
Journal of Object Technology
Published by ETH Zurich, Chair of Software Engineering, © JOT 2010

Online at http://www.jot.fm.

Extending Scala with Database Query
Capability

Miguel Garciaa Anastasia Izmaylovaa Sibylle Schuppa

a. Institute for Software Systems (STS),
Hamburg University of Technology (TUHH), Germany

Abstract The integration of database and programming languages is dif-
ficult due to the different data models and type systems prevalent in each
field. We present a solution where the developer may express queries en-
compassing program and database data. The notation used for queries
is based on comprehensions, a declarative style that does not impose any
specific execution strategy. In our approach, the type safety of language-
integrated queries is analyzed at compile-time, followed by a translation
that optimizes for database evaluation. We show the translation total
and semantics preserving, and introduce a language-independent classifi-
cation. According to this classification, our approach compares favorably
with Microsoft’s LINQ, today’s best-known representative. We provide an
implementation in terms of Scala compiler plugins, accepting two nota-
tions for queries: LINQ and the native Scala syntax for comprehensions.
The prototype relies on Ferry, a query language that already supports
comprehensions yet targets SQL:1999. The reported techniques pave the
way for further progress in bridging the programming and the database
worlds.

Keywords Language-integrated query, Scala programming language, Type-
directed program transformation, Compiler plugins.

1 Introduction
Experience has shown that having the best programming language and the best
database manager (DBMS) is not enough: persistence-related code accounts still
today for a large portion of development cost. Unlike the situation for “normal”
programming language constructs, a compiler is not aware of the semantics of embed-
ded database queries, and thus offers no help regarding their well-formedness checking
(e.g., to detect queries broken due to a reorganization of the database schema) or their
processing (e.g., in optimizing the query before shipping it to the DBMS for evalua-
tion). Approaches to overcome these shortcomings fall under the general umbrella of
language-integrated query, of which embedded SQL is an early example and Microsoft
LINQ [23] today’s best-known representative. In a nutshell, the main advantages of

Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp. Extending Scala with Database Query Capability.
In Journal of Object Technology, vol. 9, no. 4, 2010, pages 45–68. Available at
http://www.jot.fm/contents/issue_2010_07/article3.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm/contents/issue_2010_07/article3.html
http://www.jot.fm/contents/issue_2010_07/article3.html

46 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

language-integrated query are its compile-time type safety and the resulting concise-
ness of expression due to type inference and compact notation for common operations,
such as grouping and sorting.

The integration of a (host) programming language and an (embedded) database
query language is made difficult by the different forces influencing design decisions
in each community: programming languages strive to support ever higher-level ex-
pressiveness while efficiency is the dominant factor for query languages. For example,
each programming language generation has increased the repertoire of type construc-
tors, while standard query languages (at least of the relational kind) rely on a few
data structuring mechanisms: flat tuples, multisets, and foreign keys. Beyond type
system aspects, modern programming languages (i.e., those harmonizing the func-
tional and object paradigms) support features that simply have no counterpart in the
data-manipulation languages of mainstream DBMSs (higher-order functions, libraries
encapsulating collection operations, and subtyping polymorphism).

In this paper, we present a solution that overcomes these difficulties. In our ap-
proach, the developer may express queries that simultaneously access data from both
the database and the program spaces. These queries are written not in a database-
specific query language but in terms of Scala-level constructs: comprehensions over
iterables, collection operations, and closures (e.g., to indicate filters). In addition, the
developer may use LINQ for the same purpose. At compile time, queries are translated
in a typesafe manner, and shipped for database evaluation. The obtained resultsets
can be mapped back to program-level values, for further processing on the client-
side. The approach, realized as a proof of concept for Scala [26], generalizes to other
comprehensions-aware programming languages. We also discuss how program values
without a database-level encoding participate in query evaluation. The listed capabil-
ities fit within a novel classification scheme that we propose for language-integrated
queries (Sec. 3), a scheme that abstracts beyond particular technical realizations and
focuses instead on the semantics of the program-database divide.

The translation from program queries relies on Ferry [19] as intermediate language,
a state of the art, optimizing query language for relational backends that already sup-
ports comprehensions, and thus greatly simplifies targeting Core SQL:1999. We show
that this translation is (a) total, in that each well-formed sentence in the input lan-
guage is translated into a bundle of SQL queries; and (b) query semantics preserving,
in the sense that the translated query is guaranteed to evaluate without run-time
errors for all inputs on which the original query would have terminated without ex-
ceptions. Moreover, during server-side evaluation no client-server communication
is incurred (unlike Object/Relational Mapping solutions, which are prone to cache
misses for all but the most trivial queries). Regarding expressiveness, the current
main limitation of our prototype (but not of our approach) is that only a subset of
the Scala type system is supported (datatypes are supported but not objects, and
collections must be monomorphic). On the plus side, more extensive compile-time
checks are performed than by Microsoft LINQ query providers (Sec. 3.5).

In more detail, language-integrated query involves problems dealing with both
language theory and implementation. Language theory provides a framework to solve
the novel situation where (a) a query may refer to data in different locations: program
space and DB space; (b) collection operators may be used that are defined in program
libraries. The brute-force approach of bringing all data into program space does indeed
guarantee correcteness, at the cost of unacceptable performance (otherwise, virtual
memory would have displaced databases long ago). The more sensible approach of

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 47

namer
typer

superaccessors
pickler

refchecks

parser liftcode
uncurry
tailcalls

explicitouter
erasure
lazyvals

lambdalift
constructors

flatten
mixin

cleanup

icode
inliner

closelim
dce
jvm

LINQToScala,
ScalaToFerryScalaQL

phases

.scala

.class

Figure 1 – Scala compiler architecture and ScalaQL extension

having the DBMS evaluate operators originally defined with programming language
semantics involves showing that an isomorphism exists between types, operators, and
values across program and database space (Sec. 5).

On the practical front, a programming language expression may well be statically
recognized as amenable for database-based evaluation. However, compiler architec-
tures impose a very high cost to implementing such extension, in particular for Java,
whose compilers were not designed with extensibility in mind [9]. In this regard, our
choice of Scala is not accidental: an interaction protocol has been defined for compiler
plugins [25] to extend or change the behavior of the compiler, without modifying the
compiler itself. Plugins can inspect and update the ASTs on the way from one phase
to the next, as well as raise errors and warnings.

