

JOURNAL OF OBJECT TECHNOLOGY

Pub l i shed by ETH Zu r i ch , Chai r o f So f twa re Eng in ee r i ng © Jo t, 2010

On l i ne a t http://www.jot.fm

Mehdi Adda, Hamid Mcheick, Hafedh Mili. Formal Model and DSL for Separation of Concerns based

on Views. In Journal of Object Technology, vol. 9, no. 6, 2010, pages 25–50. Available at

http://dx.doi.org/10.5381/jot.2010.9.6.a2

Formal Model and DSL for

Separation of Concerns based on

Views

Mehdi AddaMehdi AddaMehdi AddaMehdi Adda
aaaa Hamid McheickHamid McheickHamid McheickHamid Mcheick

bbbb Hafedh MiliHafedh MiliHafedh MiliHafedh Mili
cccc

a. Département de mathématiques, informatique et génie, Université du

Québec à Rimouski, Rimouski (Québec), Canada

b. Département d’informatique, Université du Québec à Chicoutimi,

Chicoutimi (Québec), Canada

c. Département d’informatique, Université du Québec à Montréal,

(Québec), Canada

Abstract The separation of concerns (SOC), as a conceptual tool,

enables us to manage the complexity of software systems that we

develop. The benefits of this paradigm, such as reuse, enhanced

quality and adaptability, have been key drivers of its adoption.

Modern software systems and applications take advantage of the

technologies built around this paradigm, in which a client program

can access different functional aspects (views) of the same domain.

One of these SOC approaches is View-oriented Computing (VOC),

which suffers from a formal model to canonically and consistently

represent the different concepts of VOC as well to have the necessary

background to formally verify the systems build on top of it. This

paper describes a formal algebra-based model to describe different

entities related to VOC. Especially, it introduces algebra and

formalism associated with a Domain Specific Language (DSL) notation

to illustrate the VOC paradigm.

Keywords Separation of Concerns; View-Oriented Computing; Formal

model

26 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

1 Introduction

Separation of concerns is a problem-solving idiom to break the complexity of a

problem into loosely-coupled, easier to solve, subproblems. Underlying this idiom is

the hope that the solutions to these subproblems can be composed relatively easily

to yield a solution to the original problem. The history of programming languages

may be seen as a perennial quest for modularisation boundaries that best map

(back) to “natural modularisation boundaries” of requirements. Aspect Oriented

Software Development (AOSD) methods are no different. However, most of the

research on AOSD has focused on the semantics of aspects and aspect composition,

i.e. the solution (software) domain, as opposed to the semantics of concerns and

concern separation and composition, i.e. the problem (requirements) domain. The

existing study cases have no algebra model to descibe the conceptual

appropriateness of the AOSD techniques. This paper describes an algebra model of

one of separation of concerns approaches: View-Oriented Computing (VOC).

In VOC, an application object consists of a core object, a variable set of

functional slices (or views), reflecting the changing roles of the object during its

lifetime. The set of views “attached” to an object determine the messages to which

it can respond, and the way it responds to them. Viewpoints are generic views

which can be parametrized per domain object. They abstract functional behavior in

a domain-independent way, and are developed independently of the classes to

which they apply.

In our approach (VOC) [Mcheick06, Mcheick07], clients require explicitly the

activation, the deactivation, the attachment and the detachment of views, even if

these views are distributed on different sites. In distributed view-oriented

programming, different client sites may access different view combinations of the

same object, known as interfaces. Therefore, the servers have to manage several

interfaces requested by different client sites. Each view passes through several

states: active, inactive, attach, detach–called view lifecycle [12]. In the approach we

propose here the evolution of any object is extracted and abstracted to the Module

level.

View-oriented programming (VOC) suffers also from a formal model to check

up and verify the privacy of each client site. This paper introduces a cluster-based

architecture, and an algebra model (as a formalism) to describe the different

concepts of VOC.

The next section includes a brief overview of View-Oriented Programming.

Section 3 describes an algebra model for VOC. An example, which illustrates our

model, is given in section 4. We conclude in section 5.

27 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

2 View-Oriented Computing

The goal of this section is to introduce briefly and explain the VOC paradigm and

explain some of its aspects. Among these aspects we may mention the enabling,

disabling, activation, deactivation and cloning of views, etc. We set out to provide

support for the following:

- enable client programs to access several functional areas or views

simultaneously;

- support the addition and removal of views (functional slices) during run-

time;

- support different interfaces during run-time;

- have a consistent and unencumbered protocol to address objects that

support views;

- enable each client program to add functional slices based on its privileges.

More details are set forth in the following sub-sections.

2.1 VOC Architecture Overview

In VOC, enterprise software can be seen as a set of local or distributed software

systems. Each system has one or more clusters that represent a kind-of aggregation

of services to target different subjects (users). Thus, a cluster is the abstraction of

the system to hide the details of software. A cluster is a set of functional slices

(views) and it may be composed of views from different domain objects that let a

transparency access to a system to different categories of subjects. In other words,

a cluster is the generalisation of the view concept to enterprise systems (see Figure

1). It is important to understand the VOC because it provide support for the

following: i) enable clients to access several views simultaneously, ii) suppport the

addition or removal of views during runtime, and iii) have a consistent and

unencumbered protocol to address objets that support views.

