
Journal of Object Technology
Published by ETH Zurich, Chair of Software Engineering, © JOT 2010

Online at http://www.jot.fm.

REquirements, Aspects and Software
Quality: the REASQ model

Isi Castilloa Francisca Losaviob Alfredo Matteob

Jorgen Boeghc

a. Universidad Nacional Experimental Sur del Lago, Venezuela

b. Universidad Central de Venezuela

c. Terma A/S, Vasekær 12, DK-2730 Herlev, Denmark

Abstract Object-oriented analysis and design have been more concerned
with system functionality, neglecting non-functional aspects; the result
is code which is tangled and difficult to maintain, contradicting main
principles of object orientation. Aspect Oriented Software Development
(AOSD) proposes the early specification of non-functional requirements.
However, a standard and homogenous vision of the AOSD terminology
is still missing. The goal of this work is to integrate AOSD concepts,
classic requirements engineering notions, and the new standard ISO/IEC
25030 on software quality requirements.The main result of this study is the
REASQ (REquirements, Aspects and Software Quality) conceptual model,
expressed in UML. All the modelling concepts are formalized into three
related ontologies, representing the ambits of aspect-orientation, software
quality and requirements engineering. The ontologies can be used as an
umbrella to specify quality requirements in aspect-oriented engineering
processes.

Keywords Aspects, Concerns, Software quality, Requirements engineering,
ISO/IEC 25030, ISO/IEC 25010, Ontology.

1 Introduction

The importance of following a mature development process is relevant to software
engineering best practices. The software development process has evolved towards
process improvement, by guaranteeing to a certain extent the quality of the resulting
software product. However, how to describe and guarantee (have a precise rationale)
a quality software product according to this mature process is still unclear. In usual
practice, a precise rationale for software development is still missing, and often reduced
to just fill up a framework or template. Existing accepted software development
methods are driven more by the specification of the system functionality, rather than

Isi Castillo, Francisca Losavio, Alfredo Matteo, Jorgen Boegh. REquirements, Aspects and Software
Quality: the REASQ model. In Journal of Object Technology, vol. 9, no. 4, 2010, pages 69–91.
Available at http://www.jot.fm/contents/issue_2010_07/article4.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm/contents/issue_2010_07/article4.html
http://www.jot.fm/contents/issue_2010_07/article4.html


70 · I. Castillo et al.

considering non-functional aspects, related to the behavior of the system functionality
or context. These are considered in general at later stages of development, contributing
to the scattering and tangling of the final code and contradicting the maintainability
property, claimed by the object-oriented software development paradigm.

The importance of a clear understanding and correct specification of requirements
is increased by the complexity of actual software systems. In particular, if they have
to respond to concerns such as interoperability, adaptability, availability and security,
which go far beyond the main system functionality or service offered by a software
component, because they can affect multiple components [6]. Hence, these concerns
should be considered very early, at the same time as the main functionality of the
system; at present, the requirements engineering discipline is trying to establish a
precise rationale to consider these kinds of requirements affecting multiple components.
For example, the user identification or login functionality in a commercial portal
must be compliant with the organization’s access control policy, implying a kind of
security issue. However, the user credit card acceptance functionality implies also the
intervention of a security mechanism, and both security mechanisms have different
implementations. Hence a security concern is entangled with two main functionalities,
making it difficult to understand, maintain and reuse the code produced according to
this design strategy; security is known as a crosscutting concern [1].

The early aspects research trend considers Aspect Oriented Requirements Engi-
neering (AORE) and Aspect Oriented Architectural Design (AOAD) [12, 14] to study
the early identification and handling of crosscutting concerns to improve the quality of
final code [5, 6, 12, 14, 33]. On the other hand, in the literature the concepts of aspect
and concern are frequently considered synonyms. In AORE, the terms requirement and
concern are used indistinctly and the crosscutting concerns are associated indistinctly
with the software product high level quality properties or quality requirements, such
as availability, reliability and low level quality attributes as response time, in the sense
of ISO/IEC 9126-1 [23]. Brito and Moreira [5, 6] propose and refine a generic model
at requirements engineering stage, for the early identification, separation, integration
and composition of crosscutting concerns as aspects. In particular, in [5] they extend
a work already presented by proposing a novel process for composition that introduces
the new notions of match point, dominant concern and LOTOS operators to define
composition rules. Additionally, they recommend the use of existing catalogues (e.g.
the NFR framework) to alleviate both the identification and the specification tasks. In
[6] they focus on the integration task, discussing how to compose crosscutting concerns
with other concerns. To accomplish this, they introduce the notion of match point
(an abstraction of the joint point concept [27]), to compose concerns they propose to
first identify match points and then, for each one, define a composition rule. They
define concerns as both functional and non-functional requirements and a crosscutting
concern as candidate aspect because it may be mapped later into an aspect. Moreover,
they indicate that some functional concerns can also be crosscutting concerns, and
therefore better handled as candidate aspects. Rosenhainer [33] defines crosscutting re-
quirements as the requirements intercrossing with other requirements. Two techniques
(identification through inspection and identification supported by information retrieval
techniques) are proposed for early identification and documentation of crosscutting
requirements from the general requirement specification, according to an aspect-mining
point of view to improve traceability between requirements, crosscutting concerns and
artifacts of the development process.

The works discussed above point out the lack of homogeneity in the terminology and

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 71

that standards are not taken into account, making difficult in general the understanding
of the AOSD (Aspect-Oriented Software Development) paradigm. In this sense, domain
modeling with a focus on ontology is proposed towards a common language for reuse
[13]. An ontology provides a common vocabulary for specifying requirements for a
family of applications in the domain. Another research issue is the identification
and specification of requirements and their quality properties [3, 7, 29, 35, 39], to
establish the goals to be attained by a quality software product. In Chirinos et al. [8],
a conceptual model is proposed to identify quality requirements for software products
(RECLAMO), based on the quality views of ISO/IEC 9126-1 [23], presented in Figure 1.
This model aims to facilitate the tasks of the requirements engineer. It is used as a
tool for quality requirements specification in software architecture design, to establish
selection criteria for different architectural solutions. Recently, as part of new ISO/IEC
25030 standard for requirements SQuaRE [7, 21], which will be discussed more deeply
in section 3, provides also a classification of requirements sharing common points with
RECLAMO.