The structure of this paper is as follows. Sec. 2 provides background on Scala,
on the underpinnings of modern query languages (comprehensions), and on the Ferry
language. A summary description of the technologies under the LINQ umbrella closes
that section, emphasizing aspects frequently glossed over in the literature (for exam-
ple, the degree of static checking and the extent of optimization). In Sec. 3, we put
forward classification criteria to rank competing approaches to language-integrated
query, by defining four capability levels for language processors to handle queries in-
volving different mixes of program vs. database semantics. The next two sections
cover in detail our compilation pipeline, starting from LINQ to Scala (Sec. 4), fol-
lowed by the chosen subset of Scala (types, operations, and syntactic constructs) that
our Scala to Ferry translation accepts as input (Sec. 5). Looking into the future, we
sketch our plans for client-side optimizations before query shipping (Sec. 6). Finally,
the two last sections offer an overview of related work (Sec. 7) and discuss conclusions
(Sec. 8). To make the paper self-contained, Appendix A summarizes the syntax and
semantics of LINQ.

Knowledge about data query languages is assumed from the reader as well as fa-
miliarity with compiler terminology. A prototype (ScalaQL) realizing our approach
can be found at http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL.

2 Background
Scala [26] subsumes object-oriented and functional programming in a statically typed
setting with type inference. The adopted syntax is highly uniform, where programs
are trees of definitions without constraints on their nesting. The syntax evokes con-
cepts from object orientation (classes, methods), which can be expressed in terms of
more fundamental abstractions (objects, traits for mixin inheritance, type members

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL
http://www.jot.fm/contents/issue_2010_07/article3.html

48 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

that generalize type parameters). Since Scala is a functional language, functions are
first-class values: they can be written as literals, passed as arguments or returned
from methods. Methods, which can be encoded as functions, may define one or more
lists of value parameters, in addition to a list of type parameters. This way, a method
abstracts over values and types. The type system is advanced and comprises intersec-
tion types, path-dependent types as companion to type members, variance indication
for type parameters, and higher-kinded types [24].

Support for object decomposition by pattern matching contributes to the suc-
cinctness of queries. Queries themselves have a semantic foundation that is language-
independent, as covered in the next subsection.

2.1 Semantic foundation: query comprehensions
Query comprehensions provide a uniform notation for denoting collections such as
lists, bags and sets, based on the observation that the operations of set and bag union
and list concatenation are monoid operations (that is, they are associative and have
an identity element [14]).

In the list comprehension [e | e1 . . . en] each ei is a qualifier, which can either be
a generator of the form v ← E, where v is a variable and E is a sequence-valued
expression, or a filter p (a boolean valued predicate). Informally, each generator
v ← E sequentially binds variable v to the items in the sequence denoted by E, making
it visible in successive qualifiers. A filter evaluating to true results in successive
qualifiers (if any) being evaluated under the current bindings, otherwise ‘backtracking’
takes place. The head expression e is evaluated for those bindings that satisfy all
filters, and taken together these values constitute the resulting sequence. For example,
the meaning of the following Object Query Language (OQL) query:

select distinct e(x) from (select d(y) from E as y where q(y)) as x where p(x)

is captured by { e(x) | x ← {{ d(y) | y ← E , q(y) }} , p(x) }
In tandem with closures (i.e., functions with parameters bound upon evaluation)

the notation allows expressing complex queries, albeit not always compactly. The
Scala collections library improves on this by encapsulating recurring patterns. In
general, comprehensions contain nested queries. If evaluated as-is on large datasets,
the engine would spend an excessive amount of time in nested loops, a situation that
is overcome with optimizations for secondary storage [18] and for main memory [32].

2.2 Ferry: optimizing database comprehensions
Ferry [19], designed by Tom Schreiber at Uni Tübingen1, pushes the envelope on how
far a relational database engine can participate in program evaluation. Ferry’s type
system, constructs, and function library support computation, in particular compre-
hensions, over arbitrarily nested, ordered lists and tuples. A Ferry read-only query
operates on data types of the form t = a | [t] | (t, . . . , t) where a represents atomic
types like string, int, or bool. Structured types can be used to model programming
language types such as lists, dictionaries (a.k.a. “maps”), and algebraic datatypes.
For performance, lists are not encoded following a (purely) recursive datatype for-
mulation but as database tables. Unlike their program-level counterparts, Ferry lists
must be homogeneous (all items sharing the same concrete type) for reasons related

1Ferry, http://www-db.informatik.uni-tuebingen.de/research/ferry

Journal of Object Technology, vol. 9, no. 4, 2010

http://www-db.informatik.uni-tuebingen.de/research/ferry
http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 49

Figure 2 – Relational translation of a non-relational language, reproduced from [19]

with static optimization (the detailed data layout has to be known). In other words,
Ferry lists support parametric polymorphism but not subtype polymorphism.

The syntax of Ferry is fully composable (unlike SQL’92) and revolves around the
for-where-group by-order by-return construct. Additionally, let-bindings, condition-
als, and primitive operators (arithmetic, relational, string) are supported. Table 2 in
Sec. 5 summarizes the built-in functions. Several programming language embeddings
are developed by the team behind Ferry, including Ruby and C# itself, but not Scala;
so far, for relational backends only.

A Ferry program is compiled by the pipeline shown in Figure 2, a translation that
relies on the loop lifting strategy [28] originally developed for the purely relational
Pathfinder2 XQuery compiler. The resulting algebraic query plans are amenable to
dataflow-based analysis and optimization [18]. Our reliance on a functional database
query language (Ferry) is a departure from the architecture of established Objec-
t/Relational Mapping engines, but is in line with the design decisions embodied in
Microsoft products, where Entity SQL [2] fills a comparable niche. Entity SQL di-
rectly supports objects and association navigation.

