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Abstract 
The selection of software architecture style is an important decision of 
design stage, and has a significant impact on various system quality 
attributes. To determine software architecture based on architectural 
style selection, the software functionalities have to be distributed 
among the components of software architecture. In this paper, a 
method based on the clustering of use cases is proposed to identify 
software components and their responsibilities. To select a proper 
clustering method, first the proposed method is performed on a 
number of software systems using different clustering methods, and 
the results are verified by expert opinion, and the best method is 
recommended. By sensitivity analysis, the effect of features on 
accuracy of clustering is evaluated. Finally, to determine the 
appropriate number of clusters (i.e. the number of software 
components), metrics of the interior cohesion of clusters and the 
coupling among them are used. Advantages of the proposed method 
include; 1) no need for weighting the features, 2) sensitivity analysis of 
the effect of features on clustering accuracy, and 3) presentation of a 
clear method to identify software components and their 
responsibilities. 

Keywords. Automatic components identification, Clustering of use-
cases, Software architecture. 
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1 Introduction 

Software architecture is a fundamental artifact in the software life cycle with an 
essential role in supporting quality attributes of the final software product. Making 
use of architecture styles is one of the ways to design software systems and 
guarantee the satisfaction of their quality attributes [1]. After architectural style 
selection, only type of software architecture organization is specified. Then software 
components and their responsibilities need to be identified. On the other hand, 
component-based development (CBD) is nowadays an effective solution for the 
subject of development and maintenance of information systems [2]. A component 
is a basic block that can be designed and if necessary be combined with other 
components [3]. Partitioning software system to components, while effective on 
later software development stages, has a central role in defining the system 
architecture. Component identification is one of the most difficult tasks in the 
software development process [4]. Indeed a few systematic components 
identification methods have been presented, and there are no automatic tools to 
help experts for identifying the components, and components identification is 
usually made based on expert experience. 

In [4], a hierarchical clustering technique is proposed based on graph using edge, 
i.e. class relationships can be weighed according to their types. To identify business 
object component, the technique uses the concept of resemblance degree between 
business objects. The resemblance degree depends on the relationship among the 
objects either dynamics or statics. The static relationships between business objects 
can be classified as general, compound, aggregation and association, and have 
different weights. The technique is composed of two steps: 1) The object-activity 
relation matrix is used to calculate the dynamic resemblance degree, and 2) To 
identify business object components, the technique uses a hierarchical clustering 
technique based on business object relation graph according to the edge strength 
metric. The strength of edge considers both cohesion and coupling between 
business objects. However, the technique could be impractical to medium/big 
systems since it relies on the number of possible pairs of business objects. 

In [5], software components have been determined using use case model, object 
model, and dynamic model (i.e. collaboration diagram). For clustering related 
functions, the functional dependency of use cases is calculated and related use cases 
are clustered. 

In [6], the static and dynamic relationships between the different classes in the 
UML domain model are used for clustering related classes in components. Static 
relationship measures the relationship strength using different weights, and 
dynamic relationship measures the frequency of message exchange at runtime. To 
compute the overall strength of relationship between classes, the results of static 
and dynamic relationships between classes are combined. 
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In  [7], a method to decompose requirements  to  components is presented. In 
this work hierarchical clustering algorithms are used for partitioning a system. Also 
they demonstrate different ways of defining and populating the input matrix to 
feed into the clustering technique. 

In [8], for identifying business stable components, a novel framework is 
presented based on Formal Concept Analysis (FCA). In this work, FCA is used to 
develop a framework to identify components from use cases and class diagram. 

In [9], a development process component is explained based on use cases and 
business type models that includes a method to identify business components. 
Inter-class relationship is used as the main factor for identifying components. The 
core class serves as the center of each clustering, and the responsibility derived 
from use cases is used to guide the process.  

In [10,11,12] the Business Component Identification (BCI) method, as well as 
the further development to BCI-3D, are described by Albani et al.. BCI is the first 
and a crucial step in the business component modeling process. It starts by 
generating a set of essential elements from the business domain, rather on the basis 
of a high-level business domain model. Information about data objects, process 
steps and actors, plus their relationships is mapped onto vertices and edges of a 
graph. Weights are assigned to the edges depending on the relation type and the 
designers preferences. Using a heuristic from graph theory, the graph is partitioned 
and components are identified. The BCI-3D tool supports the designer in the 
identification process.  

