JOURNAL OF OBJECT TECHNOLOGY

Published by ETH Zurich, Chair of Software Engineering, () JOT 2010
Online at http://www. jot.fm.

Test Case Generation Based on State
and Activity Models

Santosh Kumar Swain® Durga Prasad Mohapatra® Rajib Mall®

a. School of Computer Engineering, KIIT University, Bhubaneswar, Orissa,
India. swainsantosh@yahoo.co.in.

b. Department of Computer Science & Engg., National Institute of Tech-
nology, Rourkela, Orissa, India. durga@nitrkl.ac.in.

c. Department of Computer Science & Engg., Indian Institute of Tech-
nology, Kharagpur, West Bengal, India. rajib@cse.iitkgp.ernet.in.

Abstract We propose a novel testing technique for object-oriented pro-
grams. Based on the state and activity models of a system, we construct an
intermediate representation, which we have named state-activity diagram
(SAD). We generate test cases to achieve state-activity coverage of SADs.
We have empirically evaluated the effectiveness of our approach. The
results show that the proposed technique could detect seeded integration
testing faults which could not be detected by the related approaches.

Keywords UML based testing, Automatic test case generation, Activity
diagram, State chart diagram, Mutation testing

1 INTRODUCTION

Effective software testing is a very challenging task. The reliability and quality of a
software product depends largely on how thoroughly it is tested [19]. As the complexity
and size of software products grow with every passing year, the time and effort required
for adequate testing is growing at a very rapid rate. Test case design constitutes a
large part of testing cost. It is generally agreed that manual testing is becoming a
bottleneck and is a frequent cause of project delays especially for large programs [18].
Therefore, automatic test case design has become important to ensure the quality of
present day large software products and to contain the rapidly growing testing costs
21, 13, 19, 9].

Automatic test case generation from code is inefficient, especially for large pro-
grams [23]. Some aspects of program behavior e.g. state behavior are very difficult to
test based on code alone [20, 24]. An alternative approach is to generate test cases
from UML models constructed during the design process. Use of UML models to
generate test cases holds out several advantages. Test case generation from design

Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib Mall. Test Case Generation Based on State and
Activity Models. In Journal of Object Technology, vol. 9, no. 5, 2010, pages 1-27. Available at
http://www.jot.fm/contents/issue_2010_09/articlel.html

http://www.jot.fm/copyright.html
http://www.jot.fm
mailto:s
mailto:d
mailto:r
http://www.jot.fm/contents/issue_2010_09/article1.html
http://www.jot.fm/contents/issue_2010_09/article1.html

2 . S. K. Swain et al.

models has several advantages. Model-based (also called gray box) testing can detect
certain categories of faults that are not easily detected by code-based testing. Also
it allows test cases to be available early in the software development cycle, thereby
making test planning more effective and saving time and resources.

UML has emerged as an industrial standard for modeling software systems [6].
UML is a visual modeling language that can be used to specify, visualize, construct,
and document the artifacts of a software system [6]. UML can be used to describe
different aspects of a system including static, dynamic and use case views of a system.
Of late, test case generation from UML statechart diagrams [8, 10, 14, 9, 22, 7, 28| and
activity diagrams [3, 16, 5, 25] has received considerable attention from researchers.

Existing methods [22, 7] of generating test cases from statechart diagrams only
deal with testing a single object and can be used to easily achieve transition and state
coverage for any single class. Though such an approach can be successfully used to
test the behavior of a single class, in case of complex use cases where the behavior of
the system is spread across interactions among different objects, existing approaches
are inadequate [21].

The object-oriented paradigm offers several benefits, such as encapsulation, ab-
straction and reusability to improve the quality of software. However, at the same
time, object oriented features also introduce new challenges for testers. Typically, the
complexity of an object oriented system lies in its object interactions. As a result,
complex behaviors are observed when related classes are integrated and several kinds
of faults can arise during integration: interface faults, conflicting functions, missing
functions etc. [20]. Complete system level functionality (i.e. use cases) is usually im-
plemented through the interaction of objects. A large number of possible interactions
between collaborating classes may need to be tested to ensure the correct functionality
of the system.

The important steps carried out during the execution of a single use case are often
represented using an UML activity diagram. Test case generation from UML activity
diagrams described in [16, 25, 26| do not represent any state information of the system.
Therefore, during the execution of a use case, the state of the entire system, which is
a collection of objects, remains unknown. On the other hand, a system can behave
very differently to the same input depending on the state it is in. The necessary state
information of the objects and the object interactions can help in effective test case
generation for large software products.

A statechart diagram shows the lifecycle of an object: the transitions that it
undergoes upon receipt of an event. Statechart test sets have better capability of
revealing unit level faults [2]. A useful application of statechart diagrams is the
description of the legal sequence of external system events that are recognized and
handled by a system in the context of a use case. Statechart and activity diagrams
together can provide control flow and event-oriented state change informations. The
transitions on statecharts are annotated using method names. The details of the
method implementation are usually designed using the activity diagram. Hence,
using statechart and activity diagrams, it is possible to generate unit/class level and
integration/cluster level test cases even before any code is written.

In this paper, we present a technique that enhances the integration testing of
classes by accounting for all possible states of interacting objects. We propose a novel
intermediate representation named state-activity-diagram (SAD). In SAD, the control
flow information during the execution of a use case is shown through a combination of
state transitions and activities. It is derived by synthesizing UML statechart diagrams

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 3

of different objects involved in a particular use case with an activity diagram. The
states are extracted from the statechart diagrams and control flow is extracted from
the activity diagram. To handle concurrent execution, some new types of nodes have
been introduced.

Several faults such as incorrect actions to an event, correct event passed to a wrong
object or incorrect events passed to the right object in its correct state, incorrect
method invocation in an activity, sneak transitions, incorrect or missing output, etc.
may occur in an operation. The response to an event depends upon the corresponding
object’s state. A test set is therefore necessary to detect faults if any when an object
invokes a method of another object and whether the right sequence of states and
activities is followed to accomplish an operation.

The rest of the paper is structured as follows: Section 2 reviews the related
work. Section 3 provides an overview of UML activity and state chart diagrams
and introduces some basic concepts. Section 4 describes State-Activity Diagram
(SAD) and its semantics. Section 5 presents our approach to the generation of SAD
from statechart and activity diagrams and presents the algorithm of generating test
conditions from SAD diagrams. Section 6 shows one illustrative example. Section
7 explains the experimental studies and presents result analysis. In Section 8, we
provide a comparison with related work. Section 9 concludes the paper.

2 RELATED WORK

Automatic test case generation from UML diagrams has received considerable attention
from researchers [22, 7, 28]. There have been attempts to generate test cases from
UML activity diagrams [16, 25]. Others have worked on UML state chart diagrams [4].

