

JOURNAL OF OBJECT TECHNOLOGY

Pub l i s hed by ETH Zur i ch , Cha i r o f So f twa re Eng inee r i ng © Jot , 2010
On l i ne a t http://www.jot.fm

M. Gatrell and S. Counsell. Size, Inheritance, Change and Fault-proneness in C# software. In Journal
of Object Technology, vol. 9, no. 5, 2010, pages 29-54.

Available at http://www.jot.fm/contents/issue_2010_09/article2.html

Size, Inheritance, Change and
Fault-proneness in C# software

Matt Gatrella Steve Counsella

a. Dept. Information Systems and Computing, Brunel University

Abstract This paper documents a study of change in commercial,
proprietary C# software and attempts to determine whether a
relationship exists between class changes and faults and the design
context of a class, namely its size and inheritance relationships.
Results showed a strong positive correlation between the size of a class
and change-proneness but not for all the class features studied. Classes
within a specific range of a) inheritance depth and b) number of
children were found to be relatively more prone to change. For the
fault data and for the same class features, similar results were found.
The most striking result to emerge however was the existence of an
inheritance depth 'interval' between which change (and fault-
proneness) were at their highest. Below and above that interval, both
features were less prominent. The results thus add weight to the
claims of other previous studies which suggest that there is an optimal
level of inheritance, beyond which maintenance may become
problematic from both a change and fault perspective.

Keywords C#, class changes, faults, inheritance

1 Introduction

Identifying changes made to a system over time can help identify problem areas
and also inform remedial action by a developer and/or project manager. Such data
can also be instrumental in helping to predict future change, the prioritization of
work and the allocation of limited resources. The same potential benefits are true
of fault data in its role of highlighting problematic areas of code and possible
directed re-engineering or refactoring effort [Arisholm06, Fowler99]. The extent to

30 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

which these benefits can be realized is an issue of significant interest for
exploratory, empirical software engineering studies. A number of studies have also
cast doubt on the extent to which deep levels of inheritance assist with the
maintainability of a system [Prechelt03, Cartwright00, Harrison97, Basili96].

In this paper, we analyze change through the design context of a class. More
specifically, we explore change through the size of a class and its inheritance
characteristics. We also explore fault data for the same system and the same two
design perspectives (of size and inheritance). The basis of the study is a commercial
C# system, consisting of 266K lines of code, 7,439 classes and 79,964 methods. The
system had been subject to 19,054 changes over a two year period - these changes
were due to both enhancements and fault fixing. Inheritance properties of each
class were also identified based on their inheritance depth and the number of
subclasses (i.e., children) belonging to each. The size and inheritance
characteristics were compared to the change history of the classes to determine any
relationships. Fault data over a later period was also analyzed to support the
analysis related to change-proneness.

Results from our study showed that first, size had a strong positive influence on
the propensity for a class to be changed; the same result was found when we
studied the fault data. Analysis also revealed that beyond a certain inheritance
depth, the propensity for change rose before declining; analysis of faults also
showed the same phenomenon. The study therefore raises important development
questions such as: should a limit be placed on the size of a class if large classes
exhibit these features? Just as salient is the question as to whether developers
should avoid extending inheritance hierarchies beyond a certain depth and width if
they both exhibit a high change and fault-proneness? Finally, what bearing does
knowledge of faults in a system have on our ability to understand change-
proneness?

The remainder of the paper is organized as follows. In the following section, we
describe the motivation for the study and related work. In Section 3, we describe
preliminaries such as the system studied and metrics extracted by the tool we used
for the study. We then analyze the data exploring the change-proneness of the data
(Section 4). In Section 5, we examine the fault data for the same system. We then
discuss several issues raised by the study as well its threats to validity (Section 6)
before providing a discussion of the issues raised (Section 7). Finally, we conclude
and discuss further work in Section 8.

2 Motivation and related work

The motivation for this research arises from three sources. First, to our knowledge
earlier studies that have shown a relationship between class size and inheritance

31 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

properties with change and fault data have not been replicated frequently, yet in
the case of class size they represent studies that can be replicated relatively easily.
The analysis of faults in our study extends analyses that have previously just
looked at class size and earlier preliminary work by the authors on design patterns
and their change-proneness [Gatrell09b, Bieman01, Bieman03]. Second, the
controversy over the use of inheritance in OO has raged for over fifteen years – and
yet we still know very little about whether, and to what extent, using a deep or
wide inheritance hierarchy limits or impairs the maintenance process. In this study,
we look at both change and fault-proneness in our analysis and therefore address
this issue from two inter-related sides. Third, while there have been a number of
studies exploring the shape of an inheritance hierarchy, there is no consensus on
the extent to which an inheritance hierarchy should be structured on a width-basis
and, as relevantly, the merits of using inheritance width over depth.

