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Abstract
In component-based systems, fault-tolerance concerns are typically

handled by manually programmed fault containers. The purpose of fault
containers is to prevent error propagation across component boundaries
by means of redundant service providers. However, manually programmed
fault containers are often subject to evolutionary pressure when components
change. In this paper we present a meta-level architecture that eliminates
the need for manually programmed fault containers. The meta-level ac-
hieves fault tolerance using dynamic fault containers, thereby reducing
evolutionary pressure. We present an implementation and evaluation of
our approach in context of the NetBeans Rich Client Platform.

Keywords fault tolerance, software evolution

1 Introduction

The main benefit of adding fault tolerance to component-based software systems is
that they become more reliable, because they can continue to operate in the presence
of faults or even partial failure. Unfortunately, maintaining the fault-tolerance logic
of such systems often results in evolutionary pressure on components that would
not need to change if the fault-tolerance concern was not present. While we cannot
eliminate evolutionary pressure on entire systems, it is desirable to reduce the number of
software components that will be affected [Leh80]. This is particularly important when
considering software components to be units of independent production, acquisition
and deployment [Szy02].

An illustrative example is the fault-container pattern [Sar03]. The fault-container
pattern is a variant of the adapter pattern [GHJV95] providing a fault-tolerant interface
to unreliable objects. The adapter in this variant of the pattern is called a fault
container. The fault container achieves fault tolerance by performing error detection
and recovery. A simple recovery strategy is dynamic redundancy: The idea is to
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Figure 1 – A fault container for a sensor.

sequentially select among multiple redundant providers of the service-provider interface.
As long as one of them works, a fault can be contained.

However, the fault-container pattern tends to be prone to evolutionary pressure
when clients and service providers change. To see why, let us consider the simple
example in figure 1. In the example we have a service-provider interface, ISensor,
with a single method, getTemperature(), returning the temperature in a building.
In our pursuit of fault tolerance we also have a SensorFaultContainer implementing
the ISensor-interface. Let us assume that we have a client, TemperatureDisplay,
that simply displays the temperature to a user.

To see how evolutionary pressure on SensorFaultContainer emerges, let us con-
sider adding new providers of ISensor. First, let us provide a PhysicalSensor that
can return a temperature by measuring it. To make this new functionality available to
clients that require fault tolerance, we need to modify SensorFaultContainer. This
is because SensorFaultContainer depends on all providers of ISensor in order to
implement the fault-tolerance concern. Therefore, addition of a new provider imposes
evolutionary pressure. Second, let us provide an EstimationSensor that can estimate
the temperature by inspecting the state of a heating valve. We prefer using Physical-
Sensor, but in case of failure EstimationSensor will do. This decision requires yet
another modification of SensorFaultContainer, such that the preferred sensor is
selected if it is available. We observe from this example, that fault containers easily
become prone to changes during software evolution.

In monolithic software systems evolutionary pressure on fault containers may be
manageable, as the codebase is under control of a single organization. However,
in component-based systems built from independently developed components, the
situation is different. In such systems, manually programmed fault containers must
obviously reside in components. These components will be subject to evolutionary
pressure when removing, adding or modifying components containing providers of
the fault-tolerant service-provider interface. The inevitable evolutionary pressure on
fault containers makes the ideal of components as units of independent production,
acquisition and deployment difficult to achieve.

In this paper we propose a novel approach for achieving fault tolerance in com-
ponent-based systems. The idea is based on moving fault-tolerance concerns away
from base-level components and into a meta-level. Thus, programmers do not have
to write fault containers manually. Instead, dynamic fault containers are provided
transparently by the meta-level. This transparency is achieved by letting clients
obtain required references using the lookup-service pattern [KJ01, KJ04]. Certain
fault-tolerance decisions are domain specific and can never be fully automated. To
address such decisions our meta-level is open to configuration by the base-level. Using
our approach, it is possible to minimize evolutionary pressure due to fault-tolerance
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concerns.
We have implemented a prototype of our idea on top of the NetBeans Rich Client

Platform [BTW07]. We have chosen this platform because its use of the lookup-service
pattern allows for easy integration with our approach. It also allows us to validate the
compatibility of our approach with an industry-strength component platform.

Our work indicates that reduced evolutionary pressure can be achieved when using
our approach, due to its strict separation of fault-tolerance concerns from application
logic. We expect this insight can improve the maintainability of component-based
software systems with requirements for fault tolerance.

The paper is structured as follows. Section 2 presents state of the art. Section
3 revisits the introductory example in order to motivate properties of fault-tolerant,
evolvable, component-based systems. Section 4 presents an overview of our approach.
Section 5 presents our prototype. Section 6 provides an evaluation. Section 7 concludes
and summarizes our findings.