Figure 1 – RECLAMO [8]

The main goal of this work is to establish a unique conceptual model to clarify the
AOSD emergent terminology: aspect, composition, (functional, non-functional, cross-
cutting) concern, (functional, non-functional) quality or (inherent, assigned) property
requirements for the software product. This unified model, called REASQ (RE-
quirements, Aspects and Software Quality), will consider the new ISO/IEC SQuaRE
standard [21], integrating ISO/IEC 25030 and ISO/IEC 9126-1 [23] with a require-
ments classification model proposed in [8]. All the concepts used in the model will
be formalized by three related ontologies written in Protégé [18] to facilitate reuse,
representing the ambits of aspect-orientation, software quality and requirements engi-
neering respectively; the REASQ model will guide the integration of these ontologies,
which will be used as an umbrella to define an aspect-oriented quality requirements
engineering process.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


72 · I. Castillo et al.

This article is structured as follows: Section 2 describes briefly the SQuaRE
standards family to specify the software product quality model, in particular the
standards ISO/IEC 25030 for software requirements identification, ISO/IEC 25010,
and ISO/IEC 9126-1 are discussed. Section 3 presents REASQ as a main result, the
conceptual model for the AOSD domain, with the main terms and associations and
illustrates a brief instantiation of the REASQ model to show its applicability to a case
study. Section 4 uses the REASQ model to define three related ontologies written in
Protégé to formalize further our results. Section 5 is dedicated to a brief survey of
related works about conceptual modeling in AOSD and the use of quality standards
for requirements specification. Finally the conclusion and future perspectives are
presented.

2 The SQuaRE ISO/IEC Standard

SQuaRE consists of a family of standards under the general title Software Prod-
uct Quality Requirements and Evaluation (Figure 2 illustrates the organization of
these families or divisions) [21, 22]. The divisions within the SQuaRE model are:
ISO/IEC 2500n - Quality Management Division, ISO/IEC 2501n - Quality Model
Division, ISO/IEC 2502n - Quality Measurement Division, ISO/IEC 2503n - Quality
Requirements Division and ISO/IEC 2504n - Quality Evaluation Division. In par-
ticular, ISO/IEC 25000-Guide to SQuaRE represents the umbrella document of the
SQuaRE series; it provides a general overview and guides to use the SQuaRE series.
This document contains the SQuaRE architecture, terminology, intended users and
associated parts of the series. ISO/IEC 25000 presents the whole SQuaRE series as
a collection of quality engineering instruments. We are interested in the ISO/IEC
25030 (quality requirements), and the ISO/IEC 25010 (quality model, formerly called
ISO/IEC 9126-1), which will be presented in what follows.

Figure 2 – Organization of the SQuaRE series of standards [21]

2.1 ISO/IEC 9126-1 and ISO/IEC 25010

Software products are constructed to be compliant with specific needs, required by its
user. Their quality is determined in the measure that these needs are accomplished.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 73

Software quality specification must be detailed and precise. The quality model is
a way to formalize this specification [4]. In the SQuaRE family of standards, the
ISO/IEC 25010 - Quality Model [22] will be an update of the current standard ISO/IEC
9126-1, with the same purpose of defining a quality model and providing a practical
guidance on its use. According to this standard, a quality model is defined as a
set of quality characteristics and their relations, providing a framework to specify
quality requirements and to evaluate the quality of a software product, offering as
well a common understanding and terminology of software quality. The six high
level characteristics are refined into sub-characteristics, in a multiple levels hierarchy;
the last abstraction level is constituted by the attributes, which are the measurable
elements, to which metrics can be assigned. A quality characteristic of a software
product is a set of properties describing and measuring this quality [23].

ISO/IEC 25010 is a revision of ISO/IEC 9126-1 [23], with minor changes. According
to the draft version [22], it basically maintains the same definitions and structure of
ISO/IEC (2001), however it offers eight characteristics: the same six characteristics
of ISO/IEC (2001), plus interoperability and security, which were eliminated from
the functionality sub-characteristics, for a total of eight high level characteristics.
This choice responds to the quality requirements specification of current software
applications, for example web services applications, where interoperability and security
are architectural main concerns. This work will consider ISO/IEC 9126-1 because is
the officially adopted standard.

The product quality is actually defined by three quality models: external, internal
(see Figure 3) and in use quality model (see Figure 4). Internal quality refers to
the static properties on the structure (such as the number of lines of code, modular
complexity, number of faults found in a sequence or activity diagram) of the software
product (conformed by all the intermediate products or artifacts) produced during
the development process. It provides a “white box” view of the product. External
quality is referred to software perspective on the computer system and it also refers to
evaluate the software execution in a testing environment, on the computer hardware
and applying an operating system (i.e. the measure of the number of faults detected
during a test is related to the faults present in the program). It provides a “black
box” view of product [23]. Finally the quality in use is perceived by the end users in
their context, during the execution of the final software product. Internal quality has
impact on external quality and this one on the quality in use. In this work, only the
internal and external quality views are considered, since we are concerned about the
early stages of the software development process.

2.2 ISO/IEC 25030

According to the recently adopted SQuaRE standard on quality requirements [21],
the software system is usually part of a larger and more complex system; software
requirements and system requirements are closely related and software requirements
cannot be considered in isolation. In consequence it is important to consider the
software quality requirements early in life cycle, as an important part of the specification
of the software requirements. This standard focuses software quality requirements
under a system perspective; they are categorized according to the quality model in the
ISO/IEC 25010 standard (formally the ISO/IEC 9126-1 quality model standard). The
quality model is hierarchically organized into characteristics and sub-characteristics,
until the attributes, which are the measurable elements. The attributes specify the
software quality requirements in terms of measures and target values. The standard

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


74 · I. Castillo et al.