Two key previous studies are of particular relevance to our analysis. In Bieman
et al. [Bieman01], the effect that size and inheritance characteristics had on change
in 39 versions of a large C++ system was shown. The study found that large
classes were the most change-prone. Results from a later study by Bieman et al.
[Bieman03] using C++ and Java systems were largely inconclusive with respect to
class size and change proneness. Only for two of the systems were large classes
more change-prone. The same study also observed counter-intuitive characteristics
of the inheritance hierarchy; classes at level zero (the root of a hierarchy) were
changed more often than classes at level 1 and 2 of the inheritance hierarchy. In
this paper, we explore the same research question with respect to size and class
change addressed in both previous studies.

The role that the ‘depth’ of inheritance plays in the context of this paper is
highly significant. Many studies have analyzed inheritance in OO systems and most
have cast doubt on the use of deep inheritance hierarchies. The Depth of
Inheritance Tree (DIT) metric, originally introduced by Chidamber and Kemerer
(C&K) [Chidamber94] has been used in many empirical studies investigating
inheritance structures. Many studies have reported a lack of use of inheritance to a
deep level while others have reported a problem emerging below a certain level.
Moreover, only limited numbers of studies have explored the relationship between
DIT and faults. Basili et al. [Basili96] was one study that used the C&K metrics
as predictors of fault-prone classes. Data from eight medium-sized C++
management systems were collected. Statistically significant results suggested that
a class located deep in the inheritance hierarchy (given by its DIT) was more fault-
prone than a class higher up in the hierarchy; the study suggested that extensive
use of inheritance could have had the opposite effect to that of aiding the
maintenance process. Prechelt et al. [Prechelt03] suggest that maintenance effort is
positively associated with inheritance depth (i.e., the deeper the inheritance
hierarchy, the more maintenance effort required – and this would suggest that this
is where the potential for faults to be invested lay). Wood et al. [Wood99] advise

32 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

that inheritance should be used with care and only when needed. Bieman and Zhao
[Bieman95] describe a study of nineteen C++ systems, comprising 2,744 classes in
total. They found that only 37% of the systems had a median class inheritance
depth greater than one. Cartwright and Shepperd [Cartwright00] describe the
collection of a subset of the C&K metrics from a large telecommunications
subsystem (133,000 lines of C++) and reported relatively little use of inheritance in
the system analyzed. However, when it did occur they found a positive correlation
between DIT and number of user reported problems, casting doubt on the use of
deep levels of inheritance. The lack of adherence to ‘expert’ advice on the use of
inheritance is further noted in the work of [Gorschek10] in a large-scale study of
OO practitioners.

The experience of software engineers and researchers therefore seems to imply
that deep levels of inheritance should be discouraged and they might actually be
the source of maintenance problems rather than an aid to maintenance. The study
presents additional empirical evidence that inheritance to a deep level (as well as to
a large width) might be counter-productive in terms of change and fault-proneness.
In the next section, we describe preliminaries to our study.

3 Preliminaries

3.1 The software system analyzed

The system used as a basis of the empirical study, ‘WebCSC’, was written by a
large, international software company specializing in transaction content processing
software. One of the authors was an architect in the company and had access to
the version control system and hence to the change and fault data for the system.
The need to document and check-in every change was a standard imposed rigidly
in the company and so we have some confidence in the veracity of the change and
fault data we used. The code itself related to a core technology product written in
C# by a team of 8-10 developers and had been running for approximately 4 years.
The period over which our change analysis is based represents the most recent two
years of its development. The fault data, on the other hand, relates to the most
recent year of the system, since the fault reporting process had not been automated
until that point. The system itself included server side components, a web
application, a number of client side components and tools. WebCSC comprised
over 7,439 classes and approximately 266K lines of code (LOC). Each modification
in the version control system, whether for a fault fix, enhancement (or otherwise)
constituted a new version for the class and each version was counted as a single
change. For the purpose of this study and to align the study with that of previous
studies, we assume that each change made to code by a developer is equivalent,

33 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

i.e., the relative size of the change in terms of LOC required by the change was not
considered. (Consideration of this aspect of the analysis is a significant, yet
complementary study and one that we therefore have to leave for future work.)

3.2 Size measures

For the purpose of this study, size was measured by LOC, Number of instance
methods in a class, Number of static methods in a class and Number of fields in a
class. We also collected Total number of methods, Number of properties (defined as
‘getters’ or ‘setters’ of a field in C#) and Number of operations (defined as the sum
of the number of class fields and methods). These metrics are in keeping with the
earlier studies of Bieman et al. [Bieman01, Bieman03]. A bespoke tool written by
the authors was used to extract this information from the latest version of the
WebCSC system - the version control system contained all changes made to every
class since its inception.