2.3 Extended example
Using our Scala extension, the developer needs only provide the query shown in
Listing 1. In this case, the query has been formulated using Microsoft LINQ, thus
fostering portability for queries across the .NET and JVM platforms. Internally, one
component of our solution (the LinqToScala compiler plugin, Figure 1) takes charge
of parsing and transforming the syntax tree in question into another tree, this time
in terms of a Scala subset. In a nutshell, that subset comprises all features required
as counterpart to LINQ-specific clauses (where, joint into, group by, and so on) as
well as a subset of Scala’s own operators (originating in the collections library and in
supported datatypes).

Coming back to the example, the result of this source-to-source translation (from
LINQ into Scala) is shown in Listing 2, not in the internal AST representation but
as if the query had been written from scratch in Scala (the second use case fully
supported by our tooling).

At this point, denotational semantics is our guide to accomplish the second trans-
lation (from the Scala subset into Ferry), which involves: (a) formulating Scala-level
operators in terms of a smaller set of built-in Ferry functions; and (b) reflecting the
different container semantics (set, sequence, map, multiset) by means of appropriate

2Pathfinder, http://www-db.informatik.uni-tuebingen.de/research/pathfinder

Journal of Object Technology, vol. 9, no. 4, 2010

http://www-db.informatik.uni-tuebingen.de/research/pathfinder
http://www.jot.fm/contents/issue_2010_07/article3.html

50 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

@LINQAnn val resultSet =
" from how in travelTypes " +
" join trans in transports on how equals trans . how into lst " +
" select new { how = how, tlist = lst } "

Listing 1 – LinqToScala: Input

@Persistent val resultSet =
for (how <− travelTypes;

val outerKey = how ;
val lst = for (trans <− transports ;

if outerKey == trans.how) yield trans
) yield new { val how = how; val tlist = lst }

Listing 2 – LinqToScala: Output

encodings. The final query to be shipped is shown in Listing 3. The correctness of
the translations is addressed in Secs. 4 and 5 resp.
for how in travelTypes return

let outerKey = how,
lst = for trans in transports where outerKey == trans.how return trans

in (how = how, tlist = lst) // record , not tuple

Listing 3 – Ferry query ready to ship for database-based evaluation

2.4 Microsoft LINQ
Throughout this paper, the term “LINQ” refers to the LINQ (embedded) query lan-
guage. However, LINQ functionality results from the interplay of several technologies,
the first one covering compile-time translation from LINQ textual syntax embedded
in languages such as C# and VB.NET into Standard Query Operators (SQO), which
are comparable to the operators in collection libraries of programming languages sup-
porting closures. For example [15], the textual syntax from x in foo let y = f(x)
select h(x, y) actually stands for the following code: foo.Select(x => new { x, y =
f(x) }).Select(t0 => h(t0.x, t0.y)). All we need to know about these expressions
is that LINQ renames the well-known map, filter, and flatMap into Select, Where,
and SelectMany.

Another important component are query providers, i.e., implementations (possibly
by third-parties) that receive SQO ASTs and return a resultset. Query providers,
including that for main memory evaluation, perform lazy evaluation of LINQ queries.
This design guarantees that the minimum amount of work will be performed to obtain
the first result, and that some queries on infinite input will be answered. When the
query provider is connected to an RDBMS, queries operate not on sequences but on
multisets: if any operators are applied after an OrderBy() there is no assurance that
results will reflect the previous sorting. PLINQ [3], the project focusing on parallel

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 51

1 static void Main(string[] args)
2 { MyDatabaseDataContext ctx = new MyDatabaseDataContext();
3 var res = from s in ctx. Sites where s. UrlPath.Normalize() == "Test" select s;
4 foreach (var s in res);
5 }

Listing 4 – Run-time exception (in LINQ to SQL) at evaluation time

evaluation of LINQ queries, puts it in these terms: “ordering operators re-establish
order, shuffle points shuffle the order.” As another example, sum() will return zero
when evaluated on an array all whose elements are null, while the same query on an
SQL column containing only NULLs will result in null.

Given that the semantics of query evaluation is at the mercy of the particular query
provider in use, such evaluation may (a) produce a run-time error, (b) partition the
expression into an SQL query and pre- and post-processing phases executed outside
SQL, or (c) translate the expression completely to SQL.

Regarding (a), the division of labor between the C# compiler and query providers
does not require the former to be fully aware about limitations of the latter [11]. This
means that a query provider may be handed a query it cannot evaluate, as shown
in Listing 4: upon trying to iterate the resultset, a run-time NotSupportedException
is thrown with the message “Method ‘Normalize’ has no supported translation to
SQL.” Given that in our approach both roles, query rewriting and shipping, are under
control of the same compiler plugins, this mismatch is avoided.

3 Levels of integration of host and query languages
A persistent programming language (Sec. 7.2) wallpapers over the different locations
and longevity of data. The more modest goal of language-integrated query also poses
some challenges, which we classify into the integration levels where they manifest.

3.1 Level 1: Native query syntax
At this level, queries must be written in the language the DBMS understands (for our
purposes, Ferry, but the same considerations apply to SQL, XQuery, and so on). This
limitation implies that only the operators supported by the DBMS can be applied,
and that expressions will only evaluate to types the DBMS can handle. After database
evaluation, moving results back to program space poses no principle problem: the type
system is rich enough to deliver an assignment-compatible type. Regarding variables,
the only variables initially in the scope of queries are those representing persistent
extents. In the relational context, each table is an extent; for the Entity Data Model
[1], there are extents for entities and associations. Because usages of variables declared
in the host program are disallowed, static typing is attained by relying alone on the
typing rules of the query language.

Native query syntax is the most verbose of all levels, but its embedding allows
compiler plugins to detect queries broken due to refactorings of the database schema.
Admittedly, Level 1 is not very useful in practice, but serves to set the stage for the
next level.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

52 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

3.2 Level 2: Static guarantee of database evaluation
At this level, a few restrictions are placed on usages of program variables, in a manner
that allows finding out conservatively at compile time whether total translation is
possible, i.e., whether the query can be fully evaluated by the DBMS without client-
side processing.

First, program-level operators may appear in queries as long as they can be ex-
pressed in terms of one or more query language operators. Second, program-level
literals and constructor invocations may appear as long as a lossless encoding exists
for their types, for marshalling to and from the persistent representation (assuming
that each persistable value can be denoted by a literal in the query language).