Figure 3 – External and Internal Quality Model ISO/IEC 9126-1 [23]

Figure 4 – In Use Quality Model [23]

provides recommendations and guidance to specify these requirements; it should help
to ensure that they are in accordance with the stakeholders needs, stated clearly
and precisely, correct, complete, consistent, verifiable and measurable. The ISO/IEC
25030 - Quality Requirements [21] standard helps specifying quality requirements
either during software product quality requirements elicitation and analysis, or as an
input for an evaluation process, and is a useful complement to ISO/IEC 9126-1. In
particular, it provides a guide to identify software quality requirements, to validate
the completeness of requirements specification and identify quality assurance and
acceptance criteria for a software product. The system requirements are a precise
formulation of stakeholders requirements, these requirements are considered as the
technical view of requirements; system requirements are verifiable and state which
characteristic the system has to possess in order to satisfy the stakeholders requirements.
System requirements can include requirements for software, computer hardware, data,
mechanical system, human business organization, etc., and may come from a variety
of stakeholders including end users, organizations, and official bodies. ISO/IEC 25030
mainly focuses on software requirements (see Figure 5).

According to the categorization proposed in Figure 5, software requirements ad-
dress either the software product or the software development process. Software
product requirements include functional and quality requirements (inherent property
requirements) and managerial requirements (assigned property requirements). Func-
tional requirements include the application domain specific requirements as well as

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 75

Figure 5 – System requirements categorization [21]

the user functional requirements; they require fulfilling quality goals, which are also a
kind of quality requirements. Quality requirements may also imply architectural and
structural requirements. Assigned property requirements represent requirements that
can be changed without changing the software, including for example requirements
for price, delivery date, product future and product supplier, so these are therefore
not considered to be a quality characteristic of the software. According to ISO/IEC
25030, functional requirements determine what the software is able to do and quality
requirements determine how well the software performs. In other words, quality
requirements show the degree to which the software is able to provide and maintain
its specified services. The software quality requirements have three different views (see
section 2.1): quality in use, external quality and internal quality requirements.

In what follows, the conceptual model relating three worlds AOSD, Requirements
Engineering and ISO/IEC Quality Standards is presented. It considers the AOSD
terminology, the ISO/IEC 9126-1 (the official version, since ISO/IEC 25010 is still
under discussion) for the quality properties specification, and integrates ISO/IEC
25030 with RECLAMO, for the software requirements categorization.

3 REASQ: Requirements, Aspects and Software Quality. A Con-
ceptual Model

The REASQ conceptual model, expressed in UML [24], facilitates reasoning on the
main notions inherent to an aspect-oriented quality requirements engineering discipline.
In the model the software requirement, concern and quality characteristic elements
are the main notions used to interrelate the terminology of three ambits: the require-
ments engineering discipline, the AOSD paradigm and the software product quality

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


76 · I. Castillo et al.

specification [21, 23, 22, 35, 8]). They are denoted by REQUIREMENTS, ASPECTS
and SOFTWARE QUALITY respectively in Figure 6.

3.1 Terminology

Basic concepts and terms used in the AOSD domain are extensions of the Aspect-
Oriented Programming (AOP) [25, 26, 27] terminology, where they were used at first.
In what follows the main terms are presented.

A concern is a property or interest point of a system [14, 17]. IEEE (2000) defines
concerns as those interests related to the system development and operation, or
any aspect that is critical and important for the stakeholder or participant in the
software project. Concerns include system constraints, such as reliability, distribution,
efficiency. In ISO/IEC 9126-1 [23] and ISO/IEC 25010 [22] a concern is a system
requirement, i.e. a consideration that must be taken into account to satisfy a system
goal. The concern notion appears in general to be related to a competence, an interest
point or field. Kiczales et al. [25] defines crosscutting concerns are concerns that
are found scattered in multiple modules or entangled in a unique module, such as
data persistency, access control, transaction security, error handling. In [32], they
are defined as those properties disseminated through the whole application code and
that cannot be encapsulated within a functional unit or module, since they affect and
crosscut the whole system. An aspect is defined in Filman et al. [14] as a modular
unit designed to implement a concern, from an AOP point of view. They can contain
code with the usual interface instructions: where, when, how to invoke it and what
must be executed. In the ontology presented by Van den Berg et al. [37], an aspect is
defined as a unit modularizing an otherwise crosscutting concern. In aspects languages,
aspects are common modular implementation units defined by declarations of aspect
type, similar to the class declaration in OO languages. Kiczales et al. [25] defines
a program or code aspect as a modular unit appearing in other program’s modular
units; it is similar to a class. He also defines an aspect as the structure encapsulating
a crosscutting concern [26, 27]. The scattering and tangling of code are troubles that
the AOP and AOSD paradigm are trying to solve. AOSD arises from AOP and the
need to identify and separate very clearly the crosscutting concerns, to produce a less
entangled and hence more maintainable code, considering the whole software lifecycle
[1]. The early separation of the crosscutting concerns and their composition into
aspects are the main research trends in the so called early aspects discipline. In this
paper an aspect is considered as a crosscutting concern, according to the definition
present in the ontology of aspect orientation [37]. Separation of concerns (SOC) is
an old term used first by Dijsktra [10] to enhance maintainability, as a principle to
encapsulate characteristics in separate entities to locate possible sensitive points to
changes and treat them separately in time. SOC has been defined as the ability to
identify, encapsulate and manipulate software parts relevant to a particular purpose
(i.e. concerns). SOC aims to reduce software complexity and improve understandability
and traceability through a development process, minimizing the impact of changes
during software evolution [19]. AOSD focuses on providing techniques to handle SOC.
AORE [14] includes techniques to identify and model crosscutting concerns, introducing
new mechanisms and abstractions to modularize and compose these concerns (i.e.
identify match points, identify conflicts, identify the dominant concern, and define
the composition rules). In Filman et al. [14], composition is defined abstractly as
the idea of bringing together separately created software elements (i.e. an aspect
involved with different core functionality modules). Non-functional requirements are

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 77

considered system constraints, such as usability and reliability, related with the quality
of a service, i.e. the concern notion given by IEEE [20].

In the classic Requirements Engineering discipline, requirements are identified early
in the lifecycle and are specifications of what the system shall do and how the system
will be designed and implemented [35]. In Wiegers [39] they are descriptions of the
system behavior and its properties. They can also be constraints on the development
process. Wiegers [39] considers that software requirements include three distinct levels:
business rules, user requirements and functional requirements. In addition, every
system has an assortment of non-functional requirements. On the other hand, in
Rosenhainer [33] a requirement is considered a special kind of concern. In general,
a requirement specification is a textual description of the requirement expressed
as a simple statement, representing exactly a concern, avoiding the mentioning of
intercrossing with other requirements. However, it is generally accepted that some of
these requirements appear or affect others and also the artifacts produced during the
development process [14]. Generally, only two main groups of software requirements are
considered: functional and non-functional requirements [35]. Functional requirements
specify the software product functionality that must be implemented to satisfy the user
tasks. Moreover they must satisfy the business goals and describe what the developer
must implement. Non-functional requirements specify in general the constraints and/or
rules imposed on the functionality of the product by the organization environment
where it has to be executed.