UML activity diagram-based test case generation has been investigated in [25] by
Lizhang et al. They have generated test cases using a gray box method. In their
approach, test scenarios are directly derived from the activity diagrams modeling an
operation. This method deals with the logical coverage criteria of white box method
and finds all the possible paths from the design model which describes the expected
behavior of an operation. Subsequently, all the information for test case generation
(i.e. input/output sequence parameters, the constraint conditions and expected object
method sequences) is extracted from each test scenarios. Finally, they generate the
possible values of all the input/output parameters by applying category-partition
method [17]. It generates test cases which can achieve the path coverage. But this
method ignores information about the state of the objects within the system at any
time of execution.

The approach presented by Andrews et al. [3] identified thin threads from top-level
UML activity diagrams. A thin thread is a minimum usage scenario in a software
system. It describes a complete scenario from the end user’s point of view. That is,
the system takes input data, performs some computations, and outputs the result.
They proposed a novel algorithm to generate thin threads from activity diagrams,
which included preprocessing of the system level activity diagrams, converting them
into activity hyper graphs and then deriving all execution paths from the graph. Their
method does not contain any state information for the objects of the system.

Chen Mingsong et al. [16] presented an idea to obtain the reduced test suite for
an implementation using activity diagrams. They considered the random generation
of test cases for Java programs. Running the programs with applying the test cases,
they obtained the program execution traces. Finally, a reduced test suite is obtained

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

4 . S. K. Swain et al.

by comparing the simple paths with program execution traces. Simple path coverage
criterion helps to avoid the path explosion due to the presence of loops and concurrency.

Offutt and Abdurazik [10, 9] developed a technique for generating test cases from
UML state diagrams. They generate test cases automatically from change events for
Boolean class attributes. They were successful in developing several useful coverage
criteria that are based on UML statecharts. Their approach targets class-level testing.
Their approach achieves transition coverage, full predicate coverage and transition-pair
coverage. They also provide useful insights on including test prefixes that contain
inputs necessary to put the software into the appropriate state for the test values.

Kansomkeat and Rivepiboon [22] have proposed a method for generating test
sequences using UML state chart diagrams. They transform the state chart diagram
into a flattened hierarchical structure of states called testing flow graph (TFG). The
TFG is then traversed from the root node to the leaf nodes to generate test cases.
From the TFG, they list possible event sequences which they consider as test sequences.
The testing criterion they used to guide the generation of test sequences is the coverage
of the states and transitions of a TFG. This method deals with a particular object’s
state chart diagram. But in an execution of a use case, more than one object often
participates. Such behavior would be difficult to test using this approach.

Kim et al. [28] proposed a method to generate test cases for class level testing using
UML state chart diagrams. They transformed state charts to extended finite state
machines (EFSMs) to derive test cases. The hierarchical and concurrent structure
of states is flattened and broadcast communications are eliminated in the resulting
EFSMs. Then, data flow is identified by transforming EFSMs into flow graphs to which
conventional data flow analysis techniques are applied. Hartmann et al. [8] augment the
UML description with specific notations to create a design-based testing environment.
The developers first define the dynamic behavior of each system component using a
state diagram. The interactions between components are then specified by annotating
the state diagrams, and the resulting global FSM that corresponds to the integrated
system behavior is used to generate the tests.

Gnesi et al. [7] provided a mathematical approach to conformance testing and
automatic test case generation for UML state charts. They proposed a formal confor-
mance testing relation for input-enabled transition systems with transitions labeled by
input/output-pairs (IOLTSs). Testing software in order to establish the fulfillment of
the specified requirements is known as conformance testing. A conformance relation
defines the correctness criterion of the implementation with respect to the formal
specification. IOLTSs provide a suitable semantic model for a behavior represented by
a subset of statecharts. They also provide an algorithm which generates a test suite
for a given state chart model.

Ali et al. [4] have proposed an approach for state-based integration testing.
Their work builds an intermediate test model called SCOTEM (State COllaboration
TEst Model) from UML collaboration diagrams and the corresponding statecharts.
SCOTEM models all possible paths for object state transitions that a message se-
quence may trigger. SCOTEM then generates test paths based on various coverage
criteria. Their generated test cases aim to uncover state-dependent interaction faults.
Their work considers the coverage of all possible states of collaborating classes in an
interaction. Briand et al. [14] have considered interactions among objects in their
work, though their focus is again on class-level testing. Their work produces a test
case specification consisting of a feasible sequence of transitions. In their work, to
capture the interactions among state dependent objects, an invocation sequence tree

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 5

is built which is then used to derive test constraints for the transition sequences to be
tested.

Kosmatov et al. [12] developed a novel methodology to generate test cases automat-
ically from a given set of test conditions and the input domain. Their approach mainly
performs a boundary value analysis on discrete neighborhood of input values and then
uses a cost minimization function in the domain to generate test cases automatically.

3 BASIC CONCEPTS

In this section, we present a few basic concepts and terminologies that are used in the
rest of the paper. Both activity and statechart diagrams are used to specify dynamic
behavior of a system. While an activity diagram describes the execution of a use case,
a state chart diagram captures the state of an object in different phase of execution
over different use cases.

3.1 Activity Diagrams

UML activity diagrams describe the ordering of atomic pieces of behavior, called
activities. The notation is inspired by flowcharts, state transition graph and petri nets.
An activity diagram can be used to model complex processes that have parallelism,
loops and event driven behavior. They can also be used to model the behavior of some
use cases or to specify the workflow or business process. The nodes represent processes
or process control, including action states, activity states, decisions, swimlanes, forks,
joins, objects, signal senders and receivers. The edges represent sequences of activities
including the control flows, message flows and signal flows. Activity state and action
state are denoted with round corner boxes. Transitions are shown as arrows. Branches
are shown as diamonds with one incoming arrow and multiple exit arrows. Each arrow
may be labeled with a Boolean expression to be satisfied to choose the branch. Forks
and joins are represented by multiple arrows entering or leaving a synchronization
bar. A merge has multiple input transitions and a single output. Using swimlanes, the
activities are arranged in vertical zones separated by lines. Each zone represents the
responsibilities of a particular class. For each object that executes one or more actions,
a column is assigned with its name and placed at the top of the column. Then each
action associated with an object is placed in that swimlane. In a wait state, the system
waits for the occurrence of an event, e.g. some deadline occurs or a customer sends
some additional information. A wait state is also used for synchronization of a thread
with other parallel threads. In the wait state, the system waits for the completion of
the other parallel threads. In a compound activity state, a different activity diagram
can be executed. This different activity diagram is started when the compound state
is entered. When the activity diagram finishes, the compound activity state is exited.

An edge starts from the source node and terminates at the target. An edge is
labeled with an expression of the form ec]/a, where e is an event expression, ¢ is
a guard condition expression, and a is an action expression. Events are also called
signals in UML. Each of these three components is optional. An edge with label e[c]/a
has the following meaning: If the system is in the source state, the event e occurs,
and the guard condition c¢ evaluates to true, then the system transits out of the source
state, the action a is performed, and the target state is entered. A guard expression is
a conditional /Boolean expression that can refer to local variables in UML diagram.
The local variables of diagram are Boolean, integers and strings.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

6 - S. K. Swain et al.