The features above could have been shoehorned into Level 1 by adding syntactic
sugar to the query language. This redressing can go even further: LINQ constructs
can be used as surface syntax, in our case over Ferry operators, literals, and types,
adding convenience without increasing expressive power. In contrast, Level 2 enables
the parameterization of queries with values known only at run-time, while retaining
the property of database-only evaluation.

In what follows we limit our attention to LINQ and Scala as surface syntaxes for
language-integrated query, and Ferry as DBMS native query language.

Variable usages in queries can be either in left-hand side (LHS) or right-hand
side (RHS) positions, where a LHS is to be interpreted as binding as opposed to
destructive update. In comprehensions-aware query languages (Sec. 2.1), binding is
implied by generators and let-declarations only. LINQ and Scala add one more means
to effect bindings, when constructing values of structural types (anonymous types in
LINQ terminology), as with the expression new { x = 0, y = 0 }, which makes x and
y visible in a certain scope.

When parameterizing queries with run-time values, LHS positions are no problem:
they should be fresh names for the scope in question, as neither LINQ nor Scala allow
hiding of variables. Thus, no program variable can appear there anyway. On the other
hand, allowing arbitrary program variables in RHS positions is a can of worms. Some
usages are harmless (for example, variables of primitive types, whose declared types
are final – cannot be subclassed – leading thus to statically known actual types). From
a Ferry point of view, actual types are crucial, given that the query plan fragment to
generate for a given operator depends in general on the data layout of the operands,
i.e., their actual type has to be known statically. This inflexibility is the price to pay
for the extensive optimizations that Ferry makes possible (Sec. 2.2), a capability we
retain in all of Levels 1, 2, and 3.

At Level 2, a program variable is allowed in queries as long as: (a) its actual type
is known statically; and (b) such type has a counterpart in the type system of the
database language (possibly after marshalling and encoding). These restrictions are
not as draconian as might seem. In practice, the parameters to a query are often
constructed shortly before the query, in the same straight-line block of statements, as
exemplified in Listing 5. For instance, Embedded SQL lies halfway between Levels
1 and 2: while some program variables are allowed, not all programming language
operators may appear inside queries.

3.3 Level 3: Optimizability known at shipping time
Levels 3 and 4 place no restrictions on RHS usages of program variables in queries,
unlike Level 2, which bans usages of variables whose actual type (i.e., the precise

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 53

val paramEmp = Employee(...) // a case class instance
val parkingLots = List(North, South)
/∗ here comes a query where paramEmp and parkingLots appear in RHS position ∗/

Listing 5 – A query statically known to be Level 2, using program variables

run-time type) cannot be statically determined.
At Levels 3 and 4, in order to build the database query to ship, the actual types of

program variables are inspected using run-time reflection. This allows computing the
database type T (possibly after marshalling and encoding) for the value in question,
if T exists. Otherwise, the variable’s value cannot be shipped (i.e., cannot be passed
as a by-value parameter to the DBMS) and the enclosing fragment of the query is
tainted for client-side processing (Level 4).

As an example of what can go wrong when translating into Ferry, consider the
Scala query for (e <- Employees; if e.skills == fashionableSkills) yield e.name
where both e.skills and fashionableSkills have type List[Skill]. When lexically
enclosed in a query, == denotes structural equality, so that the query above expands
into Ferry’s

for e in Employees
where length(e. skills) == length(JfashionableSkillsK)

and let diffs = filter (v −> v.1 != v.2, zip (e. skills , JfashionableSkillsK))
in length(diffs) == 0

return e. name

where JfashionableSkillsK is a literal in Ferry’s syntax for the value in the simi-
larly named program variable. In order for the Ferry expansion to be well-formed,
fashionableSkills should be an homegenous collection: no instances of proper sub-
types of Skill can be contained. Otherwise, the (structural) equality test v.1 != v.2
would compare apples with oranges, i.e., break a typing rule.

3.4 Level 4: Client-side processing
At this level, not all subexpressions in the query fulfill the conditions of previous levels.
Those that do, can be given as input to the optimizer. A correct evaluation consists in
shipping those fragments, and performing client-side processing after receiving their
sub-results. This fallback measure makes performance contingent upon cache affinity,
number of client-server roundtrips, the size of intermediate results, and the depth of
nested loops. Level 4 is prone to the very situation we set out to avoid: non-optimized
nested loops.

3.5 ScalaQL and LINQ under the light of integration levels
The current (beta) version of ScalaQL supports Level 2. Accepting queries at
Levels 3 and 4 would require implementing an interpreter to complete query processing
on the client-side. Regarding LINQ, different query providers support different levels,
in a manner not clearly documented. Anecdotal evidence suggests Level 2 queries to
exist that are processed client-side by the LINQ to XML provider. Irrespective of the

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

54 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

status of implementations as of this writing, our approach compares favorably with
LINQ when targeting relational backends.

More in general, all existing approaches to language integrated query exhibit
slightly different strengths and weaknesses (see Sec. 7) and ours is no exception.
After fixing the embedded query language to support comprehensions syntax, the
dimensions for variation involve: (a) whether the translation into a DBMS-supported
query language is total (otherwise, a mixture of client-side and server-side processing
takes place); (b) the range of target data models (relational, XML, OO databases);
and (c) the level of semantic analysis performed at compile time.

As discussed in Sec. 2.4 (Listing 4) some LINQ providers cannot rule out exceptions
during query evaluation, given that some well-formedness checks (whether a specific
target database supports certain operators) are delayed until run-time. Regarding
this, all of Levels 1 to 4 do without exceptions of this kind. In ScalaQL, database
evaluation may end abruptly due to errors like division by zero. However, exceptions
like that in Listing 4 happen for all executions of a query, and would have been flagged
at compile-time in our approach.

4 LINQ to Scala
We turn to ScalaQL, covering its first stage in this section. The correctness of this
translation follows from the denotational semantics of LINQ and Scala comprehen-
sions. After a summary of their analysis [16], the section closes with a discussion of
the treatment of grouping and sorting, where Scala library operators are used instead
of LINQ’s dedicated syntax.