Disadvantages of most of these methods are: 1) Lack of validation of the results 
of the clustering application on some software systems 2) Lack of an approach for 
determining the number of system components; 3) No sensitivity analysis of the 
effect of features on accuracy of clustering; 4) High dependency of the method on 
expert opinion; 5) Need manual weighting of the features used in clustering and 6) 
No evaluation of the effect of using different clustering methods. 

Since use cases indicate functionality of a system and a set of related use cases 
shows the coherent functionality of the system, allocating the related use cases to 
components is a suitable way to determine components of the system. Therefore, in 
this paper a method for automatic identification of system software components is 
proposed based on the use case model (in analysis phase). In this method, at first 
using the system analysis model including use case model, class diagram and 
collaboration diagram, some features are extracted. Then, using the proposed 
method and applying various clustering methods, use cases are clustered in several 
components. To evaluate the clustering methods, the components that result from 
clustering are compared to the ones specified by the experts and the method with 
most conformity with the expert opinion is selected. In most methods, the number 
of clusters (K) is an input parameter of clustering. But for partitioning a system to 
some components, the number of these components is not specified beforehand. 
Thus, in the proposed method, clustering is repeated for different values of K, and 
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then the most appropriate value of K (number of components) is chosen regarding 
high cohesion of components and low coupling among them. In order to increase 
clustering accuracy, the effect of features on accuracy of clustering is determined 
using sensitivity analysis on use case features. Finally, by choosing a proper feature 
selection method, minimum features achieving the required accuracy in clustering 
are selected. 

Next, we present clustering in the second part. The proposed method for 
determining components and the evaluation model of the proposed method are 
presented in sections 3 and 4, respectively. In section 5, the conclusion is presented 
and the proposed method is compared with other methods. 

2  Clustering 

In order to understand new objects and phenomena, their features are described, 
and then compared to other known objects or phenomena, based on similarity or 
dissimilarity [13]. All of the clustering methods include three common key steps: 1) 
Determine the object features and data collection, 2) Compute the similarity 
coefficients of the data set, and 3) Execute the clustering method. 

 Each input data set consists of an object-attribute matrix in which objects are 
the entities grouped based on their similarities. Attributes are the properties of the 
objects. A similarity coefficient for a given pair of objects shows the degree of 
similarity or dissimilarity between these two objects, depending on the way the 
data are represented. The similarity coefficient could be qualitative or quantitative. 
A data object is described by a set of features represented as a vector. The features 
are quantitative or qualitative, continuous or binary, nominal or ordinal. A feature 
type determines the corresponding measure mechanism. 

2.1 Similarity and Dissimilarity Measures 

To join (separate) the most similar (dissimilar) objects of a data set X in some 
cluster, clustering algorithms apply a function that can make a quantitative 
measure among vectors. This quantitative measure is arranged in a matrix called 
proximity matrix. Two types of quantitative measures are Similarity Measures, and 
Dissimilarity Measures. In other words, for a data set with N input patterns, an 
N×N symmetric matrix called proximity matrix can be defined where (i, j)-th 
element represents the similarity or dissimilarity measure for the i-th and j-th 
patterns (i,j=1,…,N). So, the relationship between objects is represented in a 
proximity matrix, in which rows and columns correspond to objects. If the objects 
are considered as points in a d-dimensional space, each element of the proximity 



81 ⋅ Identification of System Software Components Using Clustering Approach 

Journal of Object Technology Vol. 9, no. 6, 2010 

matrix represents the distance between pairs of points [13]. 
 
Similarity Measures. The Similarity Measures are used to find similar pairs of 

objects in X. sij is called similarity coefficient. The higher the similarity between 
objects i and j, the higher the sij value. For all objects i and j, a similarity measure 
must satisfy the following conditions:  

• 0 ≤ sij ≤1      
• sii = 1 
• sij = sji 
Dissimilarity Measures. Dissimilarity Measures are used to find dissimilar pairs 

of objects in X. The dissimilarity coefficient, dij, is small when objects i and j are 
alike, otherwise, dij becomes larger. A dissimilarity measure must satisfy the 
following conditions: 

• 0 ≤ dij ≤ 1 
• dii = 0 
• dij = dji 
Typically, distance functions are used to measure continuous features, while 

similarity measures are more important for qualitative features [13]. Selection of 
different measures is problem dependent [13]. For binary features, the similarity 
measure is commonly used. Let us assume that a number of parameters with two 
binary indexes are used for counting features in two objects. For example, n00 and 
n11 denote the number of simultaneous absence and presence of features in two 
objects respectively, and n01 and n10 count the features presented only in one 
object. The equations (1) and (2) show two types of commonly used similarity 
measures for data points. w=1 for simple matching coefficient, w=2 for Rogers and 
Tanimoto measure and w=1/2 for Gower and Legendre measure are used in 
equation (1). These measures compute the match between two objects directly. 
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Equation (2) focuses on the co-occurrence features while ignoring the effect of 
co-absence. w=1 for Jaccard coefficient, w=2 for Sokal and Sneath measure and 
w=1/2 for Gower and Legendre measure are used in equation (2). 
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2.2 Clustering Methods 

In this section, some of the main clustering methods are introduced.   
 