ATM Bank

®
v

GetCardInfo()

GetPIN()
— = VerifyCard()
N

v
<> 1 Y]

VerifyPIN()

PIN Correct ?_~~_ Numlncorrect <
[Y] [N] MaxNumlIncorrect ?

J
J; [N]

ReturnCard()

J
@

Figure 1 — Activity Diagram of ATM-Bank login system

Figure 1 shows the activity diagram for an ATM. It describes the flow of activities
in different objects. The ATM starts with getCardinfo() activity and then collects the
PIN (Personal Identification Number) using the getPIN() method. Next, control goes
to Bank as ATM asks Bank to verify PIN and card. Now Bank starts verifying using
the verifyCard() method to check card. On “incorrect card”, it invokes the returnCard()
method of ATM to end the session. On the other hand, on successful card-validation,
it goes to check the validity of PIN and in case the PIN is valid, it asks the ATM to
go to the next session. But in case of an invalid PIN, bank increments its invalid PIN
counter and calls the signal reenterPIN() to ask the ATM to prompt for a PIN. But if
the invalid PIN counter goes beyond some maximum value, Bank signals the abort
method to ATM and asks to return the card.

3.2 Statechart Diagrams

Statechart diagrams represent the state-based behavior of entities by specifying its
response to the receipt of event instances. Typically, it is used for describing the
behavior of classes. It shows how an object will react to an event. Each reaction
may be in the form of a sequence of actions, possibly accompanied by a transition
from one named state to another. An event represents the receipt of a signal, or the
effect of a method call. An action represents the sending of a signal, or the call of an
operation. States in the statechart are rendered by appropriate state symbols, while
transitions are generally rendered by directed arcs that connect them. Each transition
is represented by the name of an event, followed by an action expression. An optional

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 7

Session Completion

r :) Card Entr
e @
A bank. done
Card Read -
Successfully Returning

Abort
/" bank. Verify

PIN
' PIN Entry Verification PIN Verified | Session Next
Reenter PIN \—J L— J

Figure 2 — Statechart Diagram of ATM

guard—a Boolean-valued expression—denotes whether a particular occurrence of the
event should trigger the specified actions—if it is false, then the fact that the event
has occurred is simply ignored. A state is a condition or situation of an object during
its life or an interaction during which the object satisfies some conditions, performs
some actions, or waits for some events. A composite state is decomposed into two or
more concurrent substates (called regions) or into mutually exclusive disjoint substates.
Conceptually, an object remains in a state for an interval of time. A state is shown as
a rectangle with rounded corners. The transition begins or fires with the occurrence
of the trigger event. It may be labeled by a transition string that has the following
general format:

Event [guard-condition] / ~ action-expression

An event is a message that is sent to an object. The action-expression is executed
if and when the transitions fire.

Figure 2 shows the statechart diagram of an ATM. It shows the state transition of
the ATM. It starts with start state and on inserting a card, it goes to the CardEntry
state. On getting the card information, it goes to the PINEntry state and collects
the PIN (Personal Identification Number). From that state it invokes the verifyPIN()
method of Bank and waits in verification state. Depending on the verification status it
either asks for re-entering the PIN and goes to the next session or aborts by returning
the card to the user.

Figure 3 shows the statechart diagram of a Bank. It starts in the idle state. On
request of verifying a card from an ATM, it goes to verifying the state which is a
composite state. It first verifies the card and if on “invalid card” it returns back to the
idle state, invoking the abort() method of the ATM. On ‘“valid card”, it checks the
PIN and goes to the verifyingPIN sub-state. On “valid PIN”, it confirms the ATM
and goes back to the idle state. On “invalid PIN” it also increments the invalid PIN
count and compares it with its maximum value. On comparison, it either asks the
ATM to abort or to reenter the PIN and goes to the idle state itself.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

8

S. K. Swain et al.

')
Q———— Idle
C Done
Verify PIN()]
erify PIN() [~ card Valid]
/Matm. Abort
Verifying
[PIN correct]
/numincorrect=0
Verifying Aatm PIN Verified
Car
—
[Card Valid]
—
Verifying
PIN
J [~PIN correct && numincorrect
>= max numincorrect]
/ card Valid = false; *atm.abort

[~*PIN correct && numlincorrect<max Numincorrect]
/ numincorrect++;*atm.reenterPIN

Figure 3 — Statechart Diagram of a Bank.

Each statechart diagram can be modeled as a Deterministic Finite Automata

{Q7 Ea 6) q0 }

Q = set of states
3 = set of transitions where each transition has three parts event[guard] /action.

1. event(t): transition method. Actual method of the object.

2. guard(t): guard condition which evaluates to true for successful transi-
tion.

3. action(t): may be updating action or some signal. In case of a signal,
it calls some other object’s method.

0:Q XX — Q is a transition rule.

qo start state

We define some terms like ¢;,,(q), tout(q), P(t) & S(t) as follows:

tin(q) ={t]3¢ € Q,4(¢,t) = q}
tout(q) = {t]3¢ € Q,8(q,t) = ¢'}
tin(qo) = {®}

P(t) ={q |t Ctou(q)}
St)={qlt < tin(a)}

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 9

3.3 Overview of a Few Basic Testing Concepts

In this subsection, we discuss basic concepts related to program testing that have been
made use of throughout this paper.

Different levels of testing:

In object-oriented systems in general, testing is done at four different levels of abstrac-
tion: at algorithmic level, class level, cluster /integration level and system level [20, 19].
The algorithmic level, similar to conventional program testing, considers the code
for each operation in a class. Class level testing tests the code for each operation as
well as method interactions within the class. At cluster level testing, the interactions
among cooperating classes are tested. This is similar to integration testing. System
level testing is done on the complete system where all clusters are combined. A path
represents the flow of execution from the start of a method to its exit.

Path Testing:

A path of software is a sequence of instructions, statements or a high-level design that
starts at an entry, junction, or decision and ends at another, or possibly the same,
junction, decision, or exit. A path may go through several junctions, processes, or
decisions, one or more times. Designing test cases to execute all paths is called path
testing [19].

Basis Path Testing:

A basis test path is defined as an execution path from the start state to a final state
which executes any loop at most once. A basis path can be differentiated from all
other basis path by at least one edge or one state-activity node. Testing all basis paths
is called basis path testing. It fulfills the requirements of branch testing and also tests
all of the independent paths that could be used to construct any arbitrary path. Basis
Path testing is a hybrid between path and branch testings [18].

4 SAD: STATE ACTIVITY DIAGRAMS

In this section, we introduce our proposed intermediate diagram which we have named
state-activity diagram (SAD) which captures the information present in both statechart
and activity diagrams. SAD shows control flow information during the execution of a
use case. Our proposed state-activity diagram is made up of the following components:

State-Activity Node:

This node denotes the state of an object during execution (Figure 4(a)). Each node
contains an activity. The activity is performed on entering the node during execution
time. As the activity gets terminated, an event, called termination event, is generated
and the outgoing edge from the node is activated. Activities are assumed to be
atomic. A state having no activity is assumed to be in wait state and it waits for an
external-event to trigger a state transition.