2 State of the art

In this paper we use the taxonomy of dependable systems given in [ALRL04]. In
this taxonomy threats to dependability of software systems include faults, errors and
failures. A failure is a transition from correct to incorrect service. An error is the
part of the total system state that may lead to failure. A fault is the adjudged or
hypothesized cause of an error – i.e. a development fault (a bug) or a physical fault (a
hardware problem). Fault tolerance is the idea of achieving dependability through
avoidance of service failures in the presence of faults. Fault tolerance is thus different
from other means of achieving dependability, e.g. fault prevention that tries to prevent
the introduction of faults.

The idea that a reliable system can be built from unreliable components has
been around for a long while [vN56]. In the early days of computing, fault tolerance
dealt primarily with unreliable hardware components. Success in this area inspired
researchers to apply similar ideas to software – i.e. dynamic redundancy in the
form of recovery blocks [Ran75] and masking redundancy in the form of N-version
programming [CA78]. In retrospect most progress came at the price of increased
complexity [RX94]. The use of N-version programming and recovery blocks was
therefore limited to applications with high fault-tolerance requirements [AB87].

Some of the added complexity comes from the broader problem of dynamically
reconfiguring a running application while preserving consistency [KMSL83, KM90].
One of the keys to success in this area is modularity. If a system is not modular it is
hard to isolate a component and replace it at runtime. The problem becomes even
harder when state exists that must be preserved. Interestingly, this important insight
seems to have emerged independently in the areas of fault tolerance and dynamic
reconfiguration [Gra85, KM85]. Modularity helps us change systems at runtime, in
much the same way it helps us change them during software evolution.

The advent of object orientation and reflective meta-level architectures led to
rethinking the existing fault-tolerance techniques in a new context [XRRCS94, XRZ].
These ideas could potentially help solve the important problem of supporting de-
velopment of fault-tolerant systems without greatly complicating implementation,
readability, and maintenance [RX94]. In the view of the authors, this has only hap-
pened on a relatively small scale – mostly in the form of design patterns such as
the fault-container pattern [Sar03], or as libraries concerned with specific forms of
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failure [FN]. No truly general and reusable fault-tolerance mechanism has gained wide
acceptance.

Instead, the concept of exceptions has evolved as a general form of “fault-tolerance
light”-mechanism that is now present in most languages [GRRX01]. Whereas exceptions
provide means for error signaling, and separation of normal and exceptional behavior,
they normally do not provide means of recovery. Thus, exceptions are limited to
provide useful infrastructure that supports certain aspects of fault tolerance, i.e.
controlled error propagation.

There has been attempts to expand the role of exceptions using the resumption
model. In this model continuation of control flow can be controlled from inside
exception handlers. This model could in theory enhance the fault-tolerance capabilities
of exceptions. However, while the model is flexible, it is also difficult for programmers
to use [GRRX01]. Most programming languages, therefore, adopt the traditional
termination model [AGH05]. The Ruby language does support the resumption model,
but using it is generally discouraged [TH00]. The main benefit of the termination
model is that the model itself is simple. When resumption (or recovery) is a domain
requirement, this leads to complicated code no matter which of the two models are used.
Another means of achieving a more flexible exception model is through a meta-level
architecture [GBR99].

One particular area of fault tolerance is distributed systems. Here separation of
application concerns and fault-tolerance concerns tends to be handled using message-
oriented middleware [HW03]. This trend relies on various forms of client transparency
which can be provided using the lookup pattern [KJ01, KJ04]. One example is location
transparency where a client is not aware of the location of a server. Another example is
fault-tolerance transparency, where a client is not aware of fault-tolerance mechanisms
present in the middleware [FN]. These forms of transparency limit evolutionary
pressure on clients.

We believe that the main challenge for fault tolerance in component-based systems
is to achieve low evolutionary pressure among components, without sacrificing the
ability to tolerate faults. The use of client transparency in distributed systems achieves
low evolutionary pressure on clients. However, in component-based systems we must
achieve low evolutionary pressure for all components, both client components that
require fault-tolerant access to services, and provider components that implement
unreliable services. It is therefore required that the use of fault-tolerance transparency
is expanded to include provider components. Solutions that reduce this gap are essential
to promote the use of fault tolerance in component-based software development.

3 An example

In this section we emphasize properties facilitating fault tolerance in component-based
software systems subject to software evolution. The properties are motivated by
expanding our example introduced in section 1.

Let us consider the ISensor-interface from figure 1 being part of the simple
component-based control system shown in figure 2. The purpose of the system is to
control the temperature in a building using an actuator and a sensor. Requirements
of our example system are enumerated below:

• The system must be fault tolerant with respect to sensor failures.

• A user-specified temperature set point must be maintained when possible.
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Figure 2 – Control system with fault-tolerance requirements.