28 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

Figure 1: VOC architecture overview

In Section 4, we illustrate the cluster-based VOC using a bank account example.

The system of this example, where we show how views are assigned to different

clusters, have two different clsuters. Each of them contains a set of fonctionalities

to which a category of users have access to. As we show it, the access control is

managed by means of roles.

2.2 Separation of concerns

The separation of concerns technique is a general problem solving heuristic that

consists of solving a problem by addressing its constraints, first separately, and

then combining the partial solutions with the expectation that, 1) they be

composable, and 2) the resulting solution is nearly optimal. For this heuristic to

yield satisfactory results, the concerns that we are trying to treat separately must

be fairly independent, to start with, so that they don’t interfere with each other.

Further, the problem solving activity itself needs to yield solutions that are

composable.

In this section, we define the separation of concerns problem for the case of

software. In this case, the “problem” is a set of requirements, and the “problem

solving” process is the software development process. Characterizing the software

development process is given in this section.

29 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

2.2.1 A transformational view of software development

Software development is a complex activity involving a variety of skills and a

variety of conceptual and formal tools. For the purposes of reasoning about

software development—and perhaps automating some of its steps— researchers and

practitioners alike have found it useful to view software development as the process

of going from specifications of what is to be done (requirements), to precise

specifications of how it is to be done (implementation). Dasgupta identified two

kinds of requirements in any design problem, empirical requirements, which specify

externally observable or empirically determinable qualities that are desired of the

artefacts, and conceptual requirements, which specify adherence to a particular

style [Dasgupta91]. For the case of software, there are two kinds of externally

observable qualities, functionality—the what—on one hand, and run-time

behaviour—the how, including performance, and the like. Accordingly, we see three

major categories of requirements for software development:

1. Requirements of functionality.

2. Run-time requirements.

3. Requirements on the software artifacts.

These correspond closely to the categories of architectural qualities identified by

[Bass03]. Describing a program using an executable specification language may be

seen as performing a first step of the design process, i.e. ensuring functionality.

Later steps can worry about run-time behaviour and artefact quality.

2.2.2 Aspect-Oriented Programming (AOP)

Aspect-oriented programming recognizes that the programming languages that we

use do not support all of the abstraction boundaries in our domain models and

design processes. Underlying. AOP is the observation that what starts out as fairly

distinct concerns at the requirements level, or at the design requirements level

(non-functional requirements) end us tangled in the final program code because of

the lack of support, both at the design process level, and at the programming

language level, for keeping these concerns separate. With aspect-oriented

programming, these concerns may be packaged as aspects, which can be woven into

“any” application that has those concerns [Kiczales97].

Aspect-oriented programming requires three ingredients:

1. A general purpose programming language for defining the core

functionalities of software components,

30 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

2. An aspect language for writing aspects, i.e. code modules that address

a specific concern and that cross-cut various components in the

general-purpose language, and

3. An aspect weaver, which is a pre-processor that “weaves” or “injects”

aspects into the base software components to yield vanilla flavor

components, coded in the general purpose programming language.

The output of the aspect weaver is next fed into regular programming toolkit

(compiler, linker, etc.) to yield the application.

2.2.3 Subject-Oriented Programming (SOP)

Subject-oriented programming views object oriented applications as the

composition of several application slices representing separate functional domains

or add-ons (features) to existing functional domains. Such a slice is called a subject

and consists of a self-contained, declaration-wise, object-oriented program, with its

own class hierarchy [Harrison93].

Consider the example of a company that manages a set of trucks to make

merchandise deliveries. A particular truck means different things to different

departments: it is a production resource that comes in limited supply and that

needs to be scheduled efficiently. It is also an amortizable asset to the accounting

people who write-off the depreciation on its purchase value each year. It may also

been seen as some piece of equipment that needs regular (scheduled) and on

demand maintenance. It is conceivable that different people will have developed

each one of these applications—and perhaps some purchased off-the-shelf—with its

own definition of the class Truck.

2.2.4 Runtime aspects

Allowing an object to change its behaviour in non-predictable ways during run-

time is problematic. First, we have to make that behaviour somehow available on-

demand. As we saw in sections above, all of AOP, and SOP, integrate the various

concerns/views during coding time by instantiating the appropriate classes, but the

set of roles/subjects available to an object remain constant throughout the lifetime

of the object. Additional constructs may be used to make those behaviours

available on demand, as we show below.

In terms of invoking the proper combination of behaviours, depending on which

roles/concerns are embodied in a given object, we have to implement some run-

time dispatching method which will direct a message request to the method (or

31 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

combination of methods) that is available to it at that time. This can be

implemented in one of several ways, including:

1. With typed languages, a combined interface that embodies all the

potentially activated/attached concerns dispatches to specific private

methods, depending on which concerns/roles are currently

activated/available. This may be the approach used with C++ based or

Java-based implementations,

2. With dynamically typed, reflexive languages, we can modify the default

method dispatching mechanism to direct a method call to the appropriate

method combination. This method is appropriate for Smalltalk and Ruby.