A- Hierarchical Clustering (HC). In this method, hierarchical structure of data is 
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organized according to a proximity matrix. HC algorithms organize data into a 
hierarchical structure according to the proximity matrix. The results of HC are 
usually depicted by a binary tree or dendrogram. The root node of the dendrogram 
represents the whole data set and each leaf node is regarded as a data object. The 
intermediate nodes, thus, describe the extent that the objects are proximal to each 
other; and the height of the dendrogram usually expresses the distance between 
each pair of objects or clusters, or an object and a cluster. The ultimate clustering 
results can be obtained by cutting the dendrogram at different levels. HC 
algorithms are mainly classified as agglomerative methods and divisive methods 
[13]. Agglomerative clustering starts with N clusters and each of them includes 
exactly one object. A series of merge operations then follow that finally lead all 
objects to the same group. Based on the different definitions for distance between 
two clusters, there are many agglomerative clustering algorithms. Let Ci and Cj be 
two clusters, and let |Ci| and |Cj| denote the number of objects that each one have. 
Let d(Ci,Cj) denote the dissimilarity measures between clusters Ci and Cj , and d(i, 
j) the dissimilarity measure between two objets i, and j where i is an object of Ci 
and j is an object of Cj. The simplest method is single linkage (SLINK) technique. 
In the SLINK method, the distance between two clusters is computed by the 
equation (3). The common problem of classical HC algorithms is lack of robustness 
and they are, hence, sensitive to noise and outliers. Once an object is assigned to a 
cluster, it will not be considered again, which means that HC algorithms are not 
capable of correcting possible previous misclassifications [13].  

(3)  
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B- Squared Error—Based Clustering. Partitional clustering assigns a set of 
objects into clusters with no hierarchical structure. The optimal partition, based on 
some specific criterion, can be found by enumerating all possibilities. However, this 
method is impossible in practice, due to expensive computation. Thus, heuristic 
algorithms have been developed in order to seek approximate solutions. One of the 
important factors in partitional clustering is the criterion function. The sum of 
squared error functions is one of the most widely used criteria [13]. The main 
problem of partitional methods is uncertainty of the clustering solution to 
randomly selected cluster centers. The K-means algorithm belongs to this category. 
This method is very simple and can be easily implemented in solving many 
practical problems. But there is no efficient and universal method for identifying 
the initial partitions and the number of K clusters. The iteratively optimal 
procedure of K-means cannot guarantee convergence to a global optimum. K-means 
is sensitive to outliers and noise. Thus, many variants of K-means have appeared in 
order to overcome these obstacles. K-way clustering algorithms with the repeated 
bisection (RB, RBR) and direct clustering (DIR) are expansion of this method that 
are introduced briefly[14].  
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RB Clustering Method. In this method, the desired k-way clustering solution is 
computed by performing a sequence of k − 1 repeated bisections. In each step, the 
cluster is selected for further partitioning is the one whose bisection will optimize 
the value of the overall clustering criterion function. In this method, the criterion 
function is locally optimized within each bisection. This process continues until the 
desired number of clusters is found. 

 
RBR Clustering Method. In this method, the desired k-way clustering solution is 

computed in a fashion similar to the repeated-bisecting method but at the end, the 
overall solution is globally optimized.   

 
Direct Clustering Method. In this method, the desired k-way clustering solution 

is computed by simultaneously finding all k clusters. In general, computing a k-way 
clustering directly is slower than clustering via repeated bisections.  

 
C- Graph-based Clustering Method. The clustering problems can be described by 

means of graphs. Nodes of a weighted graph correspond to data points in the 
pattern space, and edges reflect the proximities between each pair of data points. If 
the dissimilarity matrix is defined as a threshold value, the graph is simplified to 
an unweighted threshold graph. Graph theory is used for hierarchical and non-
hierarchical clustering [14]. 