• To prevent frost, temperatures below zero must be avoided.

The system is composed of five components. The sensor component provides mea-
surement of the current temperature. The actuator component provides functionality
to increase the temperature using a heating system. The open-loop and closed-loop
components provide two different control strategies. With closed-loop control, the
difference between the user-specified set point and the measured temperature is used
to control the actuator. With open-loop control, only the user-specified set point is
used. Closed-loop control is preferred over open-loop control because feedback from
the sensor allows for more precise temperature control. Open-loop control is not very
precise, but it works without a functioning sensor, and it is good enough for frost
protection. The control-system component drives the system.

A provider component, e.g. Sensor, provides a set of provider objects. A client
component, e.g. ClosedLoopControl, requires a set of provider objects. A provider
object implements a service-provider interface, e.g. ISensor. A particular component,
e.g. ClosedLoopControl, may assume the roles of client component and provider
component simultaneously. We have indicated potential failures using dotted lines for
connectors in our diagram. The sensor component may fail to provide its service. The
diagram illustrates that such failure may lead to error propagation along connectors.

Our example is designed to support fault tolerance using the fault-container pattern.
Fault tolerance is possible when an erroneous provider object can be safely substituted
by another at runtime. We think of such substitution as a simple form of dynamic
reconfiguration. The innermost dashed circle indicates an area of the system in which a
sensor failure cannot be contained. Errors can be contained within the outermost circle
because closed-loop control is not the only provider of IControl. By dynamically
reconfiguring the system to use open-loop control, we achieve degraded behavior,
i.e. frost protection. When the sensor once again starts to work, another dynamic
reconfiguration can restore closed-loop control behavior.

For the sake of simplicity, we assume service-provider interfaces such as ISensor,
IControl and IActuator to be declared in components not shown in the diagram.
To illustrate problems with evolutionary pressure, we also assume a traditional imple-
mentation in which fault containers reside inside client components. Therefore, in the
example, the control-system component is responsible for detecting control algorithm
failure, and containing the fault by choosing an alternative algorithm. Similarly, the
closed-loop component is responsible for detecting sensor failure and propagating the
fault.

We wish to highlight that a design based on the traditional interpretation of
fault-container pattern is prone to evolutionary pressure towards client components.
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Too see why, consider the following change requests:

• Add another sensor component to provide redundancy: With two providers of
ISensor, failures can now be contained when the other sensor is still working. If
the possibility of adding an additional sensor was not foreseen in the implemen-
tation of the client’s fault container, this change is likely to require modification
of the fault container for ISensor to support selecting an alternative sensor,
in case the active sensor fails. Thus, evolutionary pressure on the closed-loop
component is expected. Note that this change request is similar to the example
given in section 1.

• Add logger component that saves a history of sensor values: The new logger
component needs fault-tolerant access to sensors. This is already available as a
fault-container instance controlled by the closed-loop component. Sharing this
instance with other client components is likely to require modifications in the
closed-loop component. Alternatively, the new logger component might duplicate
the fault-tolerance functionality by copying the fault container of the closed-loop
component.

Conceptually, both change requests are additive. We simply add a component
without any desire to modify existing functionality. However, evolutionary pressure
emerges anyway due to fault-tolerance concerns. In case of the first change request, the
fault-tolerance logic itself needs to change to allow dynamic selection of a new provider.
In case of the second change request, the existing fault-container instance needs to be
shared if redundant fault-tolerance functionality is to be avoided. Redundant fault-
tolerance functionality is undesirable as it accelerates the maintainability problems
caused by evolutionary pressure on fault containers. Both change requests tend to
require modification of the component providing the fault container – for both change
requests this is the closed-loop component. The two forms of evolutionary pressure
can be avoided when two properties are satisfied:

• Transparent fault tolerance: The need to modify existing fault-tolerance logic
leads to no evolutionary pressure on neither client components nor provider
components.

• Transparent sharing: The need to obtain, introduce, or remove references to
provider objects participating in fault tolerance leads to no evolutionary pressure
on neither client components nor provider components. Transparent sharing is a
broader concept than location transparency, because it also provides transparency
between co-existing providers.

Transparent fault tolerance is usually easy to achieve with respect to client compo-
nents. For provider components the situation is different, because strong consistency
guarantees during dynamic reconfiguration require participation, i.e. using state-
transfer functions [WS96]. It is, therefore, normal to relax fault-tolerance transparency
to the client side.

Transparent sharing is easier to achieve – at least in theory. Using a lookup service,
client and provider components can register and obtain references to service-provider
objects independently of each other. All that is needed is a common service-provider
interface. In practice, the primary obstacle to transparent sharing is design and not
mechanism. The designers must predict useful sharing contexts [McG05] (i.e. lookups)
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and contracts for objects that makes sense to share (i.e. interfaces) [BTW07]. However,
this is a general design problem that is not particular to fault tolerance.