2.3 Viewpoint concept

It has been our experience that in business information systems, the roles played by

domain objects often correspond to generic business processes, and do not depend

on the business domain. For example, regardless of what product or service an

organization sells, an employee will always be considered both as a resource, to be

assigned to various production tasks, as well as a “recurrent cost”. Lots of the

earlier information engineering frameworks (see e.g. [Carlson79]) and the new wave

of analysis patterns are based on this reality [Coad00].

Viewpoints are to views, what genericity (parametric polymorphism) is to

classes. In other words, a viewpoint is a template that describes the behaviour and

the state of views. A view of a viewpoint is called instance of the viewpoint. Thus a

viewpoint is a reusable component that can be adapted to different domains.

The instantiation is a process that generates from the reusable component by

means of transformation process into a concrete form, based on parameters.

Using our model of view programming, the different roles that an application

object can play will be represented by views. When those roles correspond to

different business processes, then the logic of the code of the views should be

reusable across business domains. For example, for the accounting department, a

machine tool, a computer, or a truck, are all pieces of equipment whose acquisition

price can be amortized over time to reflect both wear & tear and obsolescence.

Hence, we should find a way of coding the behaviour of “amortizable assets”

generically, and reuse it across business entities. We propose a kind of a template

for functional roles/views that is parameterized by those elements of the interface

of the core object that are required by the functional role. This template, called

viewpoint, can then be instantiated for different types of assets.

In addition to supporting the reuse of views, the use of view templates, or

viewpoints, enables us to decouple the development of views from that of core

32 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

objects. For instance, because views refer to core objects, without the generation

from viewpoints, not only do we have to hand-code specific versions of views for

each core object, but we have to have the definition of those core objects available

beforehand (see Figure 2). Practically, this means that the “core objects” teams and

the “viewpoints” teams within an organization can proceed independently from each

other, removing some of the bottlenecks from the development of

interdepartmental information systems. It could also mean that viewpoints may be

purchased from third party software vendors.

2.4 VOC systems evolution and experience capitalization

In software engineering, refactoring is an important phase of the life cycle of

products which also includes their evolution, recovery, maintenance, and retirement

[Mens02, Mens05, Mens08, Van03]. In VOC, we mostly encounter situations where

core objects are extended with many views as well as with a dynamic evolution of

core objects and views. In fact, a core object or a view may be extended at runtime

with new behavior and state as the related domain evolves [Mcheick09]. The

capability of VOC to add and remove funtional area is useful to fill the gap

between new business expectations and old planned features. However, this has a

price; if the dynamic evolution of a VOC system is pushed too far (core objects and

views with growing number of attributes and methods), the system will be less

trivial to manage and experience and knowledge gained from this evolution is

mostly localized in the object itself (i.e. in its core and views) and may not be

generalized in order to be applied elsewhere to extend viewpoints, views, classes,

and objects.

Thus, we propose an approach by which the evolution of any object may be

extracted and abstracted to the Module level. By doing so, the same evolution may

be applied back to other core objects or views without reinventing the wheel again

and again. Technically speaking, we are bringing module capabilities, offered by

dynamic languages such as ruby [12, 13], to be dynamically included in an

inheritance chain of a class or an object in OOP that classes and objects lack, to

the VOC paradigm. In other words, the behavior and state of a core object or a

view may be extracted and turned into modules that in turn may be used to

extend existing core objects or views, or simply used as basic components to create

new viewpoints, classes, and objects.

It is noteworthy that VOC experience capitalization is different from pure view

cloning where a view is created from an existing one. Indeed, the former technique

goes beyond the copying process performed when cloning a view. It is an

abstraction approach that may be defined as a reverse instantiation relationship

(generalization).

33 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

Since the experience capitalization is aimed to developers of VOC systems, we

provided in the VOC formalism and prototype with an operation named modulify,

that accepts parameters to indicate which properties, methods will be included in

the generated module (see the second subsection of Section 3).

3 VOC algebra and formalism

3.1 VOC concepts formulation

Our goal is to formalize the VOC paradigm. The formalization creates the

foundations upon which one can build, extend the paradigm, and also be able to

easily reason with and handle existing components. We present below a VOC

algebra based on the mathematical set theory. Later on, we use this algebra as a

formal tool and show proof of concept.

3.1.1 Universe of properties

�� = 									 ���, �	, �
, … �		where �	is an attribute (property).

An attributed �	is formally represented by the triplet: � =< �, �, � >,		where � is
the name of the attribute, �	the domain of definition of this attribute, and � the
value of the attribute.

3.1.2 Universe of methods

�� = ��� , �	, �
, … � where � is an attribute.

In our system, a method is represented by a sextuplet of input parameters,

output parameters, read only attributes and write attributes. The formalization of

the representation of a method 	�	 is as follows:

	�	 =< ����, ����, ������� , ��������� , �� , � >. With ���� the name of the

method, ���� is the body of � and 	!������� , ��������� , �� , � " ∈ $��%
&	
		s.t.:

1. �������:	is a set of input parameters;
2. ���������:	is a set of output parameters;
3. ��:	is a set of read only attributes: attributes whose values are used in the

method core but not overridden;

4. � : is a set of write attributes: attributes that are eventually overridden in
the method.