3.2 The REASQ Model in details

It is assumed in general that requirements are descriptions of the system main be-
havior, of the properties or attributes of the system and/or of the constraints on the
development process and/or the execution environment [35]. Software requirements
are specified and derived from the system requirements, in the sense of ISO/IEC
25030. However we consider that the Business Rules, imposed by the organization
requiring the software product, can impose some of the system requirements. Business
rules can also come from an exterior organization that does not develop the software,
like for example a governmental institution. They can be related to using existing
components, with the life cycle, with the development methods and tools used (CMMI
for example), with the operational environment (other platforms) or with interfaces in
order to make the software more usable for other applications. Business rules are not
themselves software requirements because they exist outside the boundaries of any
specific software system, but they are inside the system boundaries. They often restrict
who can perform certain use cases or they dictate that the software system must
contain functionality to comply with the company policy. Sometimes business rules are
the origin of specific quality goals that are implemented as a mechanism or component,
in addition to the main user functionality. The softgoal model of Lamsweerde [28],
the Non-Functional Framework (NFR) of Chung et al. [9], or the recent approaches
of Brito and Moreira [5, 6], can be used to specify early this implicit functionality.
Therefore, the origin of certain software requirements can be traced back to a particular
business rule [39]. According to general agreement [35, 39, 8], in the literature we
found that software requirements are classified into functional and non-functional
requirements; in ISO/IEC 25030 non-functional requirements correspond directly to
the quality requirements (see Figure 5). So in the model we have the inheritance
relation to express that functional and quality requirements are a specialization of the
inherent property requirements (see Figure 6). Functional requirements capture the

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


78 · I. Castillo et al.

system behavior and can be expressed as services or components that must also fulfill
precise quality goals. Quality requirements specify the conditions that the system
must satisfy to constrain, condition or control the execution of the system components.

According to ISO/IEC 25030, a quality requirement is associated to a quality
characteristic and it is defined by a quality model (ISO/IEC 25010), which is used
to characterize the application domain. Quality requirements according to ISO/IEC
25030 are categorized by software quality in use, external and internal requirements
(expressed by inheritance relations). This specialization represents the software quality
view of requirements. In Figure 6 we have left the tag “ISO/IEC 25010 Quality Model”
to maintain the new SQuaRE family standards, but must be followed the guidance
proposed by ISO/IEC 9126-1. Business rules impose some of the software requirements
and originate implicit functionality. An implicit functionality can be considered as a
functional requirement not directly expressed by the user. In ([8]), it is focused as a
component introduced to respond to a specific quality requirement or to a business rule,
in the same sense as the operationalization feature in the NFR framework (Chung et al.,
2000). Moreover, when quality requirements are refined, they are sometimes expressed
as functional requirements (implicit functionality). On this basis, quality requirements
are specialized into global and specific quality requirements (expressed by inheritance
relation in the model), showing the requirements view. This approach can be traced
back to the early works of Dromey [11]. A global quality requirement is considered
ascribed to the overall system configuration, such as performance, reliability, portability
and interoperability, meaning that they must be considered by every component in
the configuration (see Figure 6). Global quality requirements however, are often
implemented as architectural styles, or by process mean (review, testing, etc.). They
are in particular related to the system overall architectural style or context, like for
example a SOA (Service Oriented Architecture) and the network environment. A
global quality requirement may only be relevant for a subset of the software, a set of
functions or subsystem. On the other hand, a specific quality requirement such as
security or accuracy can be satisfied by adding individual components, as an implicit
functionality, implying a mechanism to “operationalize” the requirement. They can be
proposed as “candidate aspects”, since they are like to crosscut functionalities.

The establishment of this quality requirements taxonomy is important to re-
duce complexity in the overall requirements specification of the application. Quality
characteristics are associated to inherent property requirement, for example the
“interoperability” quality characteristic is associated to the “communication among
heterogeneous platforms is needed” quality requirement. With respect to the ASPECT
ambit, a concern defines a software requirement and it is specialized into functional,
non-functional and crosscutting concerns. Notice that functional and non-functional
concerns could be omitted in the model, for the relation existing with the inherent
property requirements, which is straightforward. We have left them here to show that
a concern can crosscut both functional and non-functional requirements. Moreover a
crosscutting concern is implemented by an aspect and so an aspect can also imple-
ment an implicit functionality (provided it crosscuts some concern). A composition
mechanism brings together separately created software elements (i.e. aspects with
core functionality modules), an aspect is defined by a composition mechanism which
has associated a pointcut. A pointcut is an expression that identifies a specific point
or a set of points in the execution of a system. The joint points where the associated
aspect advice should be executed, is also defined by the composition mechanism. A
joint point is a point of interest in some artifact in the software lifecycle through

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 79

Figure 6 – REquirements, Aspects and Software Quality Model

which two o more concerns may be composed. An advice provides the actions that
will occur at the joint points and augments or constraints other concerns at the joint
points, matched by a pointcut. Pointcut, joint point and advice are essential elements
to implement an aspect [27, 37]. A quality characteristic, derived from an inherent
property requirement or from an implicit functionality, can be a potential crosscutting
concern. This issue is very important for the treatment of aspects at early stages of
software development, where the notion of candidate aspect is introduced [6]. In this
context, a crosscutting concern can be functional or non-functional (represented by the
specialization relation in the model in Figure 6). The ISO/IEC 25030 framework is
concerned only with the REQUIREMENTS ambit of the general system and does not
deal with the ASPECTS ambit; in the REASQ model instead, the relations between
these two ambits is established. Moreover, the software quality ambit of ISO/IEC
25010 (formally ISO/IEC 9126-1 must be used) is also modeled and related with the
other two. To conclude about the discussed terminology involved in three important

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


80 · I. Castillo et al.

software engineering research topics, a concern corresponds to a software requirement
[33] that must be handled to solve some software problem [27]; it can be used in the
requirements engineering discipline and in architecture modeling. Using REASQ, a
mapping is established between the ISO/IEC standards and the emerging AOSD disci-
pline. Actually, non-functional concerns and quality requirements are related with one
or more quality characteristics of the standard quality model (potential crosscutting
concerns), which is a main goal of AOSD [1, 14]). There is a general agreement on the
fact that an aspect solves the problem of the crosscutting concerns (provided these
are identified), by encapsulating them in a modular structure, through a composition
mechanism [1, 12, 14]. This can be done early in the software development process
through a composition table [6], while modeling the system architecture, for example,
to facilitate the design and implementation stages.