As presented in Sec. 2.1, the notation for comprehensions does not commit to
a particular type system or set of operations for contained expressions, other than
the requirement for one or more iterable collection types to exist. The denotational
semantics for LINQ in Appendix A reinforces this point: the meaning of contained
expressions was left unspecified. This perspective on LINQ is useful for integration
with languages that already define a type system and operations set, in our case
Scala. We require the enclosed expressions to be side-effect free, a property that will
be maintained in the Scala and Ferry targets.

In order to translate LINQ comprehensions into Scala comprehensions it suffices
to define translations for LINQ constructs whose syntax differs from their Scala coun-
terpart (in particular, for grouping and sorting). Given that each translation rule
operates on one fragment of a LINQ expression at a time (for example, the select
clause), we must guarantee that all variables in scope of the fragment to translate
will also be in scope of the resulting fragment. For select and other clauses, the
variables in scope are those appearing as indices in the binding environments defined
in Appendix A. Therefore, the translation rules in Table 1 mirror the organization of
the expressions that construct those environments.

Differences between LINQ and Scala regarding scoping, automatic coercions, and
semantics of closures do not present a big hurdle; a situation resulting from the
aforementioned convergence trend of the functional and object paradigms.

4.1 Comprehensions in LINQ and Scala
The input AST for a LINQ query already has query continuations inlined [15], i.e.,
subqueries were recast from the idiosyncratic “from x1 in e1 qclauses into x2 qcont ”

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 55

// from str in strs let chrArr = str. ToCharArray()
// from ch in chrArray
// orderby ch select ch

val res9 = for ((str , chrArr, ch)
<− ((for (str <− strs;

val chrArr = str. ToCharArray();
ch <− chrArray

) yield (str , chrArr, ch)
) orderBy { _ match { case (str, chrArr, ch) => ch } })

) yield ch

Listing 6 – LINQ and Scala binding environments, handling of orderby

into the usual “from x2 in (from x1 in e1 qclauses) qcont .” Therefore, a QueryExp
consists of (a) at least one FromClause; followed by (b) zero or more BodyClause; fol-
lowed by (c) one of a SelectClause or a GroupByClause.

The two constructs that produce “end results” (select and group by) do so by
evaluating the head of a comprehension over a collection of input binding environ-
ments. The Scala counterpart to the comprehension head is a yield e construct. As
already mentioned, for that evaluation to be semantics preserving the same variables
that were made to go into scope by preceding body clauses (FromClause, LetClause,
JoinClause, and JoinIntoClause) must also be made go into scope by the compre-
hension qualifiers quals inside Scala’s for (quals) yield e. In contrast, the two
remaining kinds of body clauses (WhereClause and OrderByClause) do not introduce
variables. Clearly, variables in Scala should bind to types and values equivalent to
their LINQ counterparts. The translation is thus compositional, with the contract
just mentioned between qualifiers and head of comprehension.

4.2 Handling of orderby and group by
There is a big semantic difference between LINQ’s orderby clause and sorting functions
in programming languages. In LINQ, its effect consists in permuting the sequence of
binding-environments under which the following clauses (comprehension qualifiers or
head) will be evaluated, as discussed in App. A. The Scala counterpart to orderby
acts instead on an input collection, not on binding-environments (which are implicit).
Therefore, in order to keep the LINQ → Scala translation compositional, we feed
those “following expressions” with tuples containing all variables in scope. The order
in which tuples are delivered reflects the ordering criteria, an ordering resulting from
making explicit as a sequence of tuples the binding-environments that orderby refers
to. The example in Listing 6 showcases the translation pattern.

Similarly, LINQ’s group by also introduces an irregularity as it returns nested col-
lections: group result by key returns a sequence of groupings, where each grouping g
behaves both as (a) a map entry key 7→ cluster, a cluster being a sequence of results;
and (b) as a collection in its own right (the nested collection in question). When
g is iterated with from v in g, the clustered values are returned. The grouping’s
key is obtained with any of v.Key or g.Key. Because of (b), a LINQ grouping under-
stands collection operations, as in g.Count(). In order to accomodate these differences

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

56 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

Table 1 – Translation rules LINQ → Scala, for clauses producing Scala qualifiers

from T0..1
type Vvar in Eexp var : JtypeK <- JexpK

let Vlhs = Erhs val lhs = JrhsK

where Ebooltest if JbooltestK

join T0..1
type VinnerVar in EinnerExp val outerKeyfresh = JlhsK ;

on Elhs equals Erhs innerVar : JtypeK <- JinnerExpK ;

if outerKey == JrhsK ;

join T0..1
type VinnerVar in EinnerExp val outerKeyfresh = JlhsK ;

on Elhs equals Erhs val varResult = for (

into VvarResult innerVar : JtypeK <- JinnerExpK ;

if outerKey == JrhsK
) yield innerVar

Table 2 – Sample of Ferry’s built-in function library [19]

map :: (t→ t1, [t])→ [t1] map over list
concat :: [[t]]→ [t] list flattening

take; drop :: (int, [t])→ [t] keep/remove list prefix
zip :: ([t1], . . . , [tn])→ [(t1, . . . , tn)] n-way positional

unzip :: [(t1, . . . , tn)]→ ([t1], . . . , [tn]) merge and split
unordered :: [t]→ [t] disregard list order
all; any :: [bool]→ bool quantification

sum; min; max :: [a]→ a list aggregation
groupWith :: (t→ (a1, . . . , am); [t])→ [[t]] grouping

(Scala’s Map is not a perfect fit, iterating it yields all key/value pairs, and a pair can-
not be iterated), a given key/cluster is wrapped not as a pair but in a custom class
implementing the same interfaces as LINQ’s IGrouping<TKey, TSource>. Afterwards,
the translation into Ferry (Sec. 5) retrieves the intended data (key or cluster), based
on the name of the function applied to a value of the custom class.