34 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

3.1.3 Universe of objects in the classical object oriented programming paradigm

We refer to the universe of objects of the classical OOP paradigm as �(and

each object of this universe is represented by a quintuplet as follows:

�(=)*+	* =	< �,��� , 	��, , � >, �. .. �	/�	�	�.�/�0, !��, , ���% ⊆ !��"
	���		� ⊆ ��	2

Where:

1. � : is the name of the base object o;

2. ��, : is as set of public methods of the object;

3. ��� : is as set of methods that are not accessible outside of the object

(private methods);

4. � : is as set of object properties.

NoteNoteNoteNote: The name � has to be unique inside the universe �(, and a dot (.)
is used to reference a component of a given object.

For instance, public and private methods of an object b are respectively

referenced by *.��, and. Also, we will refer to	*.��� ∪	*.���(simply as
*.4.

3.1.4 Viewpoints description language

A viewpoint is composed of a set of variables and a set of methods. While the

variables are identical to those of objects in OOP, the methods are slightly

different. The difference does not reside in the contract/functionality a method

offers but in how it is integrated in and interacts with the already existing

methods. This integration and interaction is enforced by a set of requirements.

In order to formalize the description of viewpoints, we propose a description

language endowed with syntactical and semantic constructs. While the syntactic

part provides the characteristics and features of viewpoint’s structure, the semantic

part associates to them a meaning under the VOC domain.

Syntax of viewpoint

A viewpoint is composed of a set of variables and a set of methods. The

variables are properties that extend the state of a core object and the methods are

procedures and functions intended to extend the behaviour of an existing core

35 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

object. Thus, the viewpoint universe, denoted U67, is composed of triplets as
follows:

U67 	=)vp		|vp =	< ;,4, <=>, status > 	�. ..		;	 ⊆ UC, M ⊆ UE2	and	CTS ⊆ UKLM

Where UKLM	is the universe of constraints materializing concern requirements

that may be associated to a method, and status may have one of the four values:

����*N��, �/��*N��, ��./��.��, ����./��.���. A requirement is composed of three
parts: (1) a target, (2) a type, and (3) a core. The target selects methods from the

viewpoint which are concerned by the requirements. The core is where constraints

on the selected methods are defined. In the core we may find method matchers that

filter methods from the core object, and operations that let us define how the

method will be integrated with existing core methods which is limited to four

different kinds of integration: execute before, execute after, execute around and

replace. We also find in the core the list of methods/attributes required by the

targeted methods. Furthermore, a method matcher is composed of the following

sub-matchers: (1) parameters-in matcher, (2) parameters-out matchers, and (3)

method name matcher. As their respective names suggest it, each of those matchers

is intended to identify one part of the essential parts of a method which are: input

parameters, outputs parameters and the method name.

Note: Note: Note: Note: A method definition in a viewpoint may have an empty set of

requirements.

We illustrate the syntax of a viewpoint through an example written in an

internal DSL:

viewpoint m_loan_vp(extended_object_core alias co) do

 var penalties as Double

 var new_tax as Double

 def change_due_date(date as Date)

 co.due_date = date

 end

 def calculate_interest as Double()

 interest = co.calculate_interest

 # apply new tax

 return interest -= new_tax*interest/100

 end

 requirements_all do

36 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

 with_method change_due_date do

 # scope of the method

 type :public

 # check if co (core object) contains a

 # variable due_date of type Date

 verify_presence_of :name => co.due_date as var%Date

 # not chained with other core

 chain :none

 end

 with_method calculate_interest do

type :public

 verify_presence_of :name => co.calculate_interest

as method

{

 :in_params => :none

 :out_params => interest as var%Double

}

 # check if co contains a variable named

 # interest of type Double

 verify_presence_of :name => co.interest as var%Double

 when :replace

 end # end with_method

 end # end requirements

end # end viewpoint

Figure 2. Example of a viewpoint written in a Ruby-like domain specific language.

The code of Figure 2 that represents a viewpoint declaration, m_loan_vp,

which is composed of three complementary types of declaration statements

respectively related to: (1) variables, (2) methods, and (3) requirements.

New variables are declared using the reserved keyword var. For example, in

m_loan_vp, we have declared two variables: penalties and new_tax. These

variables will be available in the views that are generated from m_loan_vp.

Methods, however, are declared using the delimiters def and end. Input

parameters of the method are declared between parentheses while the output

parameter, is eventually declared using the keyword as followed with the data type

of that parameter.

In this example, we also illustrated the declaration of requirements as expected

by the newly added methods. This is done using the requirements_all do ...

end clause. As it is noticed in Figure 2, this clause accepts the declaration of the

requirements of a method in one unique bloc delimitated by with_method name do

... end; where name is the name of the current method. Inside this bloc, we may

37 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

have tree constructs: the first one used to verified the presence of a variable or a

method in the core object to be extended (performed at runtime) by means of

verify_presence_of clause where regular expressions-like/string matchers may be

used to design the method or methods that are targeted by the requirements. The

second construct is used to declare how the current method chains with existing

methods from the core object using predefined constants: :before, :after,

:around, :replace, and :none if no chaining is required. The third construct,

named type, defines the type of the given method and may have one of the

following three predefined values: public for a public method and private: for a

private method. It is to notice that the second method (calculate_interest) of

m_loan_vp viewpoint is replacing an existing method in the core object.