3.3 Case Study: Instantiating the REASQ Model

This case study is based on a simplified version of an online toy store (an e-commerce
web-based application). A customer (web user) can buy a toy online registering an
account and specifying a login. The system provides options to the customer to browse
through the toy store on-line catalogue. A customer can add the currently selected toy
to, or remove from, his shopping car. When the customer wants to checkout, his goal is
to buy the current contents of their shopping car (using credit card), including paying
for the content and arranging delivery. Additionally, a customer can check the order
status and cancel an order (only if it has not been processed). A customer demands
to the system is secure operations, fast processing, and easy browsing through the
catalogue. The system must operate 365 days of the year.

In what follows, the most important elements of the REASQ model are illustrated
with the Toy Store Case Study. Figure 7 presents a simplified version of the use case
model, where we can identify the most important functional (use cases) and specific
quality requirements (included use cases as candidate aspects).

3.3.1 Business Rules

Some business rules to the Toy Store Systems are presented as follows.

• A customer must create an account to buy a toy online.

• A customer must have access from an arbitrary web browser.

• Only payments with credit card must be accepted.

• Credit card approval time must be less than 2 minutes.

3.3.2 Functional Requirements (from Inherent Property Requirements) and Quality
Requirements

An e-commerce web-based application is a portal type application that uses mainly
transactional and portal services. For this kind of applications, general concerns
(global quality requirements) are identified. The main overall functional requirements
and the architectural style are known studying the application domain [23]. They are
presented in what follows.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 81

Figure 7 – The Toy Store Use Case Model

Global Quality Requirements

Transactional

• Functionality: security (integrity),
accuracy.

• Reliability: availability

• Efficiency: response time, resource
utilization

Portal

• Portability: adaptability (scalabil-
ity)

• Efficiency: response time, resource
utilization

Specific Quality Requirements

From the problem description we can identify the main functional concerns and then
the specific quality requirements for the Toy Store System: login (security, efficiency),
create account (availability, efficiency), search for toys (accuracy, efficiency, availability),
checkout (security, efficiency, interoperability). In table 1, and following the early
aspect approach [5, 6, 12] these specific quality requirements have been including as
candidate aspects (potential crosscutting concerns). Non-functional concerns (quality
requirements) are identified and related with the functional requirements to identify
relevant crosscutting concerns. Table 1 presents some relevant REASQ elements and
synthesizes the composition of the main functional and quality requirements, focusing
on the relevant crosscutting concerns, denoted as “candidate aspects”. The crosscutting
concerns are actually quality goals that the functional concerns must accomplish
and can be implemented as aspects. Figure 7 illustrates the crosscutting concerns,
represented as stereotypes called “candidate aspects” use cases. Note that accuracy
appears in only one functional requirement; hence it is not a crosscutting concern.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


82 · I. Castillo et al.

Functional
Require-
ment

Quality Goal Crosscutting Concern
(«candidate aspect »)

Login - Secure access and user validation must
be provided.

- security

- A friendly interface must be provided. - usability

Create
account

- Communication between other systems
must be guaranteed.

- interoperability

- A friendly interface must be provided. - usability
- Secure access and user validation must

be provided
- security

Search for
toys

- Communication between catalogues. - interoperability,
availability

- Fast responses must be guaranteed. - response time,
usability

- A friendly interface must be provided.

Checkout - Fast communication between other sys-
tems must be guaranteed.

- response time, inter-
operability

- Reliable and secure payment opera-
tions are required.

- security, accuracy

- A friendly interface must be provided. - usability

Table 1 – Composition: Functional Requirements, specific quality requirements and identi-
fied concerns

Interoperability and availability depends from the networking environment and the
service availability in a Service Oriented Architecture (SOA) style, and finally the user
interface component must deal with usability.

Quality Model

In particular, in our online Toy Store System the quality model has been defined from
the global and specific requirements shown above and is summarized as:

• Functionality: suitability, accuracy, security and interoperability.

• Reliability: maturity, fault tolerance (availability).

• Usability: understandability, operability, attractiveness.

• Efficiency: time behavior, resource utilization.

• Portability: adaptability.

4 Applying the REASQ Model to Define an Ontology

In what follows, the REASQ model will be used to define an ontology conformed
by three related ontologies corresponding to each ambit. In this way, the semantics

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 83

expressed by the model will be formalized and can be easily reused by the software
community. An ontology is a formal and explicit specification of a conceptualization
[16], and contains the description of the concepts and relationships which exist in some
domain, using a formal language. It conforms a shared vocabulary, where domain rules
are also important. An ontology can be viewed as a shared knowledge of a domain
that can be communicated between humans and computer systems. Ontologies can
be integrated, reused and shared by different application domains, explaining the
growing interest of the scientific community in this area [15]. Several works have been
developed about ontologies involving software quality. Particularly, in Abran et al. [2]
the authors present an approach to build a Software Engineering Body of Knowledge
(SWEBOK) ontology to increase internal consistency and clarity. A specific example
of the benefits of an ontology is presented, along with an analysis of the term “quality”
in the current version of the SWEBOK Guide. The ontological approach has been
proposed for the WS (Web Service) domain mainly to unify notions on QoS (Quality
of Service). On the other hand, in W3C [40] an ontology and language have been
defined to improve the search of WS; in the WSMO language, WS descriptions consist
of non-functional, functional, and the behavioral aspects of a Web service. In Losavio
et al. [30] a view of the WS domain knowledge based on software quality is presented,
using an ontology to formalize its characterization and information retrieval. This
ontology integrates three standards on software product quality at different abstraction
levels, to unify terminology and characterize reusable domain knowledge; on the other
hand, to facilitate web services identification based on their quality properties.