AND-OR node:

These are new kinds of nodes which we introduce here. For an AND node (Figure 4(b)
& Figure 4(c)) all the outgoing edges are activated simultaneously on activation of all

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

10 . S. K. Swain et al.

(State-name

= 7 Y
Activity K kl

(@) (b) (c)

YA

(d) (e) (f)

Figure 4 — (a) state-activity node (b)-(c) AND-node (d) decision node (e)-(f) OR-node

©

(b)

(a)

Figure 5 — (a) Start node (b) Final node

the incoming edges. Similarly for an OR node (Figure 4(e) & Figure 4(f)), only one of
the outgoing edges is activated depending upon the guard condition if at least one
of the incident edge is activated. If there is only one incoming edge to an OR node
and more than one outgoing edges, then it is called an OR-join node. In a decision
node (Figure 4(d)), there is only one incoming edge and depending on the Boolean
decision on the node one of the outgoing edges is activated. On a merge node, there is
more than one incoming edges and only one outgoing edge. A merge node in activity
diagram is actually a specific kind of OR node in SAD.

Edges:

Edges connect different kinds of nodes. An outgoing edge from a state-activity node
is activated on an event. An edge has a Boolean guard condition associated with it.

There is only one unique start state in a state activity diagram (Figure 5(a)).
The system starts the execution in the start state. One state activity diagram may
have more than one final state, which specifies termination of an executing thread or
activity (Figure 5(b)).

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 11

4.1 Formal Definitions of SAD

In the following, We give a formal definition of SAD. A State-Activity Diagram is a
seven tuple as defined below:
SAD = (S,E,N,G, 6,5, F)

Where
S ={s1,82, -, s, } is a finite set of state-activity nodes representing system
states.
N ={ny,na,- -, Ny} is a finite set of AND-OR-Decision nodes.
E ={ei,ea, -+, e,} is a finite set of edges representing labeled transitions.
G ={g1,92, - -, gn} is a set of guard conditions where gi corresponds to the
edge e;.

§:(SUN) x Ex G — (SUN) is the transition function.
Sop € S is the start state.
F C S is a set of final states.

Now we define current state of SAD, which is actually the union of object states.
The state of the system during execution of an use-case is spread over the objects. To
achieve the system state, we define two more terminologies, current state and enabled
edges. If SAD = (S, E,N,G, 9,5, F) is a state-activity-diagram then the system at
any state (SS) is described by an ordered pair:

SS ={CS,EE}, Where

CS C SU N, which denotes the current-state of the system. The system starts at sg
where C'S = {so} and the system is in final state when F C CS.

EFE C E, which describes the enabled edges of the current state. Enabled edges are
generally a subset of the outgoing transitions from the states of current states.
Out of the enabled state, transitions can take place through one or more edges.

We define the predecessor and successor of an edge, which are basically sets of
nodes. These definitions are necessary to capture the state transition behavior of the
system in the presence of an AND-node.

Ve; € E, P(e;) predecessor of an edge and S(e;) Successor of an edge are defined as
follows:

o Ple;)={se€S|3¢g; € Gand s xe; xg; €0}
o S(e;) ={seS|d(P(ei),ei,g:;) = s}

Now we try to analyze the predecessor and successor of an edge in presence of
AND-OR nodes.

Case 1: AND node (Figure 4(b)) with two incident edges (e;,e;) and one outgoing
edge (ex):
Pler) = P(ei) U P(e;)
S(ei) = S(ej) = S(ex)

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

12 . S. K. Swain et al.

Case 2: AND node (Figure 4(c)) with one incident edge (e;) and two outgoing edges
(e, er):

P(e;) = P(e;) = P(ex)
S(e;) = S(ej) U S(ex)

Case 3: OR node Figure 4(e) with two incident edges (e;, e;) and one outgoing edge

(ex):
P(er) C P(e;) U P(ey)
S(ei) = S(ej) = S(ew)

Case 4: OR node (Figure 4(f)) with one incident edge (e;) and two or more outgoing
edges (ej,ex):

P(e;) = P(ej) = P(ex)
S(e;) € S(ej)US(ex)
Now we define
FEE ={e; ¢ E| P(e;) CCS & g; = true}

i.e. EE or the set of enabled edges are those whose predecessor states are currently
in state CS and the guard condition corresponding to the edge is true.

Again at any CS, Ve; € EE we can fire ¢;. On firing e;, CS changes to CS’ as follows:
CS' = (CS — P(e;)) US(e;)
So in the previous cases it will be:
Case 1:
CS' = (CS — (P(e;) UP(ej))) U S(er)
Case 2:
CS' = (CS — P(e;)) U (S(er))
Case 3:

if e; fires then CS' = (CS — P(e;)) U S(ex)
else if e; fires C'S" = (CS — P(e;)) U S(ex)

Case 4:

if g; is true then CS" = (CS — P(e;)) U S(e;)
else if gy, is true CS" = (C'S — P(e;)) U S(ex)

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 13

4.2 Test Coverage

Test coverage indicates the extent to which a testing criterion such as path testing,
branch testing or basis path testing is achieved. A popular test coverage criterion
involves covering all the basis paths in the SAD. Since basis path coverage is a stronger
test coverage than transition or state coverage, it ensures that all the states and edges
visited at least once. So this will give us both state and activity path coverages. These
are finite as the numbers of basis paths are also finite.

4.2.1 State-activity Coverage:

Given a test set T and state-activity diagram SAD, T must cause each possible
state-activity node in SAD to be taken at least once. For any basis path p;, there
must be at least one test case t € T such that, when the software is executed using t,
the basis path p; of SAD is executed.

4.2.2 Transition Coverage:

Given a test set T and state-activity diagram SAD, T must cause each possible
transition path in SAD to be taken at least once [4].

4.2.3 Activity Path Coverage:

is a sequence of non-concurrent activities (that is, activities which are not executed in
parallel) from the start activity to an end activity in a SAD, where each activity in
the sequence has at most one occurrence except those activities that exist within a
loop. Each activity in a loop may have at most two occurrences in the sequence [5].

5 OUR PROPOSED APPROACH (SATEC)

We propose a test case generation technique that is based on the interactions among
the objects. This test data can be applied during the integration test phase, right after
the completion of class testing. We have named our proposed approach SATEC (State
Activity TEst Case generation). Figure 6 shows the steps of the test case generation.
They are four:

1. SAD generation
2. Basis path generation (using coverage criteria)
3. Test scenario generation

4. Test case generation

Synthesis of SAD

We now present our approach to generate SADs from the activity and statechart
diagrams of a given system. To generate an SAD, we proceed with an initial set
of activity states S. We iteratively add other states to it and connect them with
appropriate edges. The steps involved in this are the following:

Step-1 Create a start node.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

14 . S. K. Swain et al.