We note that LOC only considers executable code. Declarations were not
counted, nor were interfaces, abstract methods or enumerations. Comments were
also ignored and where a single logical LOC was spread over multiple lines for
coding style, e.g., there were a large number of arguments to a method call, only a
single LOC was counted.

3.3 Inheritance properties

The inheritance properties of classes were measured through the DIT and the
Number of Children (NOC) belonging to class metrics. Both of these metrics,
originally defined by C&K [Chidamber94], have been used extensively in empirical
studies since [Basili96, Daly96, Harrison97]. DIT was collected by considering each
class in the WebCSC system and determining the maximum length of the path
from the class to its root class. The NOC was collected for each class by
determining the number of immediate subclasses (note, we use the term ‘subclass’
and ‘child’ inter-changeably in this paper). The DIT and NOC metrics were
extracted using a plug-in to the build server for the WebCSC system.

4 Change analysis

During the two year period, a total of 19,054 changes were made to the system.
4,434 of the 7,439 classes had no changes made to them at all over the same period.

34 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

A large number of classes had between 2 and 30 changes made, and only 29 classes
had had 30 or more changes. The most frequently changed class had had 145
changes applied to it, nearly double the number of changes of the second most
change-prone class, with 75 changes. Table 1 shows the frequency of changes per
class and shows that 29 classes had over 30 changes, 56 had between 20 and 29
changes, and 280 had had between 10 and 19 changes applied to them.

Table 1- Number of changes/class

0 changes 1-9 10-19 0-29 >= 30
4434 2687 280 56 29

The high bias towards classes having less than ten changes can be seen from

Table 1; in total, 4,434 classes had had no changes at all applied to them and 2,687
had had between 1 and 9 changes. The mean number of changes per class in the
system was 2.55.

4.1 Hypotheses H1-H3

Three hypotheses were explored as part of our study of changes made to the
WebCSC system. We note that the first hypothesis is identical in composition and
wording to that originally posed by Bieman et al. in [Bieman01]; the second has
been changed marginally from that also proposed by the same study to read more
succinctly and clearly and the third hypotheses is one that we investigate
independently.

Hypothesis H1: Are larger classes more change prone? A larger class has more
functionality and there is therefore a greater likelihood that some functionality in
the class will need to be corrected or enhanced.

Hypothesis H2: Classes located high up in an inheritance hierarchy will be more
change-prone. Such a class has more dependents and there is therefore a greater
likelihood that some functionality in the class will need to be enhanced because of
changing requirements in those dependent classes.

In other words, the use of specialization in an inheritance hierarchy places a
responsibility on classes high up in the hierarchy to provide appropriate
functionality to subclasses as a part of requirements change also.

35 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

Hypothesis H3: Classes with a large number of children (subclasses) will be more
change-prone than other classes. This hypothesis is based on the belief that a class
with many children will be the subject of greater maintenance activity, since there
are added dependencies on the parent class because of the changing requirements of
a large number of children.

4.1.1 Class size and change (H1)

In this paper, each of a set of class size measures was correlated against number of
changes. Figures 1 to 7 show the relationship between number of changes and each
of those size measures. From inspection of these figures we see that all of: LOC,
Number of instance methods, Number of static methods, Number of fields and
Total number of operations are strongly correlated to change-proneness.

 Figure 1 - LOC vs. number of changes

36 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

Figure 2 - Instance methods vs. changes

 Figure 3 - Static methods vs. changes

37 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

Figure 4 - Methods vs. changes

Figure 5 - Fields vs. changes

38 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

Figure 6 - Operations vs. changes

Figure 7 - Properties vs. changes

Table 2 shows the statistical correlation values for each class size metric versus

change. A single ‘*’ represents statistical significance at the 1% level and a ‘**’
asterisk, significance at the 5% level. We computed both Pearson coefficients (a
parametric test) and Spearman rank (a non-parametric test) correlation coefficients
[Field05]. The values for Pearson’s coefficients show that all size measurements had
a strong influence on the propensity for change. Spearman’s rank correlation
values show that all size measurements (except number of static methods and

39 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

number of fields) also had a strong relationship with change propensity. The
number of static methods has the weakest relationship (Pearson’s value of 0.03),
while the number of instance methods has the strongest relationship change
(Pearson’s value of 0.38).