4.1 Domain and scope of the REASQ Ontology

This section presents three related ontologies written in Protégé [18] and derived from
the REASQ model. These ontologies will cover the three REASQ ambits: aspect-
orientation, requirements engineering and software quality and will be integrated in
a general ontology named REASQ Ontology which will be used for the following
purposes:

• To integrate the main concepts used in AOSD with related requirements engi-
neering notions, and the recent ISO/IEC 25030 software quality requirements
categorization.

• To set the basis for a better understanding and consensus towards a common and
standard vocabulary for the emerging aspect oriented requirements engineering
discipline.

• To favor domain knowledge reutilization by the software engineering community.

• To present an umbrella for the definition of an aspect-oriented quality require-
ments engineering process.

The information in the ontology should provide answers to the following main
questions:

• How aspect-orientation terminology is related with requirements engineering
terminology?

• How aspect-orientation terminology is related with software quality terminology?

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


84 · I. Castillo et al.

• How the requirements engineering terminology is related with the software quality
terminology?

• How concerns are defined and related with software requirements?

• How crosscutting concerns are related with quality requirements?

• How software requirements are categorized according to the ISO/IEC 25030
standard?

• What are the quality characteristics of a quality model for a given application?

The structure of the REASQ model has been formalized with the specification
of the three ontologies mentioned above and shown in Figure 8. Moreover, Figure 9
presents the three ambits related ontologies as the REASQ Ontology, which shows
the main notions of the model, to facilitate understanding and reuse. They have been
implemented with the Protégé 3.4 version [18, 40]. The Protégé notation considers
rectangles to represent concepts (classes); relations among concepts are represented by
dotted lines with annotated roles. A full line indicates a hierarchy of concepts (class
generalization) with the “is-a” role (see Figure 8).

4.2 Terms

The list of the terms used in the ontologies corresponds to the terminology integrated
by the REASQ conceptual model (see section 3.2).

5 Related Work

There are few related works linking the aspect-oriented approach, the ISO/IEC 9126-1
standard to specify quality requirements and the discipline of requirements engineering.
We greatly favor the approaches using standards, because we believe that their use is
needed for a mature Software Engineering discipline, facilitating understanding and
communication among stakeholders. In Navarro et al. [31] is presented a proposal
to organize software requirements by integrating aspect-oriented techniques within
a goal-oriented approach for requirements. In their work, ISO/IEC 9126-1 is used
as a starting point to establish the possible concerns, relating the requirements with
the ISO/IEC 9126-1 quality characteristics. In particular, in this work, ISO/IEC
9126-1 provides an initial framework to elicit and organize goals and requirements and
then provide a wide set of concerns. A methodology for the concurrent definition of
software architectures is also used (ATRIUM). This model provides an initial view
of the concerns that could be meaningful for the system. They indicate that the
analyst can iteratively select what he/she considers proper and initiate its specification
and refinement, as they elicit the requirements; it could be convenient to incorporate
new concerns to properly include additional goals/requirements. Comparing with
REASQ model, ISO/IEC 9126-1 (now called ISO/IEC 25010) is used to relate the
requirement engineering terminology (following the new standard ISO/IEC 25030) with
the aspect-orientation and software quality, where a quantifiable quality characteristic
is directly associated with a crosscutting concern.

On the other hand, in Schauerhuber et al. [34] an initial version of a reference
architecture for Aspect-Oriented Modeling (AOM) is presented; this AOM reference
architecture represents a set of general assertions and normative assertions, which are

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 85

true for AOM languages, as well as a technique for designing new AOM languages or for
extending existing (domain-specific) modeling languages with concepts of the aspect-
oriented paradigm. The reference architecture is presented as a UML class diagram;
the concepts used in the reference architecture have been refined to make them suitable
for the modeling level. In this work the concepts point out the design level view,
constituting a proper basis for a later code generation step, because reengineering code
at a certain point within a program requires the consideration of the full spectrum
of modeling concepts not present in programming languages. In the REASQ model
the terminology points out the establishment of a unique conceptual model to clarify
the AOSD emergent terminology from the requirements level view, and it focuses
more its usage at the early stages of software development, for example in architecture
modeling. Van den Berg et al. [37] present a report about a first public version of
ontology of aspect orientation, in particular a glossary for common AOSD terms, and
a proposal for a conceptual framework for crosscutting (which could be part of the
taxonomy for AOSD) are presented. They describe the definitions of an initial set of
core terms in AOSD. The initial definitions are based on the AOSD book by Filman
et al. [14]. After several reviews, they selected preferred definitions that are more
general, and for which there is general agreement. The REASQ Model, also presents a
taxonomy with concepts and their relations about the most representative terms of
aspect orientation (conceptual domain model), but these have been interrelated with
the new system requirements categorization of ISO/IEC 25030 [22] and the software
quality ambit of ISO/IEC 25010. The quantification of the quality characteristics
related to the concerns can help in the assignment of priority to a particular concern
or to solve tradeoffs among conflicting concerns, according to a soft-goal approach, for
example. Finally in Vanícěk [38] the standard series of SQuaRE is presented briefly, as
a contribution that tries to define the stakeholders requirements for software products,
to facilitate objective quality evaluation.

6 Conclusion

This work presents a common framework, a UML conceptual model called the REASQ
model and its specification as an integrated ontology implemented with the Protégé
tool, for the reasoning, understanding, handling and reuse of the main notions related
to the aspect oriented software development paradigm. REASQ integrates three
main research ambits in software engineering: classical requirements engineering,
standard software quality requirements and emerging AOSD. We believe that the use
of standards, even if it may seem restrictive, is in general a step towards the common
understanding of interacting working groups of different interests and nature, which
is the case of the software project development team and a main cause of software
failures. An example of the standards adoption by the software community is UML.
The REASQ model and ontology is a useful tool at early stages of development, for
example during the modeling of the system architecture, when requirements must be
clearly identified, classified and quantified. In the Web Services domain for example,
the ontology can ease the retrieval of the right metrics corresponding to a particular
quality of service, facilitating the search for the appropriate service. REASQ has been
used in different software engineering post graduated course projects and in some
research projects. We are working to use it to support the definition of a quality
requirements engineering process. In particular, the REASQ model and the derived
ontology is being applied to the characterization of the dependable systems domain,

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


86 · I. Castillo et al.

where the early handling of crosscutting concerns is of major importance.