—
Coverage
Criteria
Activity
Diagram
A4
N Basis Path
SAD » SAD »| Generator Basic Test
Generator (UTCG) Path
Statechart |
Diagram ™y N
Test Ca_se ; Test s Testl
Generation Scenario cenario
Generator

Figure 6 — The Steps of our approach to test case generation (SATEC)

Step-2 Create an AND node. Add an edge (transition) to the AND node from the
start node with guard condition true. Add the start states of all the objects and
add one edge (transition) from the AND node to the node representing start
state of each object.

Step-3 Based on the activity diagram, add nodes by the following rules:

(a) If the node is a fork/join, replace it by AND node.
(b) If it is a decision node, then add it as it is in the activity.
(c) If the node is an activity node:

i. Find transition t from the statechart diagram of the object (object
name can be found from the corresponding swim lane), such that event
(t)= activity.

ii. If | P(¢) |> 1, then find out the condition for transition to all of the
P(t)s from previous nodes. Add those transitions.

iii. Add state s of S(t) with the activity to make a state-activity node. Add
an OR node and make a transition from OR node to the state node.
Now replace the activity node by this state-OR node combination.

iv. If action(t) = signal, then add one AND node before the OR node
and add one outgoing transition from the AND node to the signal
destination. Now add an OR-AND combination node in the outgoing
edge of the signal’s destination node’s parent (P(event(signal(t))) and
merge this edge with the AND node. Add signal’s (event (signal (t)))
activity state in that swimlane following the same rule described above.

Step-4 Remove activity from S. Do this until S is empty.

Step-5 Remove all redundant OR nodes. (An OR node with just one incoming
transition and one outgoing transition is redundant).

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 15

Algorithm for UML Test path and Condition Generation (UTCG)

To generate test conditions from SAD, we use depth-first search. We start from the
start state and explore states by traversing all enabled edges. We store the system state,
transition edge and guard condition on a stack. On encountering a loop, as mentioned
in the basis path definition, we traverse the loop once. Hence, on encountering a loop,
we find out if the newly visited state exists in any already derived basis paths. If it
belongs to some path, we generate a basis path by concatenating the partial path from
the basis path from the state with the current path. In case no basis path exists, we
backtrack from the stack and update the stack such that next time we explore the
unexplored edge which is at maximum depth. The pseudo code of the algorithm is
given below.

PSEUDOCODE (UTCG)
Input : SAD

Output : Test Conditions, Test Scenarios, Method sequences for each basis path
CS : vector containing the current state of the SAD

EE : currently enabled edges

TS : current test path

ALLTS : all basis path

Visited Edges : a hash-map containing visited edges corresponding to a state

/* Generates all basis paths */
TSGSAD (SAD)
Begin
Add start-state sO to CS and t to EE such that P(t) = sO
Add CS, EE to TS
Do
begin
If (CS contains F) /x Final state found */
Begin
Add TS to ALLTS
Print basispath from TS
RemoveExploredState ()
end
If (sizeof EE >0) /* all the edges are explored */
begin
MakeTransition ()
UpdateEE ()
LastTransition = true
end
Else
begin
If (last transition = = true) /* if loop found */
If (ALLTS contains CS)
MakeBasisPath ()

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

16 - S. K. Swain et al.

Else
FindStateWithUVtransition ()
Else/* returning back from DFS */
RemoveExploredState ()
end
end
While TS is not empty /* All paths found */
Print All path from ALLTS
end

/* Make a transition from EE and updates CS */
begin

select edge e from EE

add e to Visited Edges for CS

remove the predecessor from CS

add its successor states in CS

add CS and e in TS
end

/* Update EE after a change in CS */
UpdateEE()
begin
remove all edges from EE.
If (Visited Edges contains all outgoing edges of CS)
Return
For each state in CS
begin
If (state has outgoing edge not to AND node)
Add edge to EE
else
begin
If (incoming edges’ of AND node predecessor is in CS)
Add edge to EE
end
end
end

/* remove explored states from CS */
RemoveExploredState ()
begin
remove top state from TS
add top state of TS to CS
updateEE ()
end

/* makes a basis path from previous paths */
MakeBasisPath ()
begin
find path from CS to finial state from ALLTS
add the path to TS

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 17

add TS to ALLTS
print basispath from TS
end

/* in case of Loop, find state with unvisited transition */
FindStateWithUVtransition ()
begin
temp = last state in TS having unvisited edge
find last-but-one occurrence of CS in TS
add path from CS to temp in TS
CS = temp
UpdateEE ()
end

Test Case Generation

We define a basis path as follows: Let SAD = (S, E, N, G, 4, so, F') be a state-activity-
diagram. Let t; € T'S be the test-suite containing all the test cases. Let t; € T'S be a
test case for which the system transits through the following states:

58, Wodeo _y gg Loer . (gn)en _y G g g sequence of system states (SS) and
edges where SS; = {CS;, EE;},CSy = {so}, FF C CS,, and Vi > 0,¢; € EE;,g; € G
and CSi+1 = (C51 — P(el)) U 5(61)

In this definition, if all guard conditions g1, ¢go, ..., g, are set, then we get an
execution-path (EP) of the SUT (System Under Test). To generate the test cases,
we use these guard conditions of the transition edges. Test coverage criteria will be
covering all the basis paths in the SAD. It ensures that all the state-activities and
transition edges are visited at least once.

Complexity Analysis

In the following, we analyze the complexity of our test condition generation algorithm
(UTCQG). The UTCG is based upon depth-first-search with loop detection and man-
agement. Let a use case corresponding to a SAD involve n number of interacting
classes. The state model of each class has a statechart diagram. Let’s assume that in
a statechart diagram, there are

e s; number of states
e ¢; number of edges

Let us also assume that while making SAD we add e;; interaction edges for objects
of the classes ¢ and j. Hence the total number of nodes N = > s; and total number
ofedges E=>"e;+) e .

Now the number of basis paths in a graph depends on the number of linearly
independent paths from the start node to the final node. It is given by the cyclomatic
complexity of the graph [19]. The cyclomatic complexity of a planar graph can
be defined using McCabe’s cyclomatic complexity. But unfortunately SAD is not
necessarily a planar graph. Now we randomly generate some paths in the graph and
form a path-edge incident matrix with each path forming a row vector and each edge
a column-vector. Now a value at [i,j]=0 means that edge j is not there in the i*" path.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

18 . S. K. Swain et al.

ATM atm bank Bank
getCardinfo 1 1 | Boolean cardValid = true
getPIN Boolean PINcorrect = true
Verify Int numincorrect = 0
sessionNext Int maxNumlincorrect = 2
returnCard Verify PIN
<<signal>> reeneterPIN Verify Card
<<signal>> about <<signal>> done

Figure 7 — ATM-Bank class diagram

If we determine the rank of the matrix using the Gauss-elimination method, we can
get the number of linearly independent paths in the SAD.

Let the number of basis paths be k.

Now the test case generation exploration is being done on edges of the SAD.

e Max number of exploration of an edge=2*k. because each edge can be explored
twice if there is a loop in the path

e Hence the algorithm takes O(2 x k x E) time or O(E) time, where FE is total
number of edges present in SAD.