In summary, with transparent fault tolerance and transparent sharing, evolutionary
pressure among components is reduced. This applies not only to client components,
but to all components containing clients or service providers.

4 Overview of the approach

Our approach provides support for fault tolerance that is compatible with state-
of-the-art component platforms. We argue that the common interpretation of the
fault-container pattern is sufficient for fault tolerance but that it, in its current
form, tends to hinder evolution of individual components. The limitation of the
common interpretation is that it causes evolutionary pressure on components containing
manually programmed fault containers.

Figure 3 – Control system with meta-level fault containment.

Our approach proposes a dynamic fault container. A dynamic fault container
is not statically defined by a programmer, it is created dynamically during runtime
composition. Thus, dynamic fault containers are not instantiated explicitly by clients,
instead client components in the base-level obtain references to fault containers when
they obtain a provider reference through a lookup service [KJ01, KJ04].

4.1 Structure

The combination of a lookup service and a dynamic fault container can be perceived
as providing a meta-level concerned with fault tolerance. Figure 3 shows our example
system augmented with a fault-tolerance meta-level.

The diagram illustrates that fault containers are no longer provided by components.
Instead, dynamic fault containers are meta-objects provided by the meta-level. A
dynamic fault-container instance exists for each required reference in the base-level,
i.e. {r1, r2, r3, r4}. Similarly, a meta-object exists for each service provider object,
i.e. {p1, p2, p3, p4}. The dynamic fault containers implement a meta-object protocol,
providing required interfaces to base-level objects, by forwarding to providers.

All the meta-objects are associated with a lookup instance (dependency lines
are not shown on the diagram to improve readability). The lookup service provides
an explicit interface to the base-level. The interface allows for obtaining required
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references. It also allows the base-level to associate candidate service providers with a
lookup instance.

Dynamic fault containers implement both components of fault tolerance, namely
error detection and fault repair. Error detection is implemented by validating runtime
behavior against the contract specified in the service-provider interface. Fault repair
is provided using dynamic resolution of required references. For example, in figure 3,
r1 can be resolved by forwarding to p1 or p2. r2 can only be resolved by forwarding to
p3. p4 is shared because both r3 and r4 can forward to it.

Whereas the interface to the lookup service is explicit, this is not the case for
dynamic fault containers. Dynamic fault containers provide an implicit interface to
the meta-level [Zim96]. The base-level obtains a reference to an object of a type
present in the base-level through the lookup service, but it remains oblivious of the
fact, that the returned object implements a meta-object protocol for fault tolerance.
The client components in the control system are unaware of the existence of dynamic
fault containers. I.e. the ControlSystem component only knows that it has obtained
a reference to an IControl-object.

In general, successful fault containment cannot be guaranteed, as it depends on
the availability of appropriate providers. The meta-level must, therefore, consider
error propagation. In our example, a sensor failure cannot be contained by r2, because
no alternative sensor is available. Errors are therefore propagated and eventually
contained by r1 by a dynamic reconfiguration from p1 to p2.

4.2 Error detection

Traditional fault containers are programmed manually. This means that error detection
can be customized by the programmer while having specific clients and providers in
mind. This is not possible with dynamic fault containers. Dynamic fault containers
must implement error detection exclusively based on an explicitly declared service-
provider interface. As we shall see, this restriction has important implications.

From the perspective of our closed-loop control algorithm in figure 3, it is reasonable
to consider a malfunctioning sensor as an error – we do not expect this event to happen,
and if it does, we can do nothing about it. Consider adding a surveillance component
that automatically sends an email when a sensor is not working. To this new component,
a malfunctioning sensor is not an error but an important state, which the interface
of a sensor has to provide access to. In general, what is considered an error in one
context may be an expected state in another.

In our approach the notion of normal behavior must be declared in the service-
provider interface. We expect exceptions declared in a service-provider interface to be
normal behavior, while undeclared exceptions are considered failures. Consequently,
client-specific needs must be expressed by requiring different interfaces. This principle
encourages programmers to put customization of error semantics in adapters [GHJV95]
instead of placing those customizations in client code.

Note that a declared exception is not always a checked exception – an unchecked
exception may, in fact, be declared, though it is not the common case. A checked
exception is an exception type that the compiler forces clients to address (handle or
rethrow). Declaring an exception indicates that occurrence of the exception is normal
behavior in a given context (i.e. during a method call).