One explanation for the lack of correlation found between static methods and
change is that the latter do not actually use instance variables – so, in theory, they
may be less likely to be modified as regularly as methods containing instance
variables. In other words, we would expect classes where no instance variables are
being manipulated to be modified less than classes that do (other things remaining
equal). One suggestion for the relative lack of correlation for fields is that it is not
often that fields (in either their name or declaration) are changed – it is the
functionality that manipulates those fields which we would expect to comprise the
bulk of changes made to a class. In other words, what the methods do with those
instance variables is (on average) likely to be more change-prone than modification
of the declared instance variables themselves.

The strongest correlation (in terms of Spearman’s coefficient) was for LOC.
Since the more methods, the greater the number of LOC, we would expect an
explicit size measure to correlate with any feature of a class. In Bieman et al’s
study [Bieman03], the relationship between operations and changes was found to be
stronger than that between fields and changes and from Table 2 the same
relationship appears to be the case in our study. In contrast to the earlier study
however, where operations were found to have the strongest relationship, our study
indicates that a number of features (LOC, instance methods, total methods and
properties) all correlate more strongly than that for operations.

 Table 2 - Change correlation coefficients

Metric Pearson’s Spearman’s
LOC 0.29* 0.18*
Operations 0.32* 0.14*
Instance
methods

0.38* 0.16*

Static methods 0.03** 0.00
Methods 0.35* 0.17*
Properties 0.16* 0.17*
Fields 0.15* -0.02

In terms of the original hypothesis, we can clearly find strong support for H1 in

light of the evidence presented. Large classes are more change-prone; however, in

40 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

keeping with the earlier result reported in [Bieman03] and in contrast with
[Bieman01], we do not find overwhelming support for the hypothesis. We need to
be mindful of the fact that there are size features of a class in the case of the
system studied that might reduce the chances of those feature needing to be
changed – the role of static methods and fields are cases in point here. We also
posit that each system is likely to have its own idiosyncrasies that might cause it
to exhibit slightly different correlation features than other systems based purely on
the different nature of its application domain.

4.1.2 DIT analysis (H2)

The second hypothesis (H2) we explore is whether ‘classes located high up in an
inheritance hierarchy are more change-prone than those lower down?’ To determine
the extent to which inheritance characteristics influenced class change, we again
used the class-based DIT and NOC metrics of C&K as a vehicle [Chidamber94].

Figure 8 shows the change profile for classes at different DIT levels. The system
mean change value appears as a base line value of 2.55. The majority of classes had
a DIT range of between 0 and 3. Classes in this category all had a similar rate of
change to the mean of change for the entire system. However, classes with a DIT in
excess of 3 had a higher rate of change than the system average. Many studies of
inheritance have shown that systems typically have a very low median DIT value
[Bieman95, Cartwright00, Nasseri08]. Several studies have also suggested that DIT
3 is the threshold level before inheritance becomes unwieldy and impractical to use
[Daly96, Harrison97] and the evidence here seems to support that trend. Figure 8
shows that there is a clear peak in the propensity for class change at DIT 5 and 6.
In fact, the number of changes rises rapidly after DIT 3, and then peaks at DIT 6,
before decreasing again.

Figure 8 - Mean changes per DIT

41 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

Table 3 shows graphically the mean changes per class (Mean Change) grouped

according to DIT level. The peak of 8.88 can be seen at DIT 6 after which the
mean change falls significantly. The result for DIT indicates that there is an
interval (the shaded region in Table 3) where relatively fewer changes are made to
classes both below it and above it. One criticism of this analysis might be that
since the majority of classes are likely to be at DIT 0-3, then that is inevitably
where the changes will take place. However, since we are observing mean values,
this does not explain the high values at DIT 4-6, or indeed the sudden fall at DIT
7. From the preceding analysis, we find little support for H2 from the data. It is
not true that classes located high up in an inheritance hierarchy are more change-
prone. It is actually in the middle tiers of the hierarchy where most changes on
average are made.

Table 3 - Changes/class grouped by DIT

DIT Classes Mean change
0 1116 2.65
1 2445 2.14
2 1836 2.64
3 1362 1.98
4 296 4.39
5 92 7.38
6 41 8.88
7 214 3.29
8 52 3.19
9 31 3.52
10 1 0
11 1 0

4.1.3 NOC analysis (H3)

While the DIT metric provides a useful profile of one aspect of the inheritance
hierarchy, it does not provide a view in any sense of the width of the hierarchy.
The NOC provides this feature and allows us to establish whether a relationship
exists between change and inheritance width. The NOC values collected from the

42 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

WebCSC system showed that the majority of classes had zero immediate
subclasses. Those classes had a similar rate of change to the mean of the entire
system (i.e., 2.55 changes). Classes with an NOC between 1 and 20 however, had a
higher rate of change than the mean of the system. Classes with an NOC in excess
of 20 were found to have a proneness to change similar to the mean of the system.