 
D- Fuzzy Clustering Method. In this method, the object can belong to all of the 

clusters with a certain degree of membership. This is mainly useful when the 
boundaries among the clusters are not well separated and ambiguous. Moreover, 
the memberships may help us discover more sophisticated relations between a 
given object and the disclosed clusters. FCM is one of the most popular fuzzy 
clustering algorithms [15]. FCM attempts to find a partition (i.e., c fuzzy clusters) 
for a set of data points xj∈Rd, j=1,…, N while minimizing the cost function. FCM 
suffers from the presence of noise and outliers and the difficulty to identify the 
initial partitions. 

 
E- Neural Networks-Based Clustering. In competitive neural networks, active 

neurons reinforce their neighborhood within certain regions while suppressing the 
activities of other neurons. A typical example is self-organizing feature map 
(SOFM)[13]. 

2.3 Methods to Determine the Number of Clusters 

In most methods, the number of clusters (K) is the input parameter of clustering. 
But the quality of resulting clusters is largely dependent on the estimation of K. So 
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many attempts have been made to estimate the appropriate K. For the data points 
that can be effectively projected onto a two-dimensional Euclidean space, direct 
observations can provide good insight on the value of K but only to a small scope 
of applications.  

Most proposed methods have presented formulas that emphasize on the 
compactness within the cluster and separation between clusters, and the 
comprehensive effect of several factors such as defined squares error, geometric or 
statistical feature of data and the number of patterns. Two of them are briefly 
introduced as follows:  

 
A- CH Index[13]. This index is computed by equation (4),where N is the total 

number of patterns and Tr(SB) and Tr(SW) are the trace of the between and within 
class scatter matrix, respectively. The K that maximizes the value of CH(K) is 
selected as the optimal.    

 
(4) 

 
B- Ray and Turi index[16]. In this index, the optimal K value is calculated by 

equation (5). In this equation, Intra is the average intra-cluster distance measure 
that we want to minimize and is computed by equation (6). N is the number of 
patterns, and zi is the cluster centre of cluster Ci. Inter is distance between cluster 
centers calculated by equation (7). Meanwhile, we want to maximize the inter-
cluster distance, i.e., the minimum distance between any two cluster centers. The 
K that minimizes the value of validity measure is selected as the optimal in k-
means clustering. 

Inter
IntraValidity =  (5) 
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3 Automatic Determination of System Software Components  

In this section, the proposed method for clustering use cases, or in other words, 
automatic determination of system software components is presented. Software 
functions clustering is done using artifacts of requirements analysis phase, so all 
features of the use case model, class diagram and collaboration diagram (if any) are 
used in clustering. 
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Each use case indicates a section of system functionality. So, use cases are the 
main way to express system functionality. Each use case is composed of a number 
of scenarios in the system, producing a measurable value for a particular actor. A 
set of  use cases describes the complete functionality of the system. Each actor is a 
coherent set of roles played by the users during interaction with use cases [17]. 
Each use case diagram shows interaction of the system with external entities and 
system functionality from user viewpoint. Considering the above statements, 
software components of the system are identified by relying on identification of 
coherent use cases of the system. Thus, use cases of the system are stimulators of 
the proposed method to identify software components of the system.  

The stages of the proposed method are: 1) Extraction of use cases features, 2) 
Construction of proximity matrix of use cases and 3) Clustering system use cases, 
which are individually introduced.  

3.1 Extraction of Use Cases Features  

By evaluation of artifacts of requirements analysis phase including use case model, 
class diagram and collaboration diagram, the following features can be defined for 
use cases clustering. Features 1 to 4 are binary and other features are continuous. 
1– Actors. Use cases initiated or called by the same actor are more related than 

other use cases because the actors usually play similar roles in the system. So, 
each actor is considered as a feature, taking a value 1 or 0 based on its presence 
or absence in the use case.  

2 – Entity classes. Use cases working with the same data are more related than 
other use cases. So, each entity class is considered as a feature taking a value 1 
or 0 based on its presence or absence in the use case.  

3 – Control classes. In each use case, the class or classes are responsible for 
coordination of activities between interface classes and entity classes, known as 
control classes. Use cases controlled by the same control class are more related 
than other use cases. Each control class is considered as a feature taking a value 
1 or 0 based on its presence or absence in the use case.  

4 – Relationship between use cases. Based on relationship between use cases, the 
following features can be extracted: 
• If several use cases Ui  are related to Ui use case in an extend relationship, a 

new feature is added to existing use cases features and its value is 1 for Ui and 
related use cases, and 0 for other use cases.  

• If several use cases are specialized from a generalized use case, a new feature is 
added to existing use cases features and its value is 1 for them and 0 for other 
use cases.   

