustering is done based on features matrix of use cases
using MATLAB software [21].

4.1 Evaluation Method

The steps of evaluation method are as follows:
A- Determining the Best Clustering Method. In this step, first, the results of

applying use case clustering methods on some software systems are compared to
the desired expert clustering, and then the method that shows the most conformity
with the result of expert clustering will be selected as the best method.

89 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

The error of a clustering method is computed by equation (13), where CEj and
CTj are the set of use cases of j-th component from expert and clustering method
view, respectively.Δ symbol is the symmetric difference of two sets. The number of
clusters(K) in each system is determined based on expert opinion. The computation
of error of the clustering methods are done by programs written in Matlab tool.

 (13) ∑
=

Δ=
K

j
jj CTCEError

12
1

The overall performance(i.e. the mean error) of a clustering method on some
software systems is calculated in terms of error by equation (14). In this equation,
NCEi,j is the error of clustering method i on j-th system, NUCj is the number of
use cases of j-th system and NS is the number of systems. Since in equation (14)
we consider normalized errors so lower QCFi shows the higher quality of i-th
clustering method.

∑
=

=
NS

j j

ji
i NUC

NCE
NS

QCF
1

,1 (14)

B- Sensitivity Analysis. In this stage, by eliminating each feature, its effect in
clustering is examined and the features with negative effects or no effect in
clustering are identified and removed.

C- Determining Approximately Minimal Features Set. To select a feature set
that while being approximately minimal its accuracy is sufficient for clustering, the
sequence backward selection (SBS) method [22] is used. In SBS greedy method, we
begin with all features and repeatedly eliminate a feature, until the best
performance of clustering is reached.

D- Determining Suitable Number of Clusters. In section 2-3, two methods where
introduced to determine the number of clusters. In this stage, by applying these
methods, the number of clusters for sample software systems is determined and the
suitable method is selected.

4.2 Sample Software Systems

In this section, the proposed method is validated using four software systems of a
software development company in Iran consisting of: (1) Education System(ES),
(2) Online Stock Brokerage System(OSBS), (3) Chain-Store System(CSS), and (4)
Home Appliance Control System(HACS). The number of different features of each
system is shown in columns 4 to 11 of Table 1. The second column shows the
number of use cases and third column shows the number of components of each
system. Note that for each use case, there is one control class weight feature and
one use case association weight feature.

90 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

Table 1. Characteristics of the sample software systems
Systems

Number
of

Number of Number of
different

relationship
among use cases

Number of System

U
se

 c
as

es

C
om

po
ne

nt
s

A
ct

or
s

E
nt

ity

cl
as

se
s

C
on

tr
ol

cl

as
se

s

E
xt

en
d

Sp
ec

ia
liz

at
io

n,

G
en

er
al

iz
at

io
n

In
cl

ud
e

W
ei

gh
t

of

co
nt

ro
lc

la
ss

A
ss

oc
ia

tio
n

w
ei

gh
t

of

us
e

ca
se

Similarity
Rate

of each
Use case

Total
number

of
Features

ES 53 6 10 17 24 4 0 0 1 1 52 109
OSBS 23 4 3 6 10 2 0 7 1 1 22 52
CSS 21 4 5 18 11 0 0 0 1 1 20 56

HACS 11 3 4 6 7 0 0 0 1 1 10 29

4.3 Evaluation of Clustering Methods

We considered the systems introduced in Table 1 one by one. For each system, first
we extracted its features and then produced its proximity matrix following the four
steps introduced in section 3-2. Finally we applied all the methods introduced in
section 2-3, except FCM and CNN methods, on the proximity matrix of the
systems. Note that in equation (10), we considered w1=w2=0.5 and in FCM
method we defuzzification process in order to assign each use case to the most
related cluster. Table 3 shows the results of clustering methods

The values shown in the column 3 to 6 of Table 2 are clustering errors
computed based on equation (13). Note that the number of components in each
system is determined by experts.