In keeping with the findings for DIT therefore, a clear pattern emerges of classes
below and above a certain interval of NOC being more change-prone than those
either side of that interval. Table 4 shows this effect clearly. Statistical analysis
showed a Pearson correlation coefficient of 0.03 (significant at the 5% level) and a
Spearman rank correlation coefficient of 0.16, significant at the 1% level (for
number of changes vs. NOC in each case).

Table 4 - Changes/class grouped by NOC

NOC Classes Max. Ch. Mean Ch.
0 5951 145 2.30
1-10 1412 75 3.36
11-20 76 25 4.14
>20 238 74 2.79

In terms of the original hypotheses H3, there is an interval phenomenon being
exhibited, outside of which change is fairly consistent. Within that interval
however, change is significantly higher. We cannot therefore find support for H3
and it is not necessarily true that classes with a large number of children will be
more change-prone than other classes. We did find evidence of a range where this
was the case, however.

4.1.4 An explanation

One theory to explain this interval feature of inheritance found for DIT is that
there is, at some point, a ‘cognitive tipping’ effect in evidence. In other words, up
until a certain level of complexity, change is relatively easy (this is the case where
few descendents above need to be considered and DIT is low). Beyond that level, it
becomes difficult when both many ascendants below and many descendents above
may need to be considered for any change. At some point deeper down, complexity
starts to decline as the number of ascendants declines dramatically and the ‘leaves’
are reached (these classes have a high DIT). To summarize, we suggest that classes
in the middle of an inheritance hierarchy may be first class citizens and need to be

43 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

changed on a regular basis due to pressure from classes both above and below
them. This pressure is not as acute on classes either side of the interval.

For NOC on the other hand, the demands placed on a super class by many
immediate children may mean that the super class has to be changed in response to
the ever-changing requirements of those subclasses. One might expect a class with
many children to be changed relatively often. It is fairly counter-intuitive to report
therefore that a class with > 20 children is less change-prone than classes with
between 10 and 20 children. We suggest that with > 20 children, the developer
becomes less inclined to make changes to the parent class than for classes with 10-
20 children.

5 Fault analysis

During the one year period over which faults were collected, 776 changes were
made to classes to resolve identified faults in the WebCSC system. 495 of the 7,439
classes had fault fixes applied to them over the period studied. A large number of
these classes (346) had only one fault fix applied during the period, followed by 90,
34 and 12 for two, three and four fixes being applied respectively. The highest
number of fault fixes applied to a single class was 14. Table 5 shows the breakdown
of number of changes made to resolve a fault per class. The mean number of faults
per class across the whole system was 0.10.

Table 5 - Number of faults per class

No. faults 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. classes 346 90 34 12 6 2 0 0 1 1 0 1 1 1

5.1 Hypotheses H4-H6

In common with the analysis of changes, we explore the trends in faults for the
WebCSC system through three hypotheses.

Hypothesis H4: Are larger classes more fault prone? A larger class has more
functionality and there is a greater likelihood that some functionality in the class
will need to be repaired as a result of a fault.

44 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

Hypothesis H5: Classes located high up in an inheritance hierarchy will be more
fault-prone than other classes. Such a class has more dependants and there is
therefore a greater likelihood that some functionality in the class will need to be
enhanced and therefore be the cause of a fault.

Hypothesis H6: Classes with a large number of children will be more fault-prone
than other classes. This hypothesis is based on the belief that a class with many
children will be the subject of greater maintenance activity, since there are added
dependencies on the parent class because of the changing requirements of a large
number of children.

5.1.1 Class size and faults (H4)

Figures 10-16 show the graphs of the correlations between class size features and
faults. Table 6 shows the correlation coefficients for each of those Figures. The
Pearson correlation coefficient shows that all measures except for static methods
were statistically significant against fault proneness, while the Spearman rank
correlation coefficients show that all measures are correlated significantly with
faults, with the number of static methods being the weakest.

 Figure 10 - LOC vs. number of faults

45 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

Figure 11 - All operations vs. faults

 Figure 12 - Instance methods vs. faults

46 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

Figure 13 - Static methods vs. faults

 Figure 14 - All methods vs. faults

47 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

 Figure 15 - Properties vs. faults

 Figure 16 - Fields vs. faults

Table 6 - Correlation coefficients (class features versus faults)

Metric Pearson’s Spearman’s

LOC 0.22* 0.16*
Operations 0.22* 0.16*
Instance methods 0.26* 0.16*
Static methods 0.02 0.04*
Methods 0.24* 0.17*

48 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

Properties 0.08* 0.07*
Fields 0.12* 0.07*

We can clearly find support for our original hypothesis H4 that large classes are

more fault-prone. However, as we found for static methods (and interestingly the
same trend as shown in Table 2), there are some class features that did not show
as strong a correlation. In other words, the propensity of faults is not as great for
static methods. We also note from Table 6 that fields are significant at the 1%
level for both coefficients, but this trend is not reported in the values for fields in
Table 2. To determine whether influence of inheritance characteristics on fault
propensity we used the same two inheritance-based metrics as used previously,
namely DIT and NOC.