5 Scala to Ferry
The second stage of ScalaQL is covered in this section. Given that not all Scala-level
type constructors are available in the relational data model, an isomorphism between
Scala and Ferry types is needed. That isomorphism rests upon injective encodings of
Scala values, as described in the first two subsections. With that foundation in place,
the translation of collection operators and of comprehensions can be addressed. Due
to space constraints only a selection of the translation rules from the accompanying
technical report [16] are discussed. The approach can handle all Scala types, and
the current (beta) implementation of ScalaQL already handles > 75% of the Scala
collection operators.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 57

5.1 Relational encoding of Scala values
In order for the translation from Scala into Ferry to be semantics preserving, the
encoding used to ship values for database evaluation must be lossless, i.e. each orig-
inal Scala value must be recoverable given two pieces of information: its relational
representation, and the original Scala type (which is tracked statically). As a prac-
tical example, consider tuple flattening, where Scala nested tuples are represented in
Ferry as non-nested ones, with marshalling and query rewriting taking care of pre-
serving the semantics of the source expression. For example, the Scala expressions
val t = (a,(b,c),d); t._2._1 must be recast in Ferry’s core sublanguage as let t
= (a,b,c,d) in (t.2, t.3).1. Although the encoded value alone does not allow re-
covering its source counterpart (both ((a,b),c,d) and (a,b,(c,d)) are flattened to
(a,b,c,d), for example) the type information makes the encoding injective.

5.2 Isomorphism of operators, types, and values between Scala and Ferry
Recalling the classification introduced in Sec. 3, Level 3 allows program variables to
appear in queries whose values will be shipped to the database by encoding them
as Ferry literals. Given that our translation from Scala to Ferry does not delve into
the code blocks that define the behavior of operators, dedicated translation rules are
needed for each type signature of an operator. In order to keep the catalog of rules
within reasonable bounds, we have chosen the following subset of Scala types for
our input language: (a) primitive types; (b) enumerations; (c) structural types and
case classes, which denote recursive algebraic datatypes; and (d) List, Set, and Map.
Although we plan to expand it in future versions of ScalaQL, the provided subset
allows expressing many queries commonly occurring in practice.

Techniques from Object/Relational Mapping are reused to encode values of the
supported subset in terms of Ferry types. In a nutshell, enumeration values are
encoded as integers. Structural types and case classes constitute “datatypes with
subtyping”, i.e., Scala automatically endows the semantics of structural equivalence
to equality tests between them (a behavior that cannot be overridden). Related to
subtyping, we impose on source language expressions a restriction from the target
language: Ferry does not support non-homogeneous lists. Together with our ban of
subtype tests and casts from the source language, the net effect is for subtyping-
agnostic queries to be accepted as input by ScalaQL. Finally, set semantics (for
example, insertion does not create duplicates) is realized by keeping track of the
Scala-type for a collection (list, set, or map); and by expanding Scala operations on
them into list-based counterparts. In the example of set insertion, a membership
check is performed as part of an if-then-else subexpression, to return either the
original collection or another with the new element.

As a whole, the single largest omission in ScalaQL is support for objects, i.e.,
instances of “normal” classes. While possible, handling objects is not prioritary in the
current version of ScalaQL, with its focus on total translations, and on setting the
groundwork for later extensions. An extension for objects would rely on persistence
by reachability, and on records with extra synthetic fields (“object-id”, “class-id”,
created at marshalling time) for use in equality tests.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

58 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

val salaries : List [Int] = ...
val namesWithSalaries = for (empl <− Employees zip salaries ; if empl._1._3 == "US"

) yield (empl._1._2, empl._2)
// Ferry : let Employees = table EmployeesTab(id int, name string, dept string)
// in for empl in zip (Employees, [123.45, ...]) where empl.3 == "US"
// return (empl.2, empl.4)

Listing 7 – Encoding-aware translation for zip

val numberOfEmployeesAtUK = Employees count (employee => employee.dept == "UK")
// Ferry : let Employees = table EmployeesTab(id int, name string, dept string)
// in length(filter (employee −> employee.dept == "UK", Employees))

Listing 8 – Counting employees in a given department

5.3 Translation rules: Collection operators
Concerning the translation of collection operations themselves, our analysis is based
on an (off-line, manually performed) detailed comparison of the semantics of source
and target operators and types. In other words, the code blocks in the operators’ def-
initions are not translated: the source-to-source translation occurs at the level of API
contracts, which thus serve their purpose of abstraction barrier. The usage context
for our solution (shipping of read-only queries for server-side evaluation) sidesteps
many well-known difficulties from memory models (side-effects on shared mutable
state, interference from updates by other threads).

Some Scala operators on collections have a direct counterpart in Ferry, e.g., length.
However, even for similarly named operators there are side-conditions in the form of
typing rules for Ferry that preclude a one-to-one translation. In these cases, additional
encodings and query rewriting are necessary. Listing 7 illustrates a Ferry query that
preserves the semantics of Scala’s zip operator using a combination of ‘flattening’ and
query rewriting, whereas a one-to-one translation would be incorrect. In the example,
the return expression (empl.2, empl.4) selects the same information as the original
Scala expression (empl._1._2, empl._2), retrieving the employee’s name and salary
from their new positions in the flattened tuple.

Other operators are translated into a bunch of Ferry function invocations, as
illustrated in Listing 8 by counting the employees fulfilling a certain condition. Finally,
some operators can be translated only for special cases, as with Scala’s reduceLeft
that recursively applies a given binary operation between successive elements of a
sequence. When used to aggregate a sum (as shown in Listing 9), or to find the

val sumOfSalaries = Employees.map(employee => employee.salary)
. reduceLeft ((salary1 , salary2) => salary1 + salary2)

//Ferry: let Employees = table EmployeesTab(id int, name string, dept string , salary int)
// in sum(map(employee −> employee.salary, Employees))

Listing 9 – Summing up employee salaries

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 59

val namesWithSalaries = for ((_, name, _, salary) <− Employees) yield (name, salary)
//Ferry: let Employees = table EmployeesTab(id int, name string, dept string , salary int)
// in map(employee$1 −> let name = employee$1.name, salary = employee$1.salary
// in (name, salary), Employees)

Listing 10 – Translation bonus: support for patterns

minimum or maximum, a translation into Ferry is possible.
Sec. 4.2 discussed the counterpart in Scala to LINQ’s sorting operator (orderBy),

whose type signature accepted an expression for each sorting criteria and its direction
which together define a lexicographic sorting. In addition to the above, Scala brings
its own sorting operator (sortWith) with a different signature: a comparator function
is taken as single argument. Both operators need to be translated into Ferry, as the
user may have written a query initially in LINQ or Scala. The translated expression
performs (as required) stable sorting, i.e., those items that the comparator function
reports as equal are listed in the same order in which they appeared in the input.