• If Ui and Uj use cases are related through include relationship, the relationship 
between Uj and use cases other than Ui should be investigated. Uj may also be 
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included by Uk (as shown in Figure 1). In this case, if Ui has a relatively 
strong relationship with Uk (at least 2 or more shared features), a new feature 
is added to the existing use cases features and its value is 1 for Ui and Uj and 
0 for other use cases. 

 
Figure1. Include relationship between use cases 

 
5 – Weight of Control Class(WCC). Considering the number of entity classes and 

interface classes managed by each control class, a weight is assigned to each 
control class using equation (8), where Neci and Nici are, the number of entity 
and interface classes under control of control class i respectively; and m and l 
are total number of entity and interface classes of the system, respectively. 
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6 –Association Weight of Use Case(AWUC). This feature is calculated by equation 
(9), where Ncci is the number of control classes of each use case, Naeci is the 
number of relationships between entity classes of the use case and Neci is the 
number of entity classes of the use case (each control class has an association 
with entity classes of the use case). The variable u is the number of use cases of 
the system and the denominator of the fraction is total dependency of all use 
cases of the system. 
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7 –The similarity rate of each use case with other use cases. This feature is 
computed in terms of binary features (1 to 4 features) using equation (2) and 
coefficient of Jaccard. In this equation, n11 is the number of binary features with 
a value of 1 in both use cases, n01 is the number of binary features having a 
value of 0 for the first use case and 1 for the others; and the inverse relation 
exists for n10. Since similarity of each use case with the other (N-1) use cases is 
calculated, (N-1) features are added to existing features. 
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3.2 Constructing Proximity Matrix of Use Cases 

As mentioned in section 2, clustering is done based on either features matrix or 
proximity matrix (similarity/dissimilarity) of objects. As discussed in the previous 
step, some of the features are continuous and some are binary. In clustering objects 
with mixed features (both binary and continuous features), we can either map all 
these features into the interval (0, 1) and use distance measures, or transform them 
into binary features and use similarity functions. The problem of both methods is 
the information loss [13]. We can construct similarity matrix for binary features 
and dissimilarity (distance) matrix for continuous features, then convert 
dissimilarity matrix to similarity matrix, and use equation (10) to combine them in 
a single similarity matrix [18]. w1 and w2 values are positive weights determined 
concerning the importance of matrices. Also, s1 and s2 are binary and continuous 
similarity matrices, respectively. 

21

2211 ),(),(),(
ww

jiswjiswjis
+
+

=  (10) 
 

Thus, proximity matrix is created as follows: 
A – Constructing similarity matrix of binary features. The similarity matrix of 

binary features (features 1 to 4) is formed using equation (2) and coefficient of 
Jaccard. 

B – Constructing distance matrix of continuous features. For continuous features 
(features 5 to 7), the cosine distance measurement is used in which for each X 
matrix with dimensions m×n, the distance between every two feature vectors 
of xr and xs is calculated using equation (11). 
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C – Converting distance matrix of stage (B) to similarity matrix. Distance matrix 

of stage (B) is converted to similarity matrix by converting each distance 
element to similarity element using equation (12) in which dij is the distance 
between i and j use cases. 
Sij = 1-dij (12) 

D – Combining similarity matrices of stages (A) and (C). Using equation (10), the 
similarity matrices of stages (A) and (C) are combined.   

3.3 Clustering System Use Cases 

In Section 3-2, use cases similarity matrix was established. This matrix, which is 
created by the programs written in Matlab tool, is the main input of most 
clustering methods used in this study. For clustering use cases of the system, the 
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following clustering methods are used: (1) RBR, (2) RB, (3) Agglomerative 
(Agglo), (4) Direct, (5) Graph-based, (6) FCM and (7) Competitive Neural 
Network (CNN). The best clustering method is chosen based on the assessment 
performed in Section 4. 

4 Evaluation of the Proposed Method 

In the previous section, the method proposed to determine the system software 
components was described. Several clustering methods have been used in our  
proposed method. To select the best clustering method, first the results of 
partitioning the functionalities of several software systems to their components are 
compared to expert opinion using the introduced methods. Then, the method with 
most conformity with the expert opinion will be selected. In addition, using criteria 
based on high cluster cohesion and low cluster coupling, the suitable number of 
clusters is determined. In addition , the effect of each feature on accuracy of 
clustering is determined using sensitivity analysis. Finally, the set of features close 
to the optimum that contribute to clustering precision while being minimal is 
determined. 