5.1.2 DIT analysis (H5)

Table 7 shows the number of classes and the mean number of faults per class
grouped by DIT. Figure 17 clearly shows that once DIT becomes greater than 3,
classes become more prone to faults; the evidence here again seems to support that
trend. The interval effect is again clear between DIT 4 and 6 inclusive.

Table 7 - Classes and mean number of faults per class grouped by DIT

DIT Number
classes

Mean
No. faults

0 1116 0.088
1 2445 0.090
2 1836 0.108
3 1362 0.065
4 296 0.193
5 92 0.272
6 41 0.585
7 214 0.192
8 52 0.058
9 31 0.645
10 1 0.000
11 1 0.000

49 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

 Figure 17 - Mean faults per DIT

We find little support for hypothesis H5 from the available data. It is not true

that classes with a high DIT are more fault-prone than other classes. In keeping
with the results so far, it is in the middle tiers of the inheritance hierarchy that
faults tend to occur.

One noteworthy observation for the analysis so far is that classes at deep levels
tend to be the most change-prone and fault-prone. A recent study by Nasseri et al.
[Nasseri08] reported that 96% of incremental class changes over the course of the
versions of four Java open-source systems studied were at inheritance levels 1 and 2
(where level 1 is immediately below Object). Only 4% of changes were made at
levels 3 and below; this was largely because the majority of the system’s classes
were at DIT 1 and 2. It would appear that maintaining shallow DIT levels might
be one policy that developers adopt to avoid the problems that we see emerging for
the WebCSC system. That is not to say, of course, that there is conclusive proof
that a shallow inheritance hierarchy is any better in terms of fault propensity. For
open-source systems however, it seems to be a common policy to follow.

The nature of open-source with geographically disparate developers, who may
not be aware of the overall system design, may be the root cause of very shallow
inheritance hierarchies. If a developer is not familiar with the overall inheritance
hierarchy, then that might inhibit certain changes being made to the same
hierarchy by that developer.

5.1.3 NOC analysis (H6)

The NOC values collected showed that the majority of classes had zero subclasses.
Those classes had a similar rate of faults to the mean of the entire system (0.10
faults per class). Classes with an NOC between 1 and 10 however, had a higher
rate of faults than the mean of the system. This increased for classes with an NOC
between 11 and 20 and again for classes with an NOC above 20. The NOC

50 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

measurements clearly show a trend for classes with a higher number of children to
have an increased propensity for faults. Table 8 shows the number of classes and
the mean number of faults per class grouped by the number of children. The
striking feature of Table 8 is the jump from NOC 1-10 to NOC 11-20 (the mean
faults almost double in the transition). It is interesting that there is no interval
effect in evidence as there is for inheritance depth or for NOC changes.

Table 8 - NOC, number of classes and mean number of faults

NOC Classes Mean faults

0 5951 0.10
1-10 1412 0.13
11-20 75 0.23
>20 49 0.25

In terms of our original hypotheses H6, we conclude that classes with a large

number of children are more fault-prone than those classes in a simpler inheritance
hierarchy. Since the values in Table 8 show that classes with greater numbers of
children were more likely to be changed, it implies that the number of faults in
those classes are likely to be correspondingly fault-prone. One lesson that we can
learn from our analysis is that restricting the number of children per se can go
some way to limiting the number of changes likely to be made to a class and
potentially the number of faults.

6 Discussion

The study presented raises a number of issues for the developer and a strategy for
minimizing a) the likely changes that need to be made to a class and b) the faults
that arise from a class.

First, the argument in favor of limiting the depth to which an inheritance
hierarchy should grow results in a dilemma - restricting inheritance depth will
inevitably cause inheritance width to grow to compensate – and we have shown in
the previous section how that can also be problematic. It would seem that, from
our study, the size of the entire inheritance hierarchy (both in depth and width)
should perhaps be restricted so that depth and width are moderated. Our data
suggests DIT 3 to be the threshold value and NOC to be limited to as small as
possible a value. Second, the study highlights a) the need to maintain a pragmatic
view of the entire hierarchy and b) the vigilance needed on the part of developers
and project managers to apply consistent, remedial techniques such as refactoring
[Fowler99] and re-engineering; for example, the replacement of inheritance with

51 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

aggregation or other forms of coupling [Johnson93]. Third, if, as we suggest, there
is a level of DIT and NOC which show a higher propensity for faults, then what is
a project manager or developer to do in the face of consistent pressure for a system
to grow in size as it evolves [Girba05]? We could propose that a code smell analysis
[Fowler99] could be used to determine the point at which re-engineering and/or
refactoring should take place and, in that sense, the warning signs can be
highlighted. Equally, there may be a case for amalgamating classes or even
collapsing a hierarchy to avoid its depth becoming too large.