6 ILLUSTRATIVE EXAMPLE

In this section, we discuss one example of a login system of an ATM-Bank as an
example. Figure 1 shows an example of an ATM activity diagram. Figure 2 and
Figure 3 show the corresponding statechart diagrams of ATM and BANK. In an ATM-
Bank transaction, we will only be considering the part in which the ATM validates
a card with a given PIN (Personal Identification Number) and allows the user to
move on to the next session. Figure 7 shows the ATM-Bank Class diagram with the
corresponding methods. Figure 8 shows the generated SAD from the given ATM-Bank
statechart diagrams and the activity diagram. We also simulated our UTCG algorithm
to generate system state scenarios and object-method sequences.

Table 1 shows the result of simulation of execution path using UTCG algorithm.
The exact object-method sequence and the test scenarios are described in Table 2 for
the test conditions < cardValid=True, PINvalid =True>. Clearly, to generate test
cases from these test conditions, we partition the card and PIN numbers into valid
and invalid numbers.

We choose both PIN and card from the valid class and get a test casel< validCard,
validPINnumber >.

Corresponding to the other basis paths, the system state scenarios and method
sequence of another test case are listed in Table 3.

Test case 2<invalidcard, invalidPINnumber>

Similarly other test cases are:

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 19

el eOI
n,
AIM. idle S

e3

\4
(__ ATM.Cardentry) @
U GetCardinfo())]

e4 e32

n10 5 <
AIM. PN entry R

GetPIN(n7 C

€6

T

e24

n3

e/
ATM Verification) e31
] 1

e8
i e21 numincorPIN< | Y
&9 Y v N maxinoorNum?
N ep2 nis "
S e10N - ! PIN Valid? e23 N
[.Sesson Ne]SS ni3 @<

e28
»O nb

T

~ ni6

e29 n4

e25

|

el
ni2 @<
el2 €30

ATM. ReturnGard
)

€33
S10

Figure 8 — SAD of ATM-Bank login system

Test Case 3: <Invalidcard, validPINnumber>
Test Case 4: <ValidCardnumber, invalidPINnumber, validPINnumber>
Test Case 5: <ValidCardnumber, invalidPINnumber, invalidPINnumber >

Test Case 6: <ValidCardnumber, invalidPINnumber, invalidPINnumber, validPIN-
number >

Test Case 7: <ValidCardnumber, invalidPINnumber, invalidPINnumber, invalid PIN-
number >

7 EXPERIMENTAL STUDIES

In this section, we present a fault model. We have implemented a prototype tool in
Java. The SAD is exported into XML format using the Magic Draw [1] tool and then
the XML file is parsed to generate the SAD machine. Then, our algorithm (UTCG) is

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

20 - S. K. Swain et al.

CS; EE; €; gi CSi1 EFE; 1
sO el el true nl el,e2
nl el,e2 el,e2 true,true s1,n9 ed,el3

s1,n9 ed.el3 el3 true s1,s6 ed

s1,s6 e3 e3 true $2,86 e4
s2,56 ed ed true n10,s6 ed
nl10,s6 ed ed true $3,s6 eb
s3,s6 eb eb true n3,s6 eld e7,e34
n3,s6 elde7,e34 | eld,e7,e34 true s4,n6 el5,e8
s4,n6 el5,e8 elb true s4,s7 e8.,e16
s4,s7 e8,el6 el6 true s4,nl4 e8,e17,el18
s4,n14 e8,e17,el18 el7 card valid s4,s8 e8.,e19

= true
s4,s8 e8,el9 el9 true s4,s8 e8,e20,e21
s4,n8 e8,e20,e21 e8 true nll,n8 e9,e31,e29,
e20,e21
nll,n8 €9,e31,e29, e20,e21 true nll,s6,nl5 | e9,e31,e29,
e20,e21 el3,e22,e23
nl11,n9,n15 | e9,e31,e29, el3 true nll,s6,n15 | e9,e31,e29,
el3,e22,e23 e22,e23
nll,s6,n15 | e9,e31,e29, e9,e22 PINvalid n4,s6 el0
el3,e22,e23 = true

n4,s6 el0 el0 true $5,56 ell

$H,s6 ell ell true nl2,s6 el2

nl2,s6 el2 el2 true s10,s6 el0
$9,s6 e33 e33 true s10,s6 el0

Table 1 — Execution path Simulation of SAD

applied to generate test conditions. We have conducted several experiments using the
tool. We present and analyze the results.

7.1 Fault Model

The effectiveness of test cases can be evaluated using a fault injection technique called
MUTATION ANALYSIS [15, 11]. Mutation analysis is a process by which faults are
injected into the system to verify the efficiency of the test cases. In this testing, a set
of mutation rules is used to change a program, known as mutants. Mutation-based
analysis is a fault-based testing [27]. The faults are seeded and tested to detect faults
or to kill the mutants.

Every test strategy targets to detect certain categories of faults called its fault
model [10]. In order to seed faults into the code, we used eleven major types of
mutation operators. The following is the complete list of the mutation operators that
we used:

1. Change parameter: This operator [2] changes the parameter passed in an opera-
tion call. The valid value of parameter is replaced with an invalid value.

2. Wrong initial State: This operator [4] changes the initial state of an object before
it receives a message. The initial state is replaced by an invalid state, in which

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

10.

Test Case Generation Based on State and Activity Models - 21

System State Object-Method Sequence
ATM. Idle, Bank. Idle

ATM, CardEntry, Bank.Idle ATM.getCardinfo()
ATM, PIN entry, Bank.Idle ATM.getPIN()

ATM. Verification, Bank.Idle

ATM.Verification, Bank.Verifying Card Bank.verifyCard()
ATM.Verification, Bank. VerifyingPIN Bank.verifyPIN()
ATM. Verification,Bank.Idle

ATM.sessionNext, Bank.Idle ATM.nextsession()
ATM.returningCard, Bank.Idle ATM.returnCard()

Table 2 — System state Scenario and Object Method Sequence of Test Case 1

SystemState Object-Method Sequence
ATM Idle, Bank Idle

ATM CardEntry, Bank Idle ATMgetCardInfo()

ATM PIN entry, Bank Idle ATMgetPIN()

ATM Verification, Bank Idle
ATM Verification, Bank Verifying Card BankverifyCard()
ATM Verification, Bank Idle
ATMreturningcard, Bank Idle ATMreturncard()

Table 3 — System state Scenario and Object Method Sequence of Test Case 2

the object should not receive a particular message.

. Remove function call: This operator [15] removes each function call in a method.

. Missing condition: This operator removes the condition of a conditional message

in the code.

. Alter condition operator: This operator changes the condition in the code

corresponding to a path condition in a collaboration.

. Violated guard condition: This operator negates the guard condition of a transi-

tion.

. Missing called function: This operator removes the functions that are called by

an object.

. Conflicting state: This operator sets the states of two objects of different classes

in states that are conflicting with each other.