The results of use cases clustering by RBR, RB, Direct and Graph-based
methods reveal that in each of these methods, the average error per criterion
functions (QCF) i1, i2, h1, and h2 is the same. Thus, only the results of h2
criterion function are presented in Table 2. Average error of RBR, RB and Direct
methods for other criterion functions is higher than 0.141, so they were not shown
in Table 2.

According to the results of Table 2, and based on equation (14), RBR and
Direct methods with criterion functions i1, i2, h1, and h2 have the most conformity
with experts opinion. Thus, these methods with desired criterion functions are
recommended.

For more clarification, OSBS is concisely described. This system facilitates its
users i.e., individual investors to trade the stocks online through the internet such
as buy, sell, etc. With a good OSBS, any person can learn everything to become a
smart investor, and buy and sell stocks online. One of the clear software
component of this system is the reporting component, that is responsible of
preparing the useful reports and it consists of several use cases such as: economic

91 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

statistic & trends, trading report, last day indices stock. We apply our proposed
method on this system and the number of clusters is determined by expert. we
obtain components similar to expert opinion. For example, the use cases of a
component are the same as use cases of reporting component.

Table 2. Clustering Results of systems use cases with different clustering

methods
Clustering Error Clustering

Method
Criterion
Function ES (53) OSBS (23) CSS (21) HACS

(11)

Average Error of
Clustering Method

QCF
RBR h2 6 2 0 0 0.05
RB h2 6 3 0 3 0.129
Direct h2 6 2 0 2 0.095
Graph-
based

h2
6

7 7 0
0.188

Agglo i2 6 3 4 0 0.109
FCM - 7 1 4 4 0.182
CNN - 14 6 5 4 0.282

4.4 Determining the Appropriate Number of Clusters

As stated in section 2-3, the basis of determining the number of clusters is the
intra-cluster compactness and inter-cluster coupling. To automatically determine
the number of clusters, CH and Ray indices are used. Table 3 shows the number of
components of the sample software systems based on expert opinion and these
indices. According to Table 3, the results of CH index is far from the expert
opinion so it is not a suitable method. The results of ray index are close to expert
opinions, so we accept the results of this index.

Table 3. The number of components in sample software systems

Number of Components
Ray index CH index

Difference Difference

Opinion
expert

Number
of Use
cases

System

-1 5-1 5 6 53 ES
+1 5+6 104 23 OSBS
0 4-2 2 4 21 CSS
0 3+3 6 3 11 HACS

4.5 Sensitivity Analysis

For sensitivity analysis, by eliminating each feature, its effect on accuracy of
clustering is evaluated and features with negative effect or features without effect

92 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

upon clustering are identified and deleted. Table 4 shows features and their effects
in clustering. Absence of feature is shown by "-"symbol.
Results of sensitivity analysis show that: (1) The effect of features presented in rows 1 to 3
and 7 of Table 4 in use case clustering is significant, and (2) The effect of features
presented in rows 4 to 6 of Table 4 is negligible compared to other features.

Table 4. Features and their Effect in Clustering

HACS CSS OSBS ES

Feature Impact
on Clustering

Feature Impact
on Clustering

Feature Impact
on Clustering

Feature Impact
on Clustering

N
o

ef
fe

ct

N
eg

at
iv

e

P
os

iti
ve

N
o

ef
fe

ct

N
eg

at
iv

e

P
os

iti
ve

N
o

ef
fe

ct

N
eg

at
iv

e

P
os

iti
ve

N
o

ef
fe

ct

N
eg

at
iv

e

P
os

iti
ve

System

Features

row

 • • • • Actor 1
• • • • Entity Classes 2
• • • • Control Classes 3
- - • • Extend
- - - - Generalization

Specialization
- - • - Include

Different
Relationship
among
Use cases

4

• • • • Weight of Control Class 5

• • • • Association weight of use
case

6

• • • • Similarity Rate of each Use
Case with other Use Cases

7

Table 5 shows quantitative results of sensitivity analysis in terms of number of

errors resulting from inclusion or exclusion of features in clustering. Note that in
Table 5 similarity rate of use cases with each other is computed based on binary
features. Table 5 shows that Actors, Control classes and Entity classes are
important feature.