5.4 Translation of Scala comprehensions
The translation of a Scala comprehension takes into account the variables in scope of
each of its qualifiers (generators, guards, and let-declarations). Two syntactic differ-
ences with Ferry comprehensions that do not compromise expressiveness are cosmetic:
(a) Ferry does not allow let-declarations as qualifiers, a restriction that is circumvented
by expanding usages with definitions (always possible because let-declarations can-
not be recursive); (b) Ferry has room for a single where clause after all generators,
thus prompting the translator to pack all Scala filters as a single logical conjunction.
Otherwise, the translation is straightforward: the order of generators is kept, and the
head of the comprehension is translated compositionally.

Other Scala constructs are also handled [16], e.g., patterns, used when performing
multiple-choice as part of generators, or in let-declarations, as shown in Listing 10.

6 Query optimization
There are several levels at which a language-integrated query can be optimized (broadly
speaking, on the client and the server sides). A comparison with LINQ is difficult
because optimizations performed by query providers are not discussed in the aca-
demic literature, an exception being [7]. For details the reader is invited to consult
US Patent Application 20090144229 “Static query optimization for LINQ.”

Whenever a comprehension encloses only side-effect free expressions, a number of
rewritings become applicable, inspired by relational counterparts: filtering as early as
possible, postponing sorting until needed, etc. [29], [8, §3.4], [18]. Regarding queries,
two safe reorganizations of comprehension qualifiers are: (a) moving a filter to the
earliest position where all its enclosed variables are in scope; (b) moving an orderby
after the select that immediately follows.

In conjunction with the above, client-side optimizations exploit data locality by
evaluating (before shipping, for some input known at run-time) those subexpres-
sions that do not depend on database state, using partial evaluation. As an exam-
ple, consider the query in Listing 11 that matches employees with the departments

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

60 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

for (d <− departments;
e <− Employees;
if (d.approvedPasstimes map (_.name) contains e.hobbys)

yield (d.name, e.name)

Listing 11 – A Scala query encompassing main memory (the departments program vari-
able) and secondary storage (the Employees extent)

for d in [("d1", ["stamps"]), ("d2", ["bowling"])],
e in table Employees ,
where length(filter (v −> length(filter (v1 −> v1 == v, d.2)) == 0, e.hobbys)

) == 0 // i.e., d.2 contains e. hobbys
return (d.name, e.name)

Listing 12 – The Ferry query as shipped after applying client-side optimizations

that approve of their hobbys. This query spans both program and database state,
as the departments program variable holds a List[Department], where the property
approvedPasstimes of Department is declared to have type Iterable[Passtime] (sets
and lists of passtimes conform thus to that type, given that this immutable Iterable
is covariant in its argument, with Passttime having subtypes other than Hobby). On
the other hand, the Employees extent has a Ferry type, a list of records (ename:
string, hobbys: [string]), with the second item holding a list of hobby names.

In a very real sense, the evaluation of this query can get away without full-insight
of Scala types, by noticing that the subexpression d.approvedPasstimes map (_.name)
returns just a list of strings. In fact, all the DBMS needs to know about departments
is reproduced in Listing 12. In other words, after applying partial evaluation, not
the whole transitive closure of values reachable from departments is shipped, but just
those data items that may be accessed.

Client-side optimizations are a special case of data-location-aware optimizations,
as in distributed execution of functional programs, with shared-nothing memories and
queries that may include RHS variable usages referring to remote data. For uncon-
strained programs, the flow of bindings is mind numbing. For example, once remote
collections are iterated, the iterator variables thus bound may appear in closures that
are in turn passed as actual arguments. The resulting optimization problem consists
in choosing where to insert RPC calls, and what data to move across machines.

As far as we know, none of the existing approaches to language-integrated query
attacks this problem, resorting instead to client-side processing. These capabilities
have been studied for federated databases, e.g. in Ch. 8 of [17] (Optimisation Strategies
for Functional Queries in a Distributed Environment). These optimizations are also
the goal of data-centric processing in the DryadLINQ [22] project at Microsoft, aiming
at automatically translating the data-parallel portions of sequential programs into
a distributed execution plan. DryadLINQ focuses on cluster-level parallelism, and
internally delegates to PLINQ decisions to achieve multicore-level parallelism.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 61

7 Related Work
Each data model comes equipped with data definition, query, and manipulation sub-
languages, the two last ones usually not Turing-complete and thus not qualifying as
programming languages. Still, these languages have undergone an increase in expres-
siveness, as reviewed below for the relational and object data models. A review of
related work in the field of deductive databases has been omitted.

In parallel with these developments originating in the database community, pro-
gramming language research has aimed at orthogonal persistence, a technique to uni-
formly handle values irrespective of their location, types or longevity. Alongside this
technique, dedicated support for queries is provided, either in the form of (a) language-
integrated query (as advocated in this paper); or by (b.1) recovering from imperative
loops the declarative formulation of a query (for read-accesses), and by (b.2) inferring
bulk-updates from the side-effects of loops [31].

7.1 Database query languages
Cooper [10, §5] offers a timeline of research results on unnesting of first-order and
higher-order relational expressions, leading to the use of comprehension syntax. Kleisli
[33] pioneered the area of comprehension queries on relational databases, supporting
nested relations as intermediate values and as results. However, a query is not guaran-
teed to be fully translated into SQL and execution correctness is achieved by bringing
into main memory sub-results to complete processing.

Stonebraker and Hellerstein cover the evolution of object databases [21, Ch. 2]. As
with their relational counterparts, the lack of a “programming language Esparanto”
forced any language-integration effort to be performed once per compiler, with each
extension being likely unique (think about the differences between C++ and Lisp).
Most of the work thus targeted C++, which meant adopting its data model for the
database, and focusing on a market niche: CAD software and engineering applica-
tions. This market focus shaped OO databases in three ways: (a) no declarative
query language; (b) no need for transaction management; and (c) the performance
of algorithms on persistent objects should approach that of main memory. These
requirements were not fully aligned with those of business computing.