In methods (1) to (5), clustering is done based on the similarity matrix using 
CLUTO tool and various optimization functions [14, 19, 20]. CLUTO is a software 
package for clustering low and high dimensional datasets and for analyzing the 
characteristics of different clusters. In most clustering methods of CLUTO, the 
clustering problem is treated as an optimization process, which seeks to maximize 
or minimize a particular clustering criterion function defined either globally or 
locally over the entire clustering solution space. CLUTO provides seven different 
criterion functions (h2, h1, g'1, g1, e1, i2, i1) that can be used in both partitional 
and agglomerative clustering methods. In addition, CLUTO provides some of 
traditional local criteria such as SLINK that can be used in the agglomerative 
clustering. Also, CLUTO provides graph-partitioning-based clustering algorithms. 
In FCM and CNN methods, clustering is done based on features matrix of use cases 
using MATLAB software [21]. 

4.1 Evaluation Method 

The steps of evaluation method are as follows: 
A- Determining the Best Clustering Method. In this step, first, the results of 

applying use case clustering methods on some software systems are compared to 
the desired expert clustering, and then the method that shows the most conformity 
with the result of expert clustering will be selected as the best method.  
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The error of a clustering method is computed by equation (13), where CEj and 
CTj are the set of use cases of j-th component from expert and clustering method 
view, respectively.Δ symbol is the symmetric difference of two sets. The number of 
clusters(K) in each system is determined based on expert opinion. The computation 
of error of the clustering methods are done by programs written in Matlab tool.  

 (13) ∑
=

Δ=
K

j
jj CTCEError

12
1  

The overall performance(i.e. the mean error) of a clustering method on some 
software systems is calculated in terms of error by equation (14). In this equation, 
NCEi,j is the  error of clustering method i on j-th system, NUCj is the number of 
use cases of j-th system and NS is the number of systems. Since in equation (14) 
we consider normalized errors so lower QCFi shows the higher quality of i-th 
clustering method. 

 

∑
=

=
NS

j j

ji
i NUC

NCE
NS

QCF
1

,1  (14) 

B- Sensitivity Analysis. In this stage, by eliminating each feature, its effect in 
clustering is examined and the features with negative effects or no effect in 
clustering are identified and removed. 

C- Determining Approximately Minimal Features Set. To select a feature set 
that while being approximately minimal its accuracy is sufficient for clustering, the 
sequence backward selection (SBS) method [22] is used. In SBS greedy method, we 
begin with all features and repeatedly eliminate a feature, until the best 
performance of clustering is reached.   

D- Determining Suitable Number of Clusters. In section 2-3, two methods where 
introduced to determine the number of clusters. In this stage, by applying these 
methods, the number of clusters for sample software systems is determined and the 
suitable method is selected. 

4.2 Sample Software Systems 

In this section, the proposed method is validated using four software systems of a 
software development company in Iran consisting of: (1) Education System(ES), 
(2) Online Stock Brokerage System(OSBS), (3) Chain-Store System(CSS), and (4) 
Home Appliance Control System(HACS). The number of different features of each 
system is shown in columns 4 to 11 of  Table 1. The second column shows the 
number of use cases and third column shows the number of components of each 
system. Note that for each use case, there is one control class weight feature and 
one use case association weight feature. 
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Table 1. Characteristics of the sample software systems  
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Rate 
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Use case 

Total  
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of 
Features 

ES 53 6 10 17 24 4 0 0 1 1 52 109 
OSBS 23 4 3 6 10 2 0 7 1 1 22 52 
CSS 21 4 5 18 11 0 0 0 1 1 20 56 

HACS 11 3 4 6 7 0 0 0 1 1 10 29 

4.3 Evaluation of Clustering Methods 

We considered the systems introduced in Table 1 one by one. For each system, first 
we extracted its features and then produced its proximity matrix following the four 
steps introduced in section 3-2. Finally we applied all the methods introduced in 
section 2-3, except FCM and CNN methods, on the proximity matrix of the 
systems. Note that in equation (10), we considered w1=w2=0.5 and in FCM 
method we defuzzification process in order to assign each use case to the most 
related cluster. Table 3 shows the results of clustering methods 

The values shown in the column 3 to 6 of Table 2 are clustering  errors 
computed based on equation (13). Note that the number of components in each 
system is determined by experts.  

The results of use cases clustering by RBR, RB, Direct and Graph-based 
methods reveal that in each of these methods, the average error per criterion 
functions (QCF) i1, i2, h1, and h2 is the same. Thus, only the results of h2 
criterion function are presented in Table 2. Average error of RBR, RB and Direct 
methods for other criterion functions is higher than 0.141, so they were not shown 
in Table 2.   