. Missing interaction: A scenario is comprised of a strict sequence of interactions.

A fault may occur if an interaction in the design is missing in the implemented
version.

Loop fault: This forces the loop control variable to be executed in incorrect
number of times. This operator executes the loop exactly n+1 times, n-1 times,
0 times and 1 time.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

22 S. K. Swain et al.

11. Synchronization fault: This fault occurs when some activity begins execution
before completion of execution of group of all preceded activities.

Results

In order to validate the effectiveness of our proposed approach, three software program
modules were developed by students of KIIT University as their class room assignments
using the Java language. Then we generated mutant programs by seeding faults using
the above mutation operators. This strategy is well established for assessing and
comparing test techniques and has shown to yield useful results [11]. The number
of faults seeded was based on the application design. In our experiments we have
considered four different types of applications namely ATM-Banking System (ABS),
Library Information System (LIS) and Cell Phone System (CPS). All these systems
are designed in UML diagrams. The designs were also implemented in Java.

We have seeded three programs with faults generated using mutation operators.
The number of faults seeded is presented in Table 4. In Table 4, we also present the
number of faults detected using our SATEC approach, the transition coverage and
activity path coverage. As can be observed from the table, our approach (SATEC)
outperforms both transition coverage and activity path coverage for all of the case
studies. This is because many of the faults that are associated with system state
changes due to method interaction across multiple classes are subtle and not specifically
detected by transition coverage and activity path coverage. Faults like missing called
activity /function, wrong calling state, conflicting state, interaction fault etc. are
detected using our technique. Figure 9 shows the graphical analysis of detected faults
against coverage criteria. Table 5 represents the comparative analysis of our test cases
generation with black box [20], white-box [18] and gray-box [25] techniques for ATM
login system. Here N represents ‘not shown or described”.

Faults Detected / Mutants Killed
Software | Faults | Transition | Activity Path | State-Activity
Module | Seeded | Coverage Coverage Coverage
ABS 49 41 45 49
LIS 70 64 65 69
CPS 72 65 67 71

Table 4 — Faults detected in different coverage criteria

Technique | Works Coverage Test Method
on Scenario | Sequence
Black Input Usage N N
Box Output
White Code Transition N N
Box
Gray Box | Activity | Activity 9 9
Design
SATEC SAD State- 7 7
activity

Table 5 — Comparative analysis

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 23

State-
Letivity

Activity
ﬁ OcCP=
Patt
—] mLI=
Tranzition w O ABS

O W 30 3 40 = &l 70 =

Coverages

Faults
Seeded

Faults DetedtedMutants Killed

Figure 9 — Graphical analysis of detected faults against coverage criteria

8 COMPARISON WITH RELATED WORK

No work investigated that makes use of both statechart and activity diagrams to
capture the state transition behavior as well as control flow of objects has so far been
reported to the best of our knowledge. As mentioned earlier, most of the work on
testing based on statechart diagrams is limited to unit testing and is not applicable to
integration and system testing. Existing methods [4, 22, 7, 28| of generating test cases
from statechart diagrams deal with only a single object and achieve transition and
state coverage for a single class. On the other hand, test case generation from activity
diagrams [16, 25, 26] fails to capture the state information of the objects within the
system.

In contrast with the above discussed approaches [16, 25, 26], we generate test
conditions and scenarios automatically from combined statechart and activity diagrams
i.e. SAD. State-based faults are difficult to be detected from the software code.
Statechart diagram and state changes are difficult to implement in code. Activity
diagram presents concepts at a higher abstraction level of the system. Activity
diagrams are also used for gray-box testing and checking consistency between code
and design nearer to the code. The presence of loop and concurrent activities in the
activity diagram results in path explosion

Among all UML models, statechart diagrams have perhaps received the most
attention from researchers for generation of test cases [8, 10, 14, 9, 22, 28]. Most
of the reported work [22, 28] addresses class-level testing. That work considers
statecharts as modeling individual objects, without considering the effect that they
might have on the state of other objects due to method invocation occurring during
object interactions. In contrast to their work [22, 28|, our approach is meant for
cluster/integration level testing where object interactions through activities as well as
object state behaviors are tested. In comparison to work reported in [10, 9], we use a
depth-first search traversal starting from the start state of the SAD diagram which
can help to achieve state-activity paths coverage. SAD is not only able to generate
the object-method scenario for a particular test case but also successfully generates
the expected system behavior by generating the object-method sequences of object
states during the execution of a use case.

In contrast with the work in [16, 8, 14], the faults such as state initialization faults,

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

24 . S. K. Swain et al.

object’s state-activity dependency faults and operational faults in one use case can be
covered by SAD. But in [16, 8, 14], they have not discussed or given attention towards
these faults. if an object’s state initialization fault occurs, then it is imperative to
assume faults in its operations and therefore there is no need to apply test cases
corresponding to the operation. A fault may occur if an interaction in the design is
missing in the implemented version.

In comparison to [8, 14|, our approach is to achieve synchronization of activities
over multiple interacting objects within software. Some new kinds of nodes (AND-OR)
and wait activities are introduced apart from the state-activity nodes to support the
concept. It achieves state-activity path coverage and object-method sequence coverage.

9 CONCLUSION

We have presented a technique to generate test cases automatically from activity
diagram of a particular use case and statechart diagram of participating object in a
use case. Our approach is meant for cluster level testing where object interactions
are tested by considering state-transitions of objects and the corresponding activities
taking place in a use case. Our algorithm generates test conditions, scenarios and
object-method sequences from SAD using state-activity coverage. Our approach is
used to exercise activity synchronization in the context of multiple state combinations
in order to detect synchronization of state as well as activity faults within a use case
of the system. It also achieves object-method sequence coverage and gives stronger
level of testing than simple transition or state or activity path coverage. We have
implemented a prototype tool based on our approach and have used it satisfactorily
on three example problems.

In the present work, we have assumed that the test data for each test case would
be selected manually by the tester. Selecting test data for a large number of test cases
would be tedious and time consuming. So we want to take up automatic generation of
test data from test specifications as a future work. We are also now investigating how
other UML models can be used to achieve higher test coverage. Also, we are planning
to employ an evolutionary algorithm for optimizing the generated set of test cases
without sacrificing the test effectiveness.

References

[1] Magic Draw UML. Available from: http://www.magicdraw.com/.

[2] A. Abdurazik, J. Offutt, and A. Baldini. A controlled experimental evaluation
of test cases generated from UML diagrams. Technical report, George Mason
University, Department of Information and Software Engineering, 2004.

[3] A. Andrews, R. France, S. Ghosh, and G. Craig. Test adequacy criteria for
UML design model. Software Test Verification and Reliability, 13:97-127, 2003.

[4] Shaukat Ali, Lionel C. Briand, Muhammad Jaffar-ur Rehman, Hajra Asghar,
Muhammad Zohaib Z. Igbal, and Aamer Nadeem. A state-based approach to
integration testing based on UML models. Inf. Softw. Technol., 49(11-12):1087—
1106, 2007.