Table 5. Quantitative results of features sensitivity analysis in terms of the

number of errors in clustering
All Features

without
Binary Features

without
Similarity Rate of

each Use Case
with other Use
Cases without

Syste
m

All
Featur
e

Only
Binary
Featur
e

Only
Continuou
s Features

A
ct

or

C
on

tr
ol

E
nt

it
y

A
ct

or

C
on

tr
ol

E
nt

it
y

A
ct

or

C
on

tr
ol

E
nt

it
y

ES 0 0 1 1 5 5 1 3 7 1 3 5
OSBS 0 1 0 6 3 7 5 3 7 5 3 7
CSS 0 1 0 11 1 0 9 1 0 9 1 0

HACS 0 0 0 3 0 0 4 0 0 3 0 0

93 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

4.5.1 Sensitivity Analysis of Weight of Binary and Continuous Similarity Matrices

In equation (10) of step (B)-(C), in order to combine binary and continuous
similarity matrices, weight of these matrices was considered equal. As a case we
take into consideration OSBS to assess the effect of changes in matrices weights on
accuracy of system functions clustering. Figure 3 depicts changes in clustering error
where the weight of binary similarity matrix changes from 0.05 to 0.95. This figure
shows that weight of binary similarity less than 0.6 for system 2 is desired.

Figure 3. Sensitivity analysis diagram of weight impact of binary similarity matrix in

OSBS

According to Sensitivity analysis results, allocation of weight 0.5 for binary and
continuous similarity matrices is appropriate.

4.6 Approximately Minimal Feature Set

The set of features close to optimum for each system are determined and listed in
Table 6 using the SBS method.

Table 6. Minimum Features Set for Functions Clustering

Actors Entity classes Control classes System
Number Minimum Number Minimum Number Minimum

ES 10 3 17 2 24 11
OSBS 3 2 6 4 10 1
CSS 5 4 18 1 11 0

HACS 4 1 6 1 7 1

4.7 Comparison of Results to Kim Method

We applied Kim et al. work [5] on four sample systems. We considered same
weight for all features. The results are shown in Table 7. The proposed method

94 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

achieves better result than Kim method.

Table 7. Comparison of the proposed method and Kim method
Systems Error

HACS CSS OSBS ES
Method

0 0 2 6 The Proposed
Method

0 4 8 9 Kim Method

Advantages of the proposed method in comparison with the related works are as
follows:
1-Presentation of a structured method to determine system software components.
2–Extraction of more features for clustering. The proposed method uses more

features than other related works, and determines their effect in clustering
through sensitivity analysis.

3- Using different clustering methods and choosing the best method in terms of the
highest conformity to expert opinion.

4–Verifying the results of clustering methods with expert opinion and ensuring
accuracy of the proposed method.
5–Using some sample software systems for validating the proposed method.

6-Sensitivity analysis by elimination of every feature and assessment of the effect of
their elimination in increasing or decreasing the accuracy of clustering.
7-Elimination of weight assignment to features in clustering.

4.8 Extension

For further research, pre-conditions and post-conditions of each use case are
also considered as a new feature. Use cases with similar pre-conditions/ post-
conditions are more related than other use cases. Each pre-condition/ post-
condition is considered a feature taking a value 1 or 0 based on its presence or
absence in the use case. In sample software systems, only use cases of OSBS had
pre-conditions/ post-conditions. So considering preconditions/ post-conditions of
each use case, the clustering was repeated, the results show a decrease in clustering
error. In the RBR and Direct clustering methods and RB method, the clustering
errors became 0, 0, and 1 respectively. Thus, this feature can also be used in use
case clustering.