According to the results of Table 2, and based on equation (14), RBR and 
Direct methods with criterion functions i1, i2, h1, and h2 have the most conformity 
with experts opinion. Thus, these methods with desired criterion functions are 
recommended.  

For more clarification, OSBS is concisely described. This system facilitates its 
users i.e., individual investors to trade the stocks online through the internet such 
as buy, sell, etc. With a good OSBS, any person can learn everything to become a 
smart investor, and buy and sell stocks online. One of the clear software 
component of this system is the reporting component, that is responsible of 
preparing the useful reports and it consists of several use cases such as: economic 
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statistic & trends, trading report, last day indices stock. We apply our proposed 
method on this system and the number of clusters is determined by expert. we 
obtain components similar to expert opinion. For example, the use cases of a 
component are the same as use cases of reporting component.  

 
Table 2. Clustering Results of systems use cases with different clustering 

methods  
Clustering Error  Clustering 

Method 
Criterion 
Function ES (53) OSBS (23) CSS (21) HACS 

(11) 

Average Error of 
Clustering Method 

QCF 
RBR h2 6 2 0 0 0.05 
RB h2 6 3 0 3 0.129 
Direct h2 6 2 0 2 0.095 
Graph-
based 

h2 
6 

7 7 0 
0.188 

Agglo i2 6 3 4 0 0.109 
FCM - 7 1 4 4 0.182 
CNN - 14 6 5 4 0.282 

4.4 Determining the Appropriate Number of Clusters 

As stated in section 2-3, the basis of determining the number of clusters is the 
intra-cluster compactness and inter-cluster coupling. To automatically determine 
the number of clusters, CH and Ray indices are used. Table 3 shows the number of 
components of the sample software systems based on expert opinion and these 
indices. According to Table 3, the results of CH index is far from the expert 
opinion so it is not a suitable method. The results of ray index are close to expert 
opinions, so we accept the results of this index. 

 
Table 3. The number of components in sample software systems 

Number of Components 
Ray index CH index 

Difference Difference 

Opinion 
expert 

Number 
of Use 
cases 

System  

-1 5-1 5 6 53 ES 
+1 5+6 104 23 OSBS 
0 4-2 2 4 21 CSS 
0 3+3 6 3 11 HACS 

4.5 Sensitivity Analysis 

For sensitivity analysis, by eliminating each feature, its effect on accuracy of 
clustering is evaluated and features with negative effect or features without effect 
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upon clustering are identified and deleted. Table 4 shows features and their effects 
in clustering. Absence of feature is shown by "-"symbol. 
Results of sensitivity analysis show that: (1) The effect of features presented in rows 1 to 3 
and 7 of Table 4 in use case clustering is significant, and (2) The effect of features 
presented in rows 4 to 6 of Table 4 is negligible compared to other features. 

 
Table 4. Features and their Effect in Clustering 
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   •   •   •   • Actor 1 
•   •      •   • Entity Classes  2 
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-   -   •   •   Extend   
-   -   -   -   Generalization 
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•   •   •   •   Weight of Control Class 5 

•   •   •   •   Association weight of use 
case 

6 

•     •   • •   Similarity Rate of each Use 
Case with other Use Cases 

7 

 
Table 5 shows quantitative results of sensitivity analysis in terms of number of 

errors resulting from inclusion or exclusion of features in clustering. Note that in 
Table 5 similarity rate of use cases with each other is computed based on binary 
features. Table 5 shows that Actors, Control classes and Entity classes are 
important feature.  

 
Table 5. Quantitative results of features sensitivity analysis in terms of the 

number of errors in clustering 
All Features 
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ES 0 0 1 1 5 5 1 3 7 1 3 5 
OSBS 0 1 0 6 3 7 5 3 7 5 3 7 
CSS 0 1 0 11 1 0 9 1 0 9 1 0 

HACS 0 0 0 3 0 0 4 0 0 3 0 0 
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4.5.1 Sensitivity Analysis of Weight of Binary and Continuous Similarity Matrices 

In equation (10) of step (B)-(C), in order to combine binary and continuous 
similarity matrices, weight of these matrices was considered equal. As a case we 
take into consideration OSBS to assess the effect of changes in matrices weights on 
accuracy of system functions clustering. Figure 3 depicts changes in clustering error 
where the weight of binary similarity matrix changes from 0.05 to 0.95. This figure 
shows that weight of binary similarity less than 0.6 for system 2 is desired.  

 
Figure 3. Sensitivity analysis diagram of weight impact of binary similarity matrix in 

OSBS 

According to Sensitivity analysis results, allocation of weight 0.5 for binary and 
continuous similarity matrices is appropriate. 