Semantic of viewpoint

The meaning of a viewpoint resides in its interpretation composed of a set of views.

This interpretation is based on two elements: (1) the interpretation domain which

consists of all views, and (2) an interpretation function which associates for each

viewpoint a set of elements within the interpretation domain such as defined below.

Universe of views in the VOC paradigm

In VOC, a view is composed of the same components as a core object in OOP plus

a status.

UO = �o	|	o	 =	< <, Q, R, S, � > 	�. ..		<	 ∈ UT, Q ⊆ !�(", E ⊆ Q�

Where < is the core of the object	�,	Q the set of all views of �, R the set of enabled
views (�.�.V� = ���*N��), S the set of activated views (a view has to be enabled in
order to be activated	S	 ⊆ R), and � is a hash-key representing the current version
of the object	�. For the sake of concision, we will use �. �.�.V� to refere to the
status of the view �.

It is noteworthy that the version number of an object is computed by a

function, say θ, from the following elements:

- The name of the core object C;

- The different names of the views in V;

- The different names of the views in E;

- The different names of the views in A.

38 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

In the remaining of this paper we will use a dot (.) to make reference the

different components of an object. For example, the core object of the object o, is
referenced by o. C.

Instantiation relationship (Interpretation function)

Given a viewpoint vp from U67 and an object o from UO. A view v from o. E
!v	 ∈ o. E" is instance of vp denoted by v	 ≪ 	vp, if and only if the following
conditions are satisfied:

• ∀	m[∈ vp.M: ∃	m[[∈ !v.mCK 	∪ 		v.mCM"	such	that	m[. core = m[[. core; More

specifically:
- if	m[. type =[public′than	m[[∈ v.mhCK;
- if	m[. type =[private[than		m[[∈ v.mCM	;

• ∀	p[∈ vp. P ∶ ∃	p[[∈ v. p		such	that: p[= p′′;
• ∀	cts ∈ vp. CTS:

- ∃	m	 ∈ 	vp.M	such	that:	m	 ⊆ cts. target;
- ∀	r	 ∈ 	cts. core:	r. target	 ⊆ vp.M, r.matchers	 ⊆

o. C.M	and		r. required	 ⊆ !o. C.M	 ∪ o. C. P";	

Figure 3 presents the o_bank_loan core object and Figure 4 presents the

m_loan_v view that is instantiated from the viewpoint of Figure 2.

o_bank_loan = Object.new

o_bank_loan.instance_eval do

 var due_date as Date

 var loan_date as Date

 var interest as Double

 var amount as Double

 var deposit as Double

 var interest_rate as Double

 def calculate_interest as Double()

 return interest

 end

 def set_loan_amount(amount as Double)

 this.amount = amount

 end

end

Figure 3. Bank Loan Core object

39 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

view m_loan_v extend m_loan through m_loan_vp do

 var penalties as Double

 var new_tax as Double

 def change_due_date(date as Date)

 co.due_date = date

 end

 def calculate_interest as Double()

 interest = m_loan.calculate_interest

 return interest -= new_tax*interest/100

 end

end # end view

Figure 4. A Loan Manager View.

The core object o_bank_loan is a standard object that contains five properties

(due_date, loan_date, interest, amount, deposit, interest_rate) and two

methods (calculate_interest, set_loan_amount). This object is then extended

by the view m_loan_v of Figure 4. As it can be noticed from this figure, the

keyword extend is used to indicate the core object extended and the keyword

through to indicate the viewpoint that used to instantiate the given view.

3.1.5 View Clustering

In VOC, a cluster is a collection of views related to different objects of a system.

Formally, a cluster, denoted by m, is represented by m = �S|	S =< �, ��|	� 	 ∈
	�. Q	� > 	�. ..		�	 ∈ 		���.

It is noteworthy that: (1) an element S of a cluster m is referenced by m. S; (2)

object and views of a view in S are respectively referenced to by S. � and S. Q.

For the sake of simplicity, a couple < �, Q >	of a cluster m	is referenced to by

mn/o where /	is the position of the given couple when they are lexicographically

ordered inside the cluster	m. We have also the following concepts:

a. |f|O: Number of objects for which at least one view is contained in f;

b. |f|: Number of views contained in f.

40 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

3.1.6 Subject Space

In VOC, a subject represents an entity that is attempting access any resource of a

given system. This can be a user, a process, etc. We represent a subject by u which

belongs to the universe of all subjects Up.

3.2 VOC operations

3.2.1 Object-level operations

Given an object � =	< <, Q, R, S, � > the operations that can be performed on this

object are presented below.

Adding a view

Adding a view �
to the object o consists at modifying the sets �. Q. The operation

is represented by:	���Q/�q!�, �" =	< <, Q ∪ ���, R, S, r!<, Q	 ∪ ���, R, S" > and the

operation set the status of �	to �/��*N��(�. �.�.V� = �/��*N��". This operation is

valid if and only if the following conditions are satisfied:

- � ∈ 	��;

- � ∈ 	�(;

- ∀	� 	 ∈ �. Q ∶ � . � ≠ �. �.		

Otherwise, the operation is not valid.