95 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

4.9 Related Works

Evaluation of previous works [4-12] shows that: (1) clustering results have not
been compared with expert opinion; (2) the presented methods have not been
validated using a number of software systems; (3) various clustering methods have
not been used; and (4) the effect of features on accuracy of clustering is not
determined using sensitivity analysis, (5) there has been no guideline for
determining the number of clusters, and (6) using less features, while these
shortcomings have been addressed in this research. Related works were introduced
in introduction section. The problems of these methods, in addition to the points
mentioned, are as follows:

• The presented formula for calculating static and dynamic relationships in
method [4] rigorously requires weighting relation types.

• Method [5] has not been validated by case study and it required weighting
and did not give any guidelines in this regard.

• Method [6], 1) has not presented any guidelines to determine weight
values (specially priority between types of relations between classes) and
count the number of messages sent.

• In [7], the dependencies among requirements are manually identified. Also,
coupling and dependency are treated the same way. But the assumed
hypothesis is wrong.

• In method [8], the features used in identifying components and details of
clustering method have not been presented.

• Method [9] provides high level guidelines, and it relies on domain experts
in applying the guidelines.

• Nevertheless, the tool for implementing the BCI-3D method [12] cannot
generate the information directly. Currently, all the information for
identifying the business component is generated manually, due to the
inability of communication between different platforms of the BCI-3D.

5 Conclusion

In this paper, a method was proposed to automatically determine system software
components based on clustering of use cases features. First, the system use cases
features were extracted and the components were determined based on the
proposed method using different clustering methods. Then, the appropriate
clustering method was selected by comparison of clustering methods results with
expert opinion. To determine the appropriate number of clusters, metrics of the

96 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

interior cohesion of clusters and the coupling among them are used. By sensitivity
analysis, the effect of each feature on accuracy of clustering was determined and
finally the closest to optimum set of features providing the required accuracy in
clustering were determined using the SBS method. The case studies conducted with
four software systems, while validating the method, showed that RBR and Direct
clustering methods that are extensions of K-means method have the most
conformity with expert opinion. So, they were selected and recommended as the
most appropriate methods. Innovation of this research is to propose a systematic
method to determine system software components with specifications mentioned.

Acknowledgement

This work has been supported in-part by the Iranian Telecommunication Research
Center (ITRC).

References

[1] M. Shaw، and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall، 1996.

[2] L. Peng, Z. Tong, and Y. Zhang, "Design of Business Component
Identification Method with Graph Segmentation", 3rd Int. Conf. on
Intelligent System and Knowledge Engineering, pp. 296-301, 2008.

[3] R. Wu,"Componentization and Semantic Mediation", 33th Annual Conf. of
the IEEE Industrial Electronics Society, Taiwan, pp. 111-116, 2007.

[4] M. Fan-Chao, Z. Den-Chen, and X. Xiao-Fei, "Business Component
Identification of Enterprise Information System: A hierarchical clustering
method", Proc. Of the 2005 IEEE Int. Conf. on e-Business Engineering, pp.
473-480, 2005.

[5] S. Kim, and S. Chang, "A Systematic Method to Identify Software
Components", Proc of 11th Software Engineering Conf., pp. 538-545, 2004.

[6] H. Jain, and N. Chalimeda , "Business Component Identification – A Formal
Approach", proc of the 5th IEEE Int. Conf. on Enterprise Distributed Object
Computing, p.183, 2001.

[7] C. H. Lung, M. Zaman, and A. Nandi. Applications of Clustering Techniques
to Software Partitioning, Recovery and Restructuring, J. Syst. Soft.,
73(2):227-244, 2004.

[8] H. S. Hamza, "A Framework for Identifying Reusable Software Components
Using Formal Concept Analysis", 6th International Conference on
Information Technology: New Generations,pp. 813-818 ,2009.