4.6 Approximately Minimal Feature Set 

The set of features close to optimum for each system are determined and listed in 
Table 6 using the SBS method. 

 
Table 6. Minimum Features Set for Functions Clustering 

Actors Entity classes Control classes System 
Number Minimum Number Minimum Number Minimum 

ES 10 3 17 2 24 11 
OSBS 3 2 6 4 10 1 
CSS 5 4 18 1 11 0 

HACS 4 1 6 1 7 1 

4.7 Comparison of Results to Kim Method  

We applied Kim et al. work [5] on four sample systems. We considered same 
weight for all features. The results are shown in Table 7. The proposed method 
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achieves better result than Kim method. 
 

Table 7. Comparison of the proposed method and Kim method 
Systems Error 

HACS CSS OSBS ES 
Method 

0 0 2 6 The Proposed 
Method    

0 4 8 9 Kim Method  
 

Advantages of the proposed method in comparison with the related works are as 
follows:  
1-Presentation of a structured method to determine system software components. 
2–Extraction of more features for clustering. The proposed method uses more 

features than other related works, and determines their effect in clustering 
through sensitivity analysis. 

3- Using different clustering methods and choosing the best method in terms of the 
highest conformity to expert opinion.  

4–Verifying the results of clustering methods with expert opinion and ensuring 
accuracy of the proposed method. 
5–Using some sample software systems for validating the proposed method. 

6-Sensitivity analysis by elimination of every feature and assessment of the effect of 
their elimination in increasing or decreasing the accuracy of clustering. 
7-Elimination of weight assignment to features in clustering.  

4.8  Extension 

For further research, pre-conditions and post-conditions of each use case are 
also considered as a new feature. Use cases with similar pre-conditions/ post-
conditions are more related than other use cases. Each pre-condition/ post-
condition is considered a feature taking a value 1 or 0 based on its presence or 
absence in the use case. In sample software systems, only use cases of OSBS had 
pre-conditions/ post-conditions. So considering preconditions/ post-conditions of 
each use case, the clustering was repeated, the results show a decrease in clustering 
error. In the RBR and Direct clustering methods and RB method, the clustering 
errors became 0, 0, and 1 respectively. Thus, this feature can also be used in use 
case clustering. 
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4.9 Related Works 

Evaluation of previous works [4-12] shows that: (1) clustering results have not 
been compared with expert opinion; (2) the presented methods have not been 
validated using a number of software systems; (3) various clustering methods have 
not been used; and (4) the effect of features on accuracy of clustering is not 
determined using sensitivity analysis, (5) there has been no guideline for 
determining the number of clusters, and (6) using less features, while these 
shortcomings have been addressed in this research. Related works were introduced 
in introduction section. The problems of these methods, in addition to the points 
mentioned, are as follows: 

• The presented formula for calculating static and dynamic relationships in 
method [4] rigorously requires weighting relation types. 

• Method [5] has not been validated by case study and it required weighting 
and did not give any guidelines in this regard.  

•  Method [6], 1) has not presented any guidelines to determine weight 
values (specially priority between types of relations between classes) and 
count the number of messages sent.   

• In [7], the dependencies among requirements are manually identified. Also, 
coupling and dependency are treated the same way. But the assumed 
hypothesis is wrong. 

• In method [8], the features used in identifying components and details of 
clustering method have not been presented. 

• Method [9] provides high level guidelines, and it relies on domain experts 
in applying the guidelines. 

• Nevertheless, the tool for implementing the BCI-3D method [12] cannot 
generate the information directly. Currently, all the information for 
identifying the business component is generated manually, due to the 
inability of communication between different platforms of the BCI-3D. 

5 Conclusion  

In this paper, a method was proposed to automatically determine system software 
components based on clustering of use cases features. First, the system use cases 
features were extracted and the components were determined based on the 
proposed method using different clustering methods. Then, the appropriate 
clustering method was selected by comparison of clustering methods results with 
expert opinion. To determine the appropriate number of clusters, metrics of the 
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interior cohesion of clusters and the coupling among them are used. By sensitivity 
analysis, the effect of each feature on accuracy of clustering was determined and 
finally the closest to optimum set of features providing the required accuracy in 
clustering were determined using the SBS method. The case studies conducted with 
four software systems, while validating the method, showed that RBR and Direct 
clustering methods that are extensions of K-means method have the most 
conformity with expert opinion. So, they were selected and recommended as the 
most appropriate methods. Innovation of this research is to propose a systematic 
method to determine system software components with specifications mentioned. 
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