Removing a view

Removing a view �	from the object o consists at modifying the set �. Q. This

operation is represented by:	������Q/�q!�, �" =	< <, Q − ���, R, S, r!<, Q −

���, R, S" >. This operation is valid if and only if the following conditions are

satisfied:
- � ∈ 	��;

- � ∈ 	�. Q;
- ∀	� 	 ∈ �. S ∶ � . � ≠ �. �;	
- ∀	� 	 ∈ �. R ∶ � . � ≠ �. �.

Otherwise, the operation is not valid.

41 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

Enabling a view

Enabling a view �	in the object o consists at modifying the set	�. R. The operation

is represented by:	���*N�Q/�q!�, �" =		< <, Q, R	 ∪ ���, S, r!<, Q	, R ∪ ���, S" > and

the operation sets the status of �	to ���*N��	(�. �.�.V� = ���*N��". Enabling a

view is valid only if:
- � ∈ 	��;

- � ∈ 	�. Q and � ∉ 	�. R;
- �. �.�.V� ≠ ���*N��.

Disabling a view

Disabling the view �in the object o consists at modifying the sets �. R and �. Q. The

operation is represented by:	�/��*N�Q/�q!�, �" =		< <, Q, R − ���, S, r!<, Q	, R −

���, S" > where the status of the view � is set to	�/��*N��. This operation is valid if

and only if the following conditions are satisfied:
- � ∈ 	��;

- � ∈ 	�. R	and	�. �.�.V� = ���*N��;

- � ∉ 	�. S	and	�. �.�.V�	 ≠ ��./��.��.

Activating a view

Activating the view �in the object o consists at modifying the sets �. R and �. Q.

The operation is represented

by:	��./��.�Q/�q!�, �" =		< <, Q, R	, S ∪ ���, r!<, Q	, R, S ∪ ���" >. This operation

sets the status of the view and	� to and	��./��.�� (�. �.�.V� = ��./��.��) and is

valid if and only if the following conditions are satisfied:
- � ∈ 	��;

- � ∈ 	�. R	and	�. �.�.V� = ���*N��;

- � ∉ 	�. S	and	�. �.�.V�	 ≠ ��./��.��.

Deactivating a view

Deactivating the view � in the object o consists at modifying the sets �. R and �. Q.

The operation is represented by: ����./��.�Q/�q!�, �" =	< <, Q, R	, S −

���, r!<, Q	, R, S − ���" >. This operation sets the status of and	� to

and	����./��.��(�. �.�.V� = ���./��.��) and is valid if and only if the following

conditions are satisfied:
- � ∈ 	��;

- � ∈ 	�. S	 and �. �.�.V� = ��./��.��.

42 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

Cloning a view

Cloning the view � in the object o1 to the object o2 consists at creating a view in

o2 that is identical (except the name) to �. The operation represented

by:	�N���Q/�q, is valid if and only if the following conditions are satisfied:
- !��, �	" ∈ !��"

	;

- � ∈ 	��. Q;

- ∀	�[∈ 	 �	. Q ∶ 	 �
[. �	 ≠ ����.

Once the operation is performed under the conditions above, we will have:

�[[=	< ����, �.��, , �.��� , �. �, �. �.�.V� > ���	�′′ ∈ 	 �	. Q. It is noteworthy that a

view may be cloned to the same object.

Abstracting views and core objects

The operation that “modelifies” a view or part of it, consists at extracting methods

and attributes from it and creating a new module. This operation, represented

by:		����N/mv!�, �" =	< 4��VN�w���, �..�,�.ℎ� > is valid if and only if the

following conditions are satisfied:
- � ∈ 	��;

- � ∈ 	�. Q;
- ∀	�	 ∈ �..�: �	 ∈ �. ;;	

- ∀	� ∈ �.ℎ�:	� ∈ !�.��, 	∪ 	�.���".

It is to notice that the second parameter of modelify may be the core object of

the object represented by the first parameter. Furthermore, another version of

modelify is provided; this version accepts a hash as a third parameter. The hash

may have only one cay with one of the two values: {‘except’,’only’}. If the key

value is ‘except’, the data associated to this key, which is an array of methods and

attributes, will be excluded from attributes and methods that will make its way to

the generated module. Else (key value is ‘only’), the associated array contains the

methods and attributes of the view/object that will be included in the generated

module.

43 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

3.3 Cluster-level operations

3.3.1 Adding a view

Given a cluster m from �y, and an object � from	��, adding a view � of � to		m is

possible if and only if the following condition is satisfied: ∄	S ∈ 	m ∶ 	 ∃	�[∈
	S. Q	�. ..		!�. � = 	S. �. �"	⋀		!�[. � = �. �".

This operation is represented by ���Q/�q=�|���.!m, �, �".

3.3.2 Removing a view

Given a cluster m from �y, and an object � from	��, removing a view � from		m,

represented by ������Q/�q|���|���.!m, �, �", is possible if and only if the

following conditions are satisfied:
- ∃	S	 ∈ m	�. ..:
- S. �. � = �. �;
- ∃	�[∈ S. Q	�. .. �[. � = �. �.

3.4 System-level operations

In our context, a system, represented by � ∈ �}	where �} is the universe of all

systems, is composed of a set of clusters (� = �m	|	m	 ∈ �y�).