[5] Debasish Kundu and Debasis Samanta. A novel approach to generate test cases
from UML activity diagrams. Journal of Object Technology, 8(3):65-83, 2009.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.magicdraw.com/
http://www.jot.fm/contents/issue_2010_09/article1.html

16]
7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Test Case Generation Based on State and Activity Models - 25

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, Massachusetts, 1999.

Stefania Gnesi, Diego Latella, and Mieke Massink. Formal test-case genera-
tion for UML statecharts. In ICECCS ’04: Proceedings of the Ninth IEEE
International Conference on Engineering Complex Computer Systems Navigat-
ing Complexity in the e-Engineering Age, pages 75—84, Washington, DC, USA,
2004. IEEE Computer Society.

J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-based integration testing.
In ISSTA °00: Proceedings of the 2000 ACM SIGSOFT international sympo-
sium on Software testing and analysis, pages 6070, New York, NY, USA, 2000.
ACM.

J. Offutt and A. Abdurazik. Generating tests from UML specifications. In
Proceedings of the 2nd International Conference on UML, Lecture Notes in
Computer Science, volume 1723, pages 416— 429, Fort Collins, TX, January
2001. Springer-Verlag GmbH.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. et al. Generating test data
from state-based specifications. Software Test Verification and Reliability, 13:25—
53, 2003.

J.H. Andrews, L.C. Briand , and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the IEEE 27th International
Coference on Software Engineering (ICSE), pages 15-21, 2005.

Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, and Mark Utting. Boundary
coverage criteria for test generation from formal models. In ISSRE ’04: Proceed-
ings of the 15th International Symposium on Software Reliability Engineering,
pages 139-150, Washington, DC, USA, 2004. IEEE Computer Society.

L. Briand and Y. Labiche. A UML-based approach to system testing. Journal of
software and system modelling, 1(1):194-208, 2002.

L.C. Briand, Y. Labiche, and J. Cui. Automated support for deriving test
requirements from UML statecharts. Journal of Software and System Modelling,
4(4):399-423, 2005.

M.E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Transactions on Software Engineering,
27(3):228-247, 2002.

Chen Mingsong, Qiu Xiaokang, and Li Xuandong. Automatic test case gener-
ation for UML activity diagrams. In AST ’06: Proceedings of the 2006 inter-

national workshop on Automation of software test, pages 2-8, New York, NY,
USA, 2006. ACM.

T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, 31(6):676-686, 1988.

P.C Jorgensen. Software Testing: a Craftsman’s approach. CRC PRESS, 2nd
edition, 2002.

R. Mall. Fundamentals of Software Engineering. Prentice Hall, Springer-Verlag
GmbH, 2nd edition, 2004.

Robert V. Binder. Testing Object-oriented Systems: Models, Patterns, And
Tools. Addison-Wesley Object Technology Series, 1999.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

26

[21]
[22]

[23]

[24]

[25]

[26]

[27]

28]

S. K. Swain et al.

R.V. Binder . Testing object-oriented software: a survey. Software Testing
Verification and Reliability, 6(3/4):125-252, 2006.

S. Kansomkeat and W. Rivepiboon. Automated-generating test case using UML
statechart diagrams. In In Proceedings of SAICSIT, ACM, pages 296-300, 2003.

M. Sarma, D. Kundu, and R. Mall. Automatic test case generation from se-
quence diagram. In Proceedings of the 15th International conference on Ad-
vanced Computing and Communication, pages 60-67, 2007.

Monalisa Sarma and Rajib Mall. Automatic generation of test specifications
for coverage of system state transitions. Information € Software Technology,
51(2):418-432, 2009.

W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guo-
liang. Generating test cases from UML activity diagrams based on gray-box
method. In Proceedings of the 11th Asia-Pacific Software Engineering Confer-
ence (APSEC04), pages 284 — 291, 2004.

Xiaoqing BAI, C. Peng Lam, and Huaizhong LI. An approach to generate the
thin-threads from the UML diagrams. In Proceedings of the 28th Annual In-
ternational Computer Software and Applications Conference (COMPSAC’04),
2004.

Y. Ma, A.J. Offutt, and Y. R. Kwon. Mujava: An automated class mutation
system. Journal of Software, Verification and Reliability, 15(2):97 — 133, 2005.

Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha. Test cases generation from
UML state diagrams. Software Testing Verification and Reliability, 146(4):187—
192, 1999.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article1.html

Test Case Generation Based on State and Activity Models - 27

About the authors

Santosh Kumar Swain is presently working as teaching faculty
in School of Computer Engineering, KIIT University, Bhubaneswar,
Orissa, India. He has acquired his M.Tech degree from Utkal Uni-
versity, Bhubaneswar. He has contributed more than six papers
to Journals and Proceedings. He has 17 years of teaching expe-
rience. He has written one book on “Fundamentals of Computer
and Programming in C”. His special fields of interest includes
Software Engineering, Object Oriented Systems, Sensor Network
and Compiler Design etc. Contact him at swainsantosh@yahoo.co.in.

Durga Prasad Mohapatra acquired his M.Tech at National
Institute of Technology, Rourkela, India. He has received his Ph.
D from Indian Institute of Technology, Kharagpur, India. He is
currently working as an associate professor at National Institute of
Technology, Rourkela. His special fields of interest include Software
Engineering, Discrete Mathematical Structure, Program Slicing
and Distributed Computing. He is a member of IEEE. He can be
reached at durga@nitrkl.ac.in.

Rajib Mall Ph.D. is presently working as Professor, Computer
Science & Engineering and Head, Administrative Computer Ser-
vice Support Centre in IIT, Kharagpur, West Bengal, India. His
research areas are Distributed and Parallel Processing and Soft-
ware Engineering. He is a Senior Member of IEEE. Having an
academic experience of a decade and half in IIT, Kharagpur, he
has guided several doctoral dissertations and published over a hun-
dred research articles. He has also written one book on “Software
Engineering” and one book on “Real Time Systems”. He can be
reached at rajib@cse.iitkgp.ernet.in.

Journal of Object Technology, vol. 9, no. 5, 2010

mailto:swainsantosh@yahoo.co.in.
mailto:durga@nitrkl.ac.in.
mailto:rajib@cse.iitkgp.ernet.in.
http://www.jot.fm/contents/issue_2010_09/article1.html

	INTRODUCTION
	RELATED WORK
	BASIC CONCEPTS
	Activity Diagrams
	Statechart Diagrams
	Overview of a Few Basic Testing Concepts

	SAD: STATE ACTIVITY DIAGRAMS
	Formal Definitions of SAD
	Test Coverage
	State-activity Coverage:
	Transition Coverage:
	Activity Path Coverage:

	OUR PROPOSED APPROACH (SATEC)
	ILLUSTRATIVE EXAMPLE
	EXPERIMENTAL STUDIES
	Fault Model

	COMPARISON WITH RELATED WORK
	CONCLUSION
	Bibliography
	About the authors