97 ⋅ Identification of System Software Components Using Clustering Approach

Journal of Object Technology Vol. 9, no. 6, 2010

[9] J. Cheesman, and J. Daniels, UML Components. A Simple Process for
Specifying Component-Based Software, Addison-Wesley, Upper Saddle River,
2001.

[10] A. Albani, J.L. Dietz, and J. M. Zaha, "Identifying Business Components on
the Basis of an Enterprise Ontology", Interoperability of enterprise software
and applications, pp. 335-347. Springer, 2006.

[11] A. Albani, and J.L. Dietz, "The Benefit of Enterprise Ontology in
Identifying", IFIP World Computing Conference, Santiago de Chile, Chile,
2006.

[12] A. Albani, S. Overhage, and D. Birkmeier, "Towards a Systematic Method
for Identifying Business Components", Component-Based Software
Engineering. LNCS 5282, pp. 262-277. Springer, Heidelberg, 2008.

[13] R. Xu and D. Wunsch, "Survey of Clustering Algorithms ", IEEE
Transactions on Neural Networks, Vol. 16, No. 3, MAY 2005, pp. 645- 678.

[14] G. Karypis, CLUTO: A Clustering Toolkit. Dept. of Computer Science,
University of Minnesota, USA, 2002.

[15] F. Höppner, F. Klawonn, and R. Kruse, Fuzzy Cluster Analysis: Methods for
Classification, Data Analysis, and Image Recognition, New York: Wiley,
1999.

[16] S. Ray, and R.H. Turi, "Determination of Number of Clusters in K-means
Clustering and Application in Colour Image segmentation", Proc. of the 4th
Int. Conf. on Advances in Pattern Recognition and Digital Techniques ,
Calcutta, India, pp. 137-143, 1999.

[17] OMG. OMG Unified Modeling Language Specification. March 2000.
[18] L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction to

Cluster Analysis, Wiley, John, 2005.
[19] Y. Zhao, and G. Karypis, Criterion Functions for Document Clustering:

Experiments and Analysis, http://citeseer.nj.nec.com/zhao02criterion.html,
2002.

[20] M. Steinbach, G.Karypis, and V. Kumar,"A Comparison of Document
Clustering Techniques".KDDWorkshop on Text Mining,Vol. 34, pp. 35, 2000.

[21] H. Demuth, and M.Beale, "Neural Network Toolbox, For Use with
MATLAB", Version 8, 2008.

[22] R. Caruana and D. Freitag, "Greedy Attribute Selection", Int. Conf. on
Machine Learning, pp. 28-36, 1994.

98 ⋅ G. R. Shahmohammadi et al.

Journal of Object Technology Vol. 9, no. 6, 2010

About the authors

Saeed Jalili received the Ph.D. degree from Bradford
University in 1991 and the M.Sc. degree in computer science
from Sharif University of Technology in 1979. Since 1992, he
has been assistant professor at the Tarbiat Modares
University. His main research interests are software testing,
software runtime verification and quantitative evaluation of
software architecture. E-mail: Sjalili@modares.ac.ir

Gholam Reza Shahmohammadi received the Ph.D. degree from
Tarbiat Modares University (TMU) in 2010 and the M.Sc.
degree in oftware engineering from TMU in 2001, and the
B.Sc. degree in Software engineering from Ferdowsi University
of Mashhad in 1990. His main research interests are software
engineering, quantitative evaluation of software Architecture,
software metrics and software cost estimation. E-mail:
Shahmohamadi@modares.ac.ir.

Seyed Mohammad Hossein Hasheminejad is a Ph.D. Candidate
of computer engineering at Tarbiat Modares University
(TMU). He received the M.Sc. degree in Software engineering
from TMU in 2009, and the B.Sc. degree in Software
engineering from Tarbiat Moalem University in 2007. His main
research interests are Formal Methods for Software
Engineering, Object-Oriented Analysis and Design, Search
Based Software Engineering, and Self-Adaptive Systems. E-
mail: SMH.Hasheminejad@Modares.ac.ir