Using declared and undeclared exceptions to distinguish normal and erroneous
behavior can be made subject to discussion. However, following the general recommen-
dations for using exceptions our decision is reasonable. [ZHR+06] encourages use of
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declared exceptions for problems that clients are expected to resolve, while undeclared
exceptions should be reserved for irresolvable problems. Introducing our approach, this
translates to using declared exceptions for problems that should always be propagated
to clients, while undeclared exceptions may be contained by a fault container at the
meta-level.

Our prototype has been implemented in Java [AGH05]. In Java there is a clear
separation between declared and undeclared exceptions. In languages where this is not
the case, another means of distinguishing normal behavior from erroneous behavior
must be adopted. We encourage this decision to be taken with the exception model of
the language in mind [GRRX01].

There exist contracts between components above the syntactic level, which are
usually not enforced by compilers or even at runtime [BJPW99]. Examples include
pre- and post-conditions, synchronization contracts and quality of service contracts.
Tools for these purposes can interoperate with our meta-level architecture by implicitly
(from the perspective of the programmer) throwing an undeclared exception, when a
contract is violated.

4.3 Fault repair

When an error has been detected, the meta-level attempts fault repair. If fault repair
is successful the meta-level achieves fault containment, and thus isolates the problem
from clients in the base-level.

Fault repair is implemented using an algorithm for dynamic selection of service
providers. The algorithm decides how required interfaces are resolved by dynamic
fault containers. This translates to performing a successful method-call forwarding to
the best provider from those available under the given conditions.

We have argued that error detection can be based exclusively on the provided
interface, i.e. the contract. On the contrary, fault repair can only be treated in this
general way, when the observable behavior of all available implementations are equally
desirable to their clients. In other words, when their quality of service is the same.

In our control-system example, r1 requiring IControl can be satisfied using p1
providing closed-loop control or p2 providing open-loop control. These are not re-
dundant. Closed-loop control is superior and should be the first choice. Open-loop
control provides degraded, but reliable, behavior. Note that this decision is domain
dependent and can never be completely avoided. However, we can avoid implementing
the decision explicitly in clients or providers, thus avoiding evolutionary pressure in
case the preferred choice needs to change.

In our approach, the selection semantics for deciding which provider to choose is
expressed by parameterizing lookup-service instances with a content-provider object.
A lookup service uses its content-provider object to determine the order in which
it should try service-provider objects implementing the requested interface. In this
approach, the system composer determines the selection strategy – clients or providers
are not involved. This approach is comparable to many of the ideas in the area of
externalized adaption [GS02].

A content-provider object simply provides the order in which to try a set of provider
objects. Examples include a content-provider object that tries provider objects in a
list, a tree or any other ordered data structure. The set of provider objects may be
hardcoded by a programmer, or it might reflect a user decision. All dynamic fault
containers returned from a given lookup instance uses the content-provider object of
that instance. This yields a simple, yet general, fault-repair strategy:
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1. Get a prioritized list of service-provider objects from the content-provider object.

2. For each object in the list, try to forward the call. In the case of an error
(undeclared exception), contain the fault and continue iteration. If successful,
break the loop.

3. If no functional object was found, propagate an error to the next fault container
on the execution stack using an undeclared exception. If a functional object was
found, pass on the returned value (or void).

The algorithm simply provides fault repair by dynamically trying all suitable
providers. In our previous example, r1 might first attempt method-call forwarding to
p1. In the case of an error, forwarding to p2 allows for successful repair and thus fault
containment using degraded behavior.

Fault repair, and thus fault tolerance, cannot always be guaranteed. Even if
we assume that the implementation of the dynamic fault container is correct, such
guarantee cannot be given. The reason is that provider selection relies on a dynamic
context of available providers, i.e. the content of a lookup service. This context is
dynamic, because providers can be added to the system and removed from the system
at runtime. Service-provider objects may be added or removed as components enter
or leave the system, or as a consequence of normal application logic. It may also
be the case that all service-provider objects in the context fail. When no suitable
service-provider object is available, error propagation is unavoidable.

4.4 Error propagation

An error that cannot be recovered from must be propagated. Traditional programming
languages implement error propagation using an exception model. Often such models
include a number of useful features that we want our approach to be compatible with.

In our approach error propagation is a collaborative effort between the base-level
and the meta-level. During propagation the meta-level attempts fault containment at
each defined boundary (dynamic fault container). Between boundaries each base-level
component may implement measures to preserve its own consistency, i.e. by releasing
resources using try-finally constructs. Such activity does not require knowledge
about the type of the exception being propagated, because each component is solely
concerned with its own consistency.

Note that our approach to error propagation integrates nicely with existing ex-
ception models. Thus, a meta-level for fault tolerance is a supplement to traditional
exception handling – not a replacement.