System level operations are the operations that let us add and remove clusters

to/from the given system. Those operations are defined below.

3.4.1 Adding a cluster

Given a system � from �} and a cluster m from �y, and an object � from	��, adding

a cluster m to	� is possible if and only if the following condition is satisfied:
∀	m[∈ � ∶ m ≠ m[.

3.4.2 Removing a cluster

Given a system � from �} and a cluster m from �y, and an object � from	��,

removing a cluster m from		� is possible if and only if m ∈ �.	

44 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

3.5 Partial order over the universe of clusters �y

We are defining a generalization relationship among clusters which is a partial

order over the universe of clusters. This relationship is based on low level

component generalization: generalization relationship among views.

3.5.1 View generalisation relationship

Generalization relationship among views organize views into hierarchies. Given two

views �� and �	, �	 is said more general than	��, denoted	�� <~ 	 �	, if and only if

the following conditions are satisfied:
- ��. ��, 	 ⊆ �	. ��,;

- ��. ��� 	 ⊆ �	. ��� ;

- ��. �	 ⊆ �	. �.	

If the above conditions are satisfied, we also say that 	�� is more specific than
	�	.	

The generalization relationship <~ 	is a partial order on the universe	�(
�.

3.5.2 Cluster-based generalization relationship

Cluster generalization relationship is based on the generalization relationship of

active views included in clusters.

Given two clusters m�and m	 from	�y and � = 	 |m	|�, m	 is more general than	m�,
denoted	m� <y 	 m	, if there exist � sets	�	�|� 	⊆ m	n/o. Q	q/.ℎ	/	 ∈ n1. . �o� and �
subjective functions >� =< ��, �	, … , ��> such that:
- ∀	� 	 ∈ 	 >� ∶

a. �:	� →	m�n/o. Q;

b. 	∀	�	 ∈ � ∶ 	 �!�" <~ �, q/.ℎ	/	 ∈ n1. . �o�.

Generalization relationship among clusters let us organizing clusters into

hierarchies.

45 ⋅ Formal Model and DSL for Separation of Concerns based on Views

Journal of Object Technology Vol.

4 Running example

Hereafter, we illustrate cluster

a canonical example in the object

Figure 5 presents two objects

methods and attributes dispatched into views: the

with two views (�_����V�.

extended with two views (

to clusters:	<V�.����	<NV�.��

composed with two permission modes (deny and grant) to form four permissions.

Finally, those permissions are assigned to use

<V�.����	role (see Figure 5).

Figure 5: Bank account and Loan example

To implement cluster based VOC (C

Specific Language [Consel04, Thomas09]) is used. The concepts beh

implementation are used to illustrate the example presented in Figure 5.

for Separation of Concerns based on Views.

rnal of Object Technology Vol. 9, no. 6, 2010

Running example

Hereafter, we illustrate cluster-based VOC using a bank account example which is

a canonical example in the object-oriented programming literature.

Figure 5 presents two objects ����V�._�	and *���_N���_� each with a set of

methods and attributes dispatched into views: the ����V�._�	object is extended

����V�._v and m_����V�._v) and the *���_N���_� object is

extended with two views (�_N���_� and �_N���_�). Those views are than assigned

<NV�.��	and	4���0��	<NV�.��. Those clusters are then

composed with two permission modes (deny and grant) to form four permissions.

Finally, those permissions are assigned to user via two roles: 4���0��	role and

role (see Figure 5).

Figure 5: Bank account and Loan example.

To implement cluster based VOC (C-VOC) policy, a Ruby DSL (Domain

Specific Language [Consel04, Thomas09]) is used. The concepts behind this

implementation are used to illustrate the example presented in Figure 5.

based VOC using a bank account example which is

set of

object is extended

object is

ose views are than assigned

. Those clusters are then

composed with two permission modes (deny and grant) to form four permissions.

role and

VOC) policy, a Ruby DSL (Domain

ind this

46 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

clusters

cluster ManagerCluster do

 :Account =>{MAccount}

 :BankLoan =>{MLoan}

end

cluster CustomerCluster do

 :Account =>{CAccount}

 :BankLoan =>{CLoan}

end

permissions

permission MFGrant do

 :Cluster => ManagerCluster

 :Mode => Grant

end

permission MFDeny do

 :Cluster => ManagerCluster

 :Mode => Deny

end

permission CFGrant do

 :Cluster => CustomerCluster

 :Mode => Grant

end

permission CFDeny do

 :Cluster => CustomerCluster

 :Mode => Deny

end

roles

role Customer do

 :permissions =>[MFDeny,CFGrant]

end

role Manager do

 :permissions =>[MFGrant,CFGrant]

end

assigning roles to subjects

 subject1.assign{Manager, Customer}

 subject2.assign{Customer}

activating a role

 subject1.activate{Manager}

invoke a method role

 subject1.setName(“Toto”)

deactivating a role

 subject1.deactivate{Customer}

Figure 6: Cluster Attribution to users.

47 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

The source code of Figure 6, shows a partial view of how the C-VOP attributes

clusters to different users via the concept of roles that abstracts permissions on

clusters (grand, deny). The choice to implement the model as an internal DSL, is

mainly motivated by the need to reflect in the model the domain business by the

fundamental domain concepts (clusters, views, ...) at a higher level of abstraction.