For a study of this type, the threats to its validity also need to be considered
[Fenton97]. First, we have to consider that only one system was used as a basis of
the study. However, we feel we are adding to the knowledge already accumulated
by the two previous studies of Bieman et al. and, in that sense, our work is a
contribution. Second, we have used a C# system and previous studies have used a
combination of C++ and Java only. In defense of this threat, the differences
between C# and Java are relatively minimal. We feel that our study actually adds
to our knowledge of trends in different OO languages. Third, since we have
collected faults and change data, one criticism is that they are likely to produce the
same results anyway since most faults induce the requirement to make code
changes. However, the period in which we studied the faults for the WebCSC
system was for a shorter period than that for changes. Also, the fault data
represented only a very small part of the overall changes made to the system.
Finally, we have assumed that each ‘change’ and ‘fault’ are equivalent in nature,
when in actuality there would be large differences in the size of a) each change
made and b) severity of each fault fixed. Future work could consider a form or
normalization for change size and/or fault to determine if any different results
became evident.

7 Conclusions and future work

In this paper, we have described an evolutionary study of change extracted from a
large commercial C# system [Kemerer99]. Change was measured against the
design context of the classes within the system, more specifically size and
inheritance characteristics. Results showed a strong positive correlation between
the class size measures and change-proneness but this was not true for class
features studied. Classes within a specific range of inheritance depth and number of
children were found to be relatively more prone to change - the fault data showed
similar results. The most striking result to emerge was the notion of an inheritance
depth 'interval' between which change and fault-proneness were at their highest.
Below and above that interval, however both features were less acute.

52 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

One question that arises from this study is how the results could inform
developer practice. The first issue is that if large classes are changed more often,
then would decomposing large classes through, for example, refactoring actually
reduce the total number of changes? One view would be that relatively small
classes are more cohesive and hence while this might not mean a reduction in the
number of changes, any necessary changes to smaller classes are likely to be more
efficiently achieved. In other words, active re-engineering might pay dividends at a
later stage. Finally, from an inheritance perspective, it would seem that extending
the hierarchy beyond a certain level might be the cause of significant extra
maintenance activity. Most evidence suggests very shallow inheritance hierarchies
in OO systems and the evidence presented in this paper suggests that, counter-
intuitively, restricting inheritance depth might be a sensible strategy.

In terms of future work, we intend to sub-categorize the changes made to the
WebCSC system to determine those that are actually refactorings as opposed to
regular, ‘other’ maintenance changes [Demeyer00]. The authors have already
extracted a set of fifteen refactorings from the same system and this is described in
[Gatrell09a]. We would then be in a position to determine the relationship between
the fault data used in this study and the same set of refactorings. Second, we
would like to form a link between design pattern-based classes and the same fault
data [Gatrell09b]. This would extend the earlier studies of Bieman et al.
[Bieman01, Bieman03] which only looked at changes to patterns, rather than faults
therein. Finally, the WebCSC system is an ever-developing artifact. From an
evolutionary perspective it would be interesting to observe whether the same trends
recur as the system ages further. The study therefore represents an ongoing
snapshot of the WebCSC system rather than a definitive study.

References
[Arisholm06] Arisholm, E. and Briand, L.C., Predicting fault-prone components in

a Java legacy system, ACM/IEEE Intl. Symp. Empirical Soft. Eng.,
Rio de Janeiro, pp.8-17, 2006.

[Basili96] Basili, V.R., Briand, L.C. and Melo, W.L., A validation of object-
oriented design metrics as quality indicators, IEEE Trans. on Soft.
Eng, 22(10), pp. 751-761, 1996.

[Bieman95] Bieman, J. and Zhao, J., Reuse through inheritance: A quantitative
study of C++ software, ACM Symposium on Software Reuse, Seattle,
Washington, pp. 47-52, 1995.

[Bieman03] Bieman, J., Straw, G., Wang, H., Munger, P., Alexander, R., Design
patterns and change proneness: an examination of five evolving

53 ⋅ Size, Inheritance, Change and Fault-proneness in C# software

Journal of Object Technology Vol. 9, no. 5, 2010

systems. Proc. 9th International Software Metrics Symposium
(Metrics 2003), pages 40-49, 2003.