In our control-system example, a sensor failure may be signaled by the base-
level from inside the sensor component. From here the resulting exception will be
propagated out of the component until it reaches the first dynamic fault container, r2.
At this point the meta-level will attempt fault containment, which, in the depicted
configuration, will fail, because no alternative sensor is available. The exception is,
therefore, propagated back to the base-level and through the closed-loop component.
On its way the component may perform various consistency-preserving activities using
the exception model of the language. The exception will eventually reach r1, where
fault containment will be achieved by degrading to open-loop control. This graceful
degradation of the system is transparent to the control system component.
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4.5 Consistency

To achieve consistency during dynamic reconfiguration, our fault-tolerance approach
is based on three assumptions:

• Method invocations are assumed to be atomic.

• Service-provider interfaces must assume that instances are shared among multiple
clients.

• No internal object state is transferred when using dynamic reconfiguration to
achieve fault repair.

These assumptions must be kept in mind when designing service-provider interfaces.
In other words, it is not possible to take any existing interface and simply assume
that it can be used in a fault-tolerance context. Note that restrictions on the way
interfaces can be expressed already exist when designing for thread safety [Goe06].
Like thread safety, fault tolerance is a non-functional concern that may affect the
design of interfaces.

As an example, consider an interface for ordering items from a web shop. Such an
interface may be called IShop and have the methods addItem(Item) and commit().
Using this interface with our approach does not guarantee that all items will actually
be in the order – the reason is that method calls may end up at different objects
providing the interface. A better interface is one that takes an entire order in a single
method invocation, i.e. IBetterShop { void commit(Order); }. Note that there is
another reason why IShop is a bad interface. Multiple clients getting access to a shared
object of IShop will not know exactly what they order when calling commit(), as the
interface is not designed with multiple clients in mind. This is clearly undesirable
when the interface is intended to be shared using a lookup service.

The alert reader will notice that what we did in the IShop example was to turn a
stateful interface into a stateless interface. This is not always practical. So how do we
support fault tolerance when we have state that cannot be avoided? The traditional
approach is to use a state-transfer function [WS96]. As we explained in section 3,
we want to avoid this solution to minimize evolutionary pressure. As an alternative,
we suggest to externalize and share state, instead of transferring it during dynamic
reconfiguration. We believe that externalizing and sharing state in a consistent manner
is not harder or more error-prone than writing a reliable state-transfer function.

4.6 Context

In our simple control-system example, it is sufficient to use a single lookup-service
instance. However, consider redesigning the system to control the temperature in
multiple separate buildings. In this case we need a lookup-service instance for each
building under control. Otherwise we would not know to which building an instance
of ISensor belongs.

Modeling a domain using many dedicated lookup-service instances is a commonly
used technique. Note that this technique uses lookup services to achieve more than
merely location transparency. It uses a lookup-service instance to create an open
context [McG05] – e.g. a building. A component introducing the “building” concept
does not need to know the types of objects other components may desire to put in
this open context – e.g. sensors, actuators and control strategies. [BTW07] contains
several examples of when and how to use this pattern.
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With our fault-tolerant lookup service we can create contexts that are not merely
open to new types of objects – it also provides fault-tolerant access to those objects.
As previously discussed, fault tolerance is made transparent by using dynamic fault
containers as proxies for service-provider objects. Thus, a fault-tolerant lookup service
has semantics different from a traditional one. To use this new style of lookup service,
developers must learn to identify the need for fault-tolerant contexts. We believe
this to be an important design skill during the design of any fault-tolerant system
regardless of which techniques are employed.

5 Implementation

This section describes our prototype implementation based on the NetBeans Rich
Client Platform. NetBeans provides a highly extensible component model (module
system in NetBeans lingo). Therefore, our prototype does not require modification of
the platform itself. Our prototype is simply a NetBeans component providing a new
lookup service.

We have chosen the NetBeans Rich Client Platform for three reasons. First, the
platform uses a service-oriented approach to component integration that already
relies on the lookup pattern. Second, the platform has been used successfully in
numerous long-lived projects and is therefore considered to be mature. Finally, we use
the platform in a number of industrial projects, thus making it a natural choice for
practical reasons.

5.1 The existing lookup service

Variants of the lookup pattern are used extensively in the NetBeans Rich Client
Platform [BTW07]. Lookup services are the primary mechanism for components to
connect to other components. The existing lookup-service implementation supports
transparent sharing, but not transparent fault tolerance.

Transparent sharing allows a client component to obtain a reference to a service-
provider object without depending on the component providing it. This is possible
when a client and a provider component depend on a common service-provider interface.
Such interface may be declared in a component independent of the provider component
and the client component.

The context, in which sharing takes place, is a lookup-service instance. On the
NetBeans Rich Client Platform it is common to use many lookup-service instances:
A global lookup service provides a general context accessible to everyone. Other
lookup-service instances provide access to more specific contexts such as “files in a
folder”, “items in a menu” or “shortcuts to execute an action”. Specific lookup-service
instances must be obtained directly or indirectly through the global lookup service.