5 Conclusion

Our work addresses the problem of VOC modeling and formalisation using

algebraic operators and first order logic. The model we propose offers different

functional aspect/views to different client programs where each object offers

dynamically a set of views. Clients can call any function and get the right answer

dynamically. Indeed, views are code fragments, which provide the implementation

of different functionalities for the same object domain and theses views can be used

as a units for distribution to improve performance issues. In this paper we also

showed via an example the key concepts of our model with a flexible and

straightforward DSL.

We need in the future more investigations to validate the proposed model and

test its performance, scalability and stability with real word projects. Also, we plan

to offer integrate versioning and transaction management aspects as well as a fine-

grained end-user security enforcement strategy.

References

[Cousel04] Charles Consel, “From a Program Family to a Domain-Specific

Language” book “Domain-Specific Program Generation”, ISBN978-3-

540-22119-7, pages 19-29, Springer Berlin/Heidelberg, 2004.

[Carlson79] Walter Carlson, “Business Information Analysis and Integration

Technique (BIAIT)- The New Horizon”, DATABASE, Spring 1979,

pp. 3-9.

[Coad00] Peter Coad, Eric Lefebvre, and Jeff De Luca. “Java Modeling In

Color With UML: Enterprise Components and Process”. Prentice-Hall,

2000

[Bass03] L. Bass, P. Clements & R. Kazman, “Software Architecture in

Practice”, Addison-Wesley, 2003.

[Dasgupta91] S. Dasgupta, “The Nature of Design Problems”, in Design Theory and

Computer Science, Cambridge University Press, 1991, pp. 13-35.

48 ⋅ I. Adda et al.

Journal of Object Technology Vol. 9, no. 6, 2010

[Harrison93] W. Harrison and H. Ossher, ''Subject-oriented programming: a

critique of pure objects,'' in Proc. of OOPSLA’93, pp. 411-428.

[Kiczales97] G. Kiczales et al., “Aspect-Oriented Programming,” in Proc. of

ECOOP 97, Springer-Verlag LNCS 1241.

[Mcheick06] H. Mcheick, “Distribution d’objets en utilisant les techniques de

développement orientées aspect”, Ph.D Thesis, 273 pages, Université

de Montréal, Québec, Canada, 2006.

[Mcheick07] H. Mcheick, H. Mili, H. Msheik, A. Sioud, and A. Bouzouane,

“AspectGC: an Aspect Garbage Collection for Object Lifecycle

Management”, Proceedings of Third International Conference on

Intelligent Computing and Information Systems (ICICIS07), Sponsord

by ACM SIGART and SIGMIS, pp.150-157, 15-18 mars 2007, Ain

Shams University, Cairo, Egypt.

[Mcheick09] Mcheick, H., M. Adda, H. Mili, and M. Badri, “Dynamic Object

Behaviours in Separation of Concerns Based Systems” ,International

Conference on Software Engineering Research and Practice

(SERP'2009), Las Vegas (USA), 2009.

[Mens02] T. Mens and M. Wermelinger, "Separation of concerns for software

evolution", Journal of Software Maintenance and Evolution: Research

and Practice, vol. 14, no. 5, pp. 311-315, 2002.

[Mens05] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, M.

Jazayeri, “Challenges in software evolution”, Eighth International

Workshop on Principles of Software Evolution, 5-6 Sept. 2005 pp. 13-

22, 2005.

[Mens08] T. Mens and T. Tourwé, “Evolution issues in aspect-oriented

programming”, Software Evolution Book, ISBN 978-3-540-76439-7,

Springer Berlin Heidelberg, pp. 203-232, 2008.

[Van03] F. Van Rysselberghe and S. Demeyer, “Reconstruction of successful

software evolution using clone detection”, Proceedings of Sixth

International Workshop on Principles of Software Evolution, pp. 126-

130, 2003.

[Thomas09] Dave Thomas, Chad Fowler, and Andy Hunt, “Programming Ruby

1.9: The Pragmatic Programmers' Guide”, The Pragmatic

Programmers, LLC, ISBN: 9781934356081, 2009.

49 ⋅ Formal Model and DSL for Separation of Concerns based on Views.

Journal of Object Technology Vol. 9, no. 6, 2010

About the authors

Mehdi Adda, Mehdi Adda, Mehdi Adda, Mehdi Adda, professor of computer science at the

University of Quebec at Rimouski, Rimouski, Canada. His

principal research interests lie in the fields of Software and

Web engineering, data mining and knowledge discovery,

Aspect oriented programming and distributed computing,

Web personnalization and recommendation. Contact him at

adda@ieee.org or mehdi_adda@uqar.qc.ca.

Hamid Mcheick, professor of computer science at the

University of Quebec at Chicoutimi, Chcoutimi, Canada.

Professor Mcheick is interested in evolution and distributed

object and aspect oriented applications.

Hafedh Mili, professor of computer science at the

University of Quebec at Montreal, Montreal, Canada.

Throughout his academic career, he worked on a variety of

subjects, starting with knowledge representation, object-

oriented software engineering, aspect-oriented development,

service-oriented computing, and business process engineering.