Acknowledgments This work has been partially supported by the Consejo de
Desarrollo Científico y Humanístico (CDCH) of the Central University of Venezuela,
ADIRE project, PG-03-7310-2008/1 and the OPSU (Oficina de Planificación del Sector
Universitario).

References

[1] AOSD, 2008. Aspect-Oriented Software Development Home Page. Available
from: http://www.aosd.net/wiki/index.php?title=Glossary

[2] Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L., 2003. Guide to the
Software Engineering Body of Knowledge - SWEBOK, Trial Version 1.0. IEEE-
Computer Society Press. Available from: http://www.swebok.org

[3] Bass, L., Klein, M., Bachmann, F., 2001. Quality Attribute Design Primitives
and Attribute Driven Design Method. 4th International Workshop on Product
Family Engineering. Bilbao, Spain, 3-5.

[4] Bertoa, M., Troya, J., Valecillo, A., 2002. Aspectos de Calidad en el Desarrollo
de Software Basado en Componentes. Departamento de Lenguajes y Ciencias
de la Computación, Universidad de Málaga.

[5] Brito, I., Moreira, A., 2003a. Advanced Separation of Concerns for Require-
ments Engineering. VIII Jornadas de Ingeniería del Software y Base de Datos,
JISBD 2003. Alicante, Spain. Available from: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.109.6438&rep=rep1&type=pdf

[6] Brito, I., Moreira, A., 2003b. Towards a Composition Process for Aspect-
Oriented Requirements. Early Aspects Workshop at AOSD Conference. Boston.
Available from: http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/
Papers/BritoMoreira.pdf

[7] Boegh, J., 2008. A New Standard for Quality Requirements. IEEE Software,
vol. 25, No. 2, March/April, 57-63.

[8] Chirinos, L., Losavio, F., Matteo, A., 2004. Identifying Quality-based Require-
ments. Information Systems Management (ISYM). Auerbach Publications,
21(1), 15-21.

[9] Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers.

[10] Dijsktra, E., 1976. A Discipline of Programming. Englewood Cliffs, NJ. Pren-
tice Hall.

[11] Dromey, R., 1996. Cornering the Chimera. IEEE Software, vol. 13, No. 1, 33-
34.

[12] Early-Aspects, 2008. Aspect-Oriented Requirements Engineering and Architec-
ture Design Home Page. Available from: http://www.early-aspects.net

[13] Falbo, R., Guizzardi, G., Duarte, K., Natali, A.C. 2002. Developing Software
for and with Reuse: An Ontological Approach. Conference on Computer Sci-
ence, Software Engineering, Information Technology, e-business and Applica-
tions. Ischia, Italy, pp477-488.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.aosd.net/wiki/index.php?title=Glossary
http://www.swebok.org
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6438&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6438&rep=rep1&type=pdf
http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/Papers/BritoMoreira.pdf
http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/Papers/BritoMoreira.pdf
http://www.early-aspects.net
http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 87

[14] Filman, R., Elrad, T., Clarke, S., Aksit, M., 2005. Aspect-Oriented Software
Development. Addison Wesley, Boston.

[15] Gómez, A., Corcho, O., Fernández, M., 2003. Ontological Engineering. Ad-
vanced information and knowledge processing Series. Berlin: Springer Verlag.

[16] Gruber, T. R., 1993. A translation approach to portable ontologies. Knowledge
Acquisition, 5(2):199-220.

[17] Gutiérrez, J., Villadiego, D., Escalona, M., Mejías, M., 2004. Aplicación de la
Programación Orientada a Aspectos en el Diseño e Implementación de Pruebas
Funcionales. DSOA’2004, IX Jornadas de Ingeniería de Software y Bases de
Datos. Málaga.

[18] Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C., 2004. A Prac-
tical Guide to Building OWL Ontologies Using the Protégé-OWL Plugin and
CO-ODE Tools, Edition 1.0. University of Manchester.

[19] IBM-Research, 2000. Workshop on Multi-Dimensional Separation of Concerns,
International Conference on Software Engineering, ICSE’2000. Available from:
http://www.research.ibm.com/hyperspace/workshops/icse2000

[20] IEEE, 2000. Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE Std. 1471-2000.

[21] ISO/IEC 25030, 2006. Software Engineering. Software Product Quality Re-
quirements and Evaluation (SQuaRE). Quality Requirements.

[22] ISO/IEC CD 25010, 2007. Software Engineering. Software Product Quality
Requirements and Evaluation (SQuaRE). Quality Model and guide.

[23] ISO/IEC 9126-1, 2001. Information Technology - Software Engineering Product
Quality. Part 1: Quality Model.

[24] Jacobson, I., Booch, G., Rumbaugh, J., 2000. El Lenguaje de Modelado Unifi-
cado. Segunda Edición. Madrid: Addison Wesley.

[25] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.M., Irwin, J., 1997. Aspect-Oriented Programming. ECCOP’97 Object-
Oriented Programming, 11th European Conference, M. Aksit y S. matsouka,
Eds. LNCS 1241, 220-242.

[26] Kiczales, G., Lieberheer, K., Ossher H., 2001. Discussing Aspects of AOP.
Communicatios of the ACM. Vol.44 No.10, 33-38.

[27] Laddad, R., 2003. AspectJ IN ACTION. Practical Aspect-Oriented Program-
ming. Manning Publications.

[28] Lamsweerde, A., 2003. From system goals to software architecture. In M.
Bernardo and P. Inverardi, editors, SFM, Formal Methods for Software Ar-
chitectures. LNCS Springer-Verlag, 25-43.

[29] Losavio, F., Chirinos, L., Levy, N., Randane-Cherif, A., 2003. Quality Charac-
teristics for Software Architecture. Journal of Object Technology, 2(2), 133-150.

[30] Losavio, F., Matteo, A., Levy, N., 2009. Web Services Domain Knowledge with
an Ontology on Software Quality Standards. 3rd International Conference on
Internet Technologies and Applications (ITA’09), CAIR (Centre for Applied
Internet Research) Glyndwr University, 8-11 September, Wrexham, U.K, 74-85.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.research.ibm.com/hyperspace/workshops/icse2000
http://www.jot.fm/contents/issue_2010_07/article4.html


88 · I. Castillo et al.