Transparent fault tolerance is not supported by the standard lookup service. This
means that a client component having obtained a reference to an erroneous service-
provider object is itself responsible for error detection and fault repair. As we have
already seen, this can be a source of software evolution problems.

5.2 Integrating fault containment

The API to our fault containing meta-level is similar to the existing NetBeans lookup
service API. The most important classes are shown in figure 4.
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Figure 4 – Fault tolerance API.

An explicit API to the meta-level allows for instantiation of FaultContaining-
Lookup objects. Each lookup service must be parameterized with a ContentProvider.
As previously discussed (section 4.3) this enables arbitrary selection strategies to be
defined. Our diagram shows two example strategies. A ListProvider is a simple
prioritized list of providers. A NetBeansLookupProvider is a wrapper for a classic
NetBeans lookup service.

The lookup method of FaultContainingLookup appears to return a service-
provider object of the requested type (specified by a Class-object). In reality, it
returns a DynamicFaultContainer selecting among multiple suitable service-provider
objects. Thus, the DynamicFaultContainer becomes an implicit API to the meta-
level.

The dynamic fault container is implemented as a dynamic Java proxy [jav]. The
dynamic proxy performs method-call forwarding to suitable providers, detects and
propagates errors. The core of the implementation is the invoke()-method handling
all method invocations on the fault container. This method is shown in Listing 1.

Method-call forwarding inside the proxy is implemented using reflection. This
approach was chosen for simplicity. We expect there is a substantial potential for
performance improvements by generating fault-container classes at load time using
bytecode transformation, thus avoiding the need for reflection.

A limitation of dynamic proxies in Java means that they can only implement
interfaces. It is not possible to create a dynamic proxy for an object of a normal
class. For the purposes of a prototype this is acceptable. However, it would clearly
be desirable to support dynamic fault containment for any type – not just interfaces.
This could similarly be achieved by automatically generating fault containers for all
types using bytecode transformation at class load time.

Java supports separation between declared and undeclared exceptions. Our error
detection mechanism is therefore identical to the approach described in section 4.2.
That is, declared exceptions are considered normal behavior and undeclared exceptions
are considered erroneous.

Error propagation on the base-level is implemented using unchecked exceptions.
When we have to signal an error because no provider was available or because all
available providers failed, we throw a special purpose ServiceUnavailableException.

A consequence of providing fault tolerance as a NetBeans component is that the
global lookup-service instance is not adapted. We do not expect this to be a problem in
practice though. Programmers can always establish a new lookup-service instance and
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public class DynamicFaultContainer implements InvocationHandler {
public Object invoke(Object proxy, Method method, Object[] args)

throws Throwable {
// Try invoking candidate services until one succeeds.
Iterable<?> candidates = content.iterator(required);
for(Object s : candidates) {
try {
return method.invoke(s, args);

} catch(InvocationTargetException x) {
// Check to see if exception matches declaration.
Throwable cause = x.getCause();
for(Class declaredException : method.getExceptionTypes()) {
if(cause.getClass().isAssignableFrom(declaredException)) {
// It does, rethrow cause.
throw cause;

}
}

}
}
// No working service was found. Error propagation unavoidable.
throw new ServiceUnavailableException(required, method);

}
}

Listing 1 – Dynamic fault-container implementation.

provide it – directly or indirectly – through the global lookup service. As previously
mentioned, it is already a well-established technique to create vast amounts of special-
purpose lookup services when using the NetBeans Rich Client Platform. Lookup
services are used for modeling open contexts and not just for obtaining references
to objects in other components. Thus, our fault-tolerant lookup service is a natural
extension of this idea.

6 Evaluation

We will now present a brief evaluation of our approach to meta-level fault tolerance.
The evaluation is based on a comparison between two situations:

The first situation is manual fault tolerance. In this situation fault containers
[Sar03] are manually programmed when they are needed, or when their need is
anticipated. When a fault container has been programmed, it is distributed in a
component chosen freely by the developer. We believe this situation to resemble
common practice when designing fault-tolerant, component-based systems.

The second situation is our approach to meta-level fault tolerance. In this situation
programmers do not program fault containers explicitly. Instead, they must anticipate
where to use fault-tolerant lookups and possibly provide a domain-specific content-
provider object. Fault tolerance is transparently handled by dynamic fault containers.

In a number of projects we have built and evolved fault-tolerant control systems.
During this effort we have used both styles of development. We will now compare
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Manual FT Meta-level FT

Error detection Custom Completely transparent
Fault repair Custom Promotes transparency
Error propagation Exceptions Exceptions
Consistency Custom General assumptions
Evolutionary pressure Dependant Low

Table 1 – Comparison of fault-tolerance approaches.

the two situations by discussing a number of topics. A summary of the comparison is
given in table 1.