[Bieman01] Bieman, J., Jain, D., and Yang, H., Design patterns, design structure,
and program changes: an industrial case study. Proceedings. IEEE
Conf. on Software Maintenance (ICSM 2001). November 2001,
Florence, Italy, pages 580-.

[Cartwright00] Cartwright, M., and Shepperd, M., An Empirical Investigation of an
object-oriented (OO) system. IEEE Trans. on Software Eng., 26(8),
pp. 786-796. 2000.

[Chidamber94] Chidamber, S. R., and Kemerer, C. F., A metrics suite for object
oriented design, IEEE Transactions on Software Engineering, vol 20,
no.6. pp. 467-493, 1994.

[Daly96] Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M., An Empirical
Study Evaluating Depth of Inheritance on the Maintainability of
Object-Oriented Software, Empirical Soft. Eng., An Intl Journal,
1(2):109-132, 1996.

[Demeyer00] Demeyer, S., Ducasse, S., and Nierstrasz, O., Finding refactorings
via change metrics, ACM Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
Minneapolis, USA, 166-177, 2000.

[Fenton97] Fenton, N., and Pfleeger. S., Software Metrics - A Rigorous and
Practical Approach Second Edition. Int. Thompson Computer Press,
London, 1997.

[Field05] Field, A.: Discovering Statistics Using SPSS (Sage Publications, 2005)
[Fowler99] Fowler, M., Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.
[Gatrell09a] Gatrell, M., Counsell, S., and Hall, T., Empirical Support for Two

Refactoring Studies Using Commercial C# Software, Proceedings of
Empirical Assessment in Software Engineering (EASE 2009), Durham,
April 2009.

[Gatrell09b] Gatrell, M., Counsell, S., and Hall T., Design patterns and change
proneness: a replication using proprietary C# software, Proceedings of
the IEEE Working Conference on Reverse Engineering (WCRE’09),
Lille, France, October, 2009.

[Girba05] Girba, T., Lanza, M. and Ducasse, S., Characterizing the Evolution of
Class Hierarchies, Ninth European Conf. on Software Maintenance
and Reengineering, Manchester UK. pp. 2-11 2005.

[Gorschek10] Gorschek, T., Tempero, E., Angelis, L.. A large-scale empirical study
of practitioners' use of object-oriented concepts, Proceedings of the

54 ⋅ M. Gatrell and S. Counsell

Journal of Object Technology Vol. 9, no. 5, 2010

32nd IEEE/ACM International Conference on Software Engineering,
Cape Town, South Africa, 115-124.

[Harrison97] Harrison, R., and Counsell, S., and Nithi, R., Experimental
Assessment of the Effect of Inheritance on the Maintainability of
Object-Oriented Systems, Journal of Systems and Software, 52/2-3,
June 2000, pp. 173-179

[Johnson93] Johnson, R., and Opdyke, W., Refactoring and aggregation, In Object
Technologies for Advanced Software, First Japan Society for Software
Science and Technology (JSSST) International Symposium, volume
742 of Lecture Notes in Computer Science, pages 264-278, 1993.

[Kemerer99] Kemerer, C. and Slaughter, S., Need for more Longitudinal Studies of
Software Maintenance, Empirical Soft Engineering: An Intl. Journal,
2(2), pages 109-118, 1999.

[Nasseri08] Nasseri, E., Counsell, S., and Shepperd, M., An Empirical Study of
Evolution of inheritance in Java OSS, Proc. of: 19th Australian
Software Eng. Conference, Perth, Australia, pp. 269-278, 2008.

[Prechelt03] Prechelt, L., Unger, B., Philippsen, M., and Tichy, W., A controlled
experiment on inheritance depth as a cost factor for code maintenance,
Journal of Systems and Software, 65(2):115-126, 2003.

[Wood99] Wood, M., Daly, J., Miller, J. and Roper, M., Multi-method research:
An empirical investigation of object-oriented technology, The Journal
of Systems & Software, 48(1), pp. 13-26, 1999.

About the author(s)
Matt Gatrell is the Director of Development and Chief Architect for
an R&D programme at an international software company
specialising in Transaction Content Processing. He is currently
completing his PhD at Brunel University. His research interests
include empirical software engineering, design patterns, refactoring
and testing.

Steve Counsell received his BSc in Computing in 1987, an MSc.
in Systems Analysis in 1988 and a PhD in 2002. From 1998-
2004, he was a Lecturer in Computer Science at Birkbeck,
London. He is currently a Lecturer in the School of Information
Systems, Computing and Mathematics at Brunel University.