[31] Navarro, E., Letelier, P., Ramos, I., 2004. Goals and Quality Characteristics:
Separating Concerns. In Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop (AOSD). Lancaster.

[32] Reina, A., Torres, J., Toro, M., Álvarez, J., Nieto, J., 2003. Una experiencia
Práctica reutilizando Aspectos. Actas del Taller de Trabajo de Desarrollo de
Software Orientado a Aspectos DSOA’03. Alicante.

[33] Rosenhainer, L., 2004. Identifying Crosscutting Concerns in Requirements
Specifications. In Early Aspects 2004: Aspect-Oriented Requirements Engineer-
ing and Architecture Design Workshop (AOSD). Lancaster.

[34] Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wim-
mer, M., Kappel, G., 2006. A Survey on Aspect-Oriented Modeling Approaches.
2006.

[35] Sommerville, I., Sawyer, P., 1997. Requirements Engineering. A Good Practice
Guide. John Wiley and Sons, New York.

[36] Stefani, A., Xenos, M., 2001. A model for assessing the qualityof e-commerce
systems. Proceedings of the PC-HCI 2001 Conference on Human Computer
Interaction, Patras, 105-109.

[37] Van den Berg, K., Conejero, J., Chitchyan, R., 2005. AOSD Ontology 1.0
- Public Ontology of Aspect-Orientation. Technical Report AOSD-Europe-
UT-01, AOSD-Europe. Available from: http://www.comp.lancs.ac.uk/
computing/aosd-europe//deliverables/d9.pdf

[38] Vanícěk, J., 2006. Software Quality Requirements. Agric. Econ. –Czech, 52,177-
185. Available from: http://www.cazv.cz/attachments/ZE_52_177-185.pdf

[39] Wiegers, K., 2003. Software Requirements: Practical techniques for gathering
and managing requirements throughout the product development cycle. Mi-
crosoft Press, Washington, USA. Available from: ftp://ftp.ifs.uni-linz.
ac.at/pub/publications/2006/1406.pdf

[40] W3C, 2005. World Wide Web Consortium. Web Service Modeling Ontology.
W3C Member Submission 3 June 2005. W3C Working Draft 28 October (2002).
Copyright 2005 W3C.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.comp.lancs.ac.uk/computing/aosd-europe//deliverables/d9.pdf
http://www.comp.lancs.ac.uk/computing/aosd-europe//deliverables/d9.pdf
http://www.cazv.cz/attachments/ZE_52_177-185.pdf
ftp://ftp.ifs.uni-linz.ac.at/pub/publications/2006/1406.pdf
ftp://ftp.ifs.uni-linz.ac.at/pub/publications/2006/1406.pdf
http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 89

Figure 8 – Conceptual Models for: (a) Ontology of Aspect-Orientation ambit, (b) Ontology
of Software Quality ambit, (c) Ontology of Software Requirements ambit

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


90 · I. Castillo et al.

Figure 9 – Integrated Conceptual Model: The REASQ Ontology relating Aspect-
Orientation, Software Requirements and Software Quality.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article4.html


REquirements, Aspects and Software Quality: the REASQ model · 91

About the authors

Isi Castillo is Assistant Professor in the Department of Com-
puting at the National Experimental University of Sur del Lago
“Jesús María Semprúm”, Santa Bárbara de Zulia, Venezuela. She is
currently a Doctor Candidate in Computer Science at the Central
University of Venezuela, Caracas, Venezuela. Additionaly, she
works at the MoST (Models, Software & Technology) Laboratory
of the ISYS (Software Engineering and Systems) Research Center
and her research interests focus on the Software Engineering field,
and specifically on aspect-oriented software development, aspect-
oriented requirements engineering and quality software. E-mail:
castilloi75@gmail.com

Francisca Losavio received the Doctor degree in 1991 and a
3ème. Cycle Doctor Degree in 1985, both in Computer Science
and from the Paris-Sud University, Paris XI, Orsay, France. She
also obtained a MSc. Degree also in Computer Science in 1983
from the Simon Bolivar University, Venezuela. She is a Titular
Professor at the School of Computer Science, Faculty of Science,
Venezuela Central University, Caracas, where she works at the ISYS
(Software Engineering and Systems) Research Center, coordinating
the MoST (Models, Software & Technology) Laboratory. She
has participated in national and European Community research
projects. Her main research axes are software architecture, software
quality, quality standards and software development process. E-
mail: francislosavio@gmail.com

Alfredo Matteo received the Doctor degree in Computer Science
for the Paul Sabatier University, Toulouse, France in 1984. At
present he is Titular Professor at the School of Computer Science,
Faculty of Science, Venezuela Central University, where he has
coordinated the TOOLS Laboratory of the ISYS (Software En-
gineering and Systems) Research Center, being now part of the
research staff of the MoST (Models, Software & Technology) Labo-
ratory of ISYS. He is now responsible of the Postgraduated Studies
in Computer Science. His research includes software engineering,
requirements engineering, architectures, methodologies and model
driven engineering. E-mail: alfredo.matteo@ciens.ucv.ve

Jorgen Boegh is the Safety and Quality Manager at Terma S/A.
He is head of the Danish Delegation to ISO/IEC JTC1/SC7 and
is editor of three international standards in the area of software
quality requirements and evaluation. His research interests include
software quality modeling, requirements specification, and quality
evaluation. He received his MSc in mathematics and computer
science from the University of Aarhus. E-mail: jbh@terma.com

Journal of Object Technology, vol. 9, no. 4, 2010

mailto:castilloi75@gmail.com
mailto:francislosavio@gmail.com
mailto:alfredo.matteo@ciens.ucv.ve
mailto:jbh@terma.com
http://www.jot.fm/contents/issue_2010_07/article4.html

	Introduction
	The SQuaRE ISO/IEC Standard 
	ISO/IEC 9126-1 and ISO/IEC 25010
	ISO/IEC 25030

	REASQ: Requirements, Aspects and Software Quality. A Conceptual Model
	Terminology
	The REASQ Model in details
	Case Study: Instantiating the REASQ Model
	Business Rules
	Functional Requirements (from Inherent Property Requirements) and Quality Requirements


	Applying the REASQ Model to Define an Ontology
	Domain and scope of the REASQ Ontology
	Terms

	Related Work
	Conclusion
	About the authors