When using a manual approach, error detection can be customized when program-
ming the fault container. This approach provides maximum flexibility. It also makes it
possible to write multiple fault containers for the same service-provider interface. The
main disadvantages of this approach are the burden of writing repetitive error-detection
code, and the risk that it will be subject to evolutionary pressure.

Error detection using the meta-level approach is completely transparent. This
is possible because error detection only relies on service-provider interfaces and not
any client-specific notion of failure. This also means that only one error-detection
behavior can exist for a given service-provider interface. When multiple slightly
different error-detection requirements are needed, then programmers are forced to
express these differences by declaring multiple service-provider interfaces.

The pros and cons of manual fault repair are similar to those of manual error
detection. On the positive side, maximum flexibility is available. On the negative
side, there is an extra programming burden, and a risk that custom code is subject to
evolutionary pressure.

When using the meta-level approach, transparent fault repair is promoted to the
greatest possible extent. Unfortunately, complete transparency is not possible. This
is because the preferred order in which to try service providers is inherently domain
specific. The order can be configured using a content-provider object. Note that
content-provider objects do not per se violate transparency with respect to neither
client components nor provider components. It is possible for a high-level component
to configure the content-provider object a fault-tolerant lookup service should use.
Thus, fault repair can always be made transparent with respect to client components
and provider components, even though complete transparency with respect to the
entire system is impossible.

With respect to error propagation there is usually no difference between a manual
implementation and the meta-level approach. A manual implementation is almost
certain to use exceptions. The meta-level approach does the same. As discussed in
section 2, the main problems with state-of-the-art exception models are related to
resumption of control flow, i.e. fault repair, and not error propagation.

When using a manual approach, preservation of consistency during fault repair can
be achieved in a number of different ways. This choice influences what assumptions
service-provider interfaces must adhere to. As discussed in section 4.5, preservation of
consistency is particularly problematic when there is state to preserve.

In the meta-level approach, preservation of consistency is designed not to require
participation by neither client components nor provider components. This is done by
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establishing a general set of assumptions for service-provider interfaces. Specifically, it
is assumed that method invocations are atomic, provider objects are shared among
multiple clients, and no provider-object state is transferred during fault repair. When
state is unavoidable we advocate externalizing and sharing it.

A system’s ability to evolve is dependent on the considerations discussed above.
When fault-tolerance concerns such as error detection, fault repair, error propagation,
and consistency preservation are transparent, then client components and provider
components will not be subject to evolutionary pressure due to these concerns.

In our experience, it is difficult to manually implement fault tolerance, so that
high transparency and low evolutionary pressure is achieved. When insisting on doing
so, the solution converges towards a design with many similarities to the meta-level
approach we have presented. Specifically, the design must achieve transparent fault
tolerance and transparent sharing as discussed in section 3. To achieve transparent
fault tolerance, fault containment can only depend on a service-provider interface and
not on any specific service providers. To achieve transparent sharing, a lookup service
can allow client components and provider components to enter and leave the system
without generating evolutionary pressure.

In the meta-level approach, the above design decisions have already been taken.
Thus, it is easier for the programmer to maintain a low evolutionary pressure in the
presence of evolving fault-tolerance concerns.

Finally, it is our experience that meta-level fault tolerance is compatible with the
component model promoted by the NetBeans Rich Client Platform. In practice, this
means that we can introduce our new lookup service and apply it without deviating
significantly from component-composition patterns and general practices used with
NetBeans.

7 Conclusion

As argued previously, evolutionary pressure on manually programmed fault containers
restrains evolution of both clients and service providers in component-based systems
with fault-tolerance requirements. The source of the problem is lack of transparent
fault tolerance and lack of transparent sharing.

We have proposed an approach, which provides the required transparency, by
moving fault-tolerance concerns into a meta-level. The meta-level provides clients with
dynamic fault containers created as a part of reference resolution at runtime. The
behavior of a dynamic fault container depends solely on a service-provider interface
and a (possibly domain-specific) content-provider object supplied by a high-level
component.

We have applied our ideas to the NetBeans Rich Client Platform. This has been
done by implementing a new lookup service and a dynamic fault container. In our
experience the maintainability of fault-tolerance concerns during software evolution is
improved. We also find that our approach is compatible with de facto development
practice on the NetBeans Rich Client Platform. We believe that our ideas can be
applied to any component model that supports lookup-based object wiring.

Reuse and evolution of independently developed components is a challenge in
component-based systems with high requirements for fault tolerance. We believe
that our meta-level-based fault-tolerance approach is a step towards improving the
situation.
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