Unlike its competitors, the O2 database system supported an OO data model,
declarative embedded queries, and targeted business data processing rather than the
CAD market. While technologically advanced, Stonebraker and Hellerstein conclude
that O2 did not gain traction due to business rather than technology decisions.

7.2 Orthogonal persistence
Atkinson and Morrison [6] define orthogonal persistence in terms of three principles:
(a) the movement of data between long term and short term storage is exclusive re-
sponsibility of the run-time system and not the developer; (b) irrespective of its type,
each value can be made persistent; and (c) in languages with pointers, persistence by
reachability is supported. In a recent review of the field, Dearle et al. [12] state the
main goal of persistent programming: supporting the design, construction, mainte-
nance and operation of long-lived, concurrently accessed and potentially large bodies
of data and programs.

The last capability (placing code in the database) is a consequence of the principle
of type-orthogonality, and is required to avoid anomalies like the following: a program

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

62 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

P1 populates a database with objects of some type T . Another program P2 inserts
into this collection an object of type T ′, a subtype of T . If the original program
accesses the newly added object and calls methods that have been overridden in T ′,
the invoked code should be determined by late binding. This code has to be kept in
the database, as the invoker may be unaware about the existence of T ′.

Persistent programming languages have not become mainstream. The technology
coming closest, extensions to SQL with imperative constructs (as found in stored pro-
cedures), have not garnered a large developer mindshare either, apparently for two
reasons. First, the offerings from different DBMS vendors exhibit slight incompatibil-
ities that Part 4 of the SQL:1999 standard (Persistent Stored Modules, SQL/PSM)
has not managed to re-unite. Second, there are scalability issues when business logic
is run in the database and not in the middle tier [23].

Still, the problems that orthogonal persistence set to address are real and thus pain
points in the state of the practice. Tools for Object/Relational Mapping have filled
this market need, not the least because they require no modifications to compilers nor
to DBMSs, although their support for query optimization is basic, relying instead on
caching to improve performance.

A lightweight approach to language-integrated queries, internal DSLs [13], has
sparked several prototypes [15, §2], [27], which compromise on the readability and
well-formedness checking of queries in exchange for avoiding extending the compiler.

8 Conclusions
Modern programming languages offer both opportunities and challenges when inte-
grating a sublanguage for database queries. As a technology enabler, the extensibility
architecture of modern compilers (specially in connection with extensible syntax [5]
as in Fortress) opens the door to non-vendor-provided language processing. More
fundamentally, we see the expressiveness of the functional-object paradigm (followed
by Scala and LINQ) as an asset rather than a liability. In our case, it provided a
conceptual framework for the analysis of query semantics preservation.

Our approach improves productivity and quality in software development, by al-
lowing the type-safe embedding of expressive database queries using a familiar no-
tation. Moreover, a careful analysis of the target database language enabled us to
expand on the amount of static semantics checking of queries beyond that provided
by Microsoft LINQ. Further work is needed to increase the extent of client-side opti-
mization, to further weaken the case for manually tuned queries.

Looking into the future, there is the potential for persistent programming lan-
guages to support abstractions only partially supported by database managers: in-
variants, materialized views, and production rules. Without an expressive language
for invariants, neither can realistic integrity constraints be captured, nor efficient
analyses be devised to detect their violation. Instead, the state of the practice trusts
the (procedurally, manually coded) business logic with their enforcement. Regarding
materialized views, most work to date has focused on the relational case, an exception
being the MOVIE system [4] for an OQL subset. Also missing is the production rules
paradigm, where a certain data constellation (the activation part of a rule, expressed
as a query) triggers the updates specified in an action part [20].

We believe that addressing this more encompassing research and engineering
agenda is necessary to realize the vision of persistent programming languages.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 63

Table 3 – LINQ-related production rules

Q ∈ QueryExp ::= Ffrom QBqbody

F ∈ FromClause ::= from T0..1
type Vvar in Ein

QB ∈ QueryBody ::= B0..*
qbclauses SGsel_gby QC0..1

qcont

B ∈ BodyClause = (FromClause ∪ LetClause ∪ WhereClause
∪ JoinClause ∪ JoinIntoClause ∪ OrderByClause)

QC ∈ QueryCont ::= into Vvar QBqbody

H ∈ LetClause ::= let Vlhs = Erhs

W ∈ WhereClause ::= where Ebooltest

J ∈ JoinClause ::= join T0..1
type Vinnervar in Einnerexp

on Elhs equals Erhs

K ∈ JoinIntoClause ::= Jjc into Vresult

O ∈ OrderByClause ::= orderby U1..* <separator:,>
orderings

U ∈ Ordering ::= Eord Directiondir

Direction ∈ { ascending, descending }
S ∈ SelectClause ::= select Eselexp

G ∈ GroupByClause ::= group Ee1 by Ee2

A Appendix: Syntax and Semantics of LINQ
In its simplest form, a LINQ query begins with a from clause and ends with either
a select or group clause. In between, zero or more query body clauses can be found
(from, let, where, join, or orderby). Queries may be nested: the collection over which
a from variable ranges may itself be a query. A similar effect can be achieved by
appending into variable S2 to a subquery S1: with that, S1 is used as generator for
S2. The fragment into variable S2 is called a query continuation.

A join clause tests for equality the key of an inner-sequence item with that of
of an outer-sequence item, yielding a pair for each successful match. An orderby
clause reorders the items of the incoming stream using one or more keys, each with
its own sorting direction and comparator function. The ending select or group clause
determines the shape of the result in terms of variables in scope.

The detailed structure of LINQ phrases is captured by the grammar in Table 3
(listing LINQ-proper productions, with QueryExp being the entry rule) and in Table 4
(listing other syntactic domains). In order to save space, well-known productions
have been omitted (e.g., those for arithmetic expressions). The notation conventions
in the grammar follow Turbak and Gifford [30]. Terminals are enumerated (e.g. for
the syntactic domain Direction). Compound syntactic domains are sets of phrases
built out of other phrases. Such domains are annotated with domain variables, which
are referred from the right-hand-side of productions. References, e.g. QC0..1

qcont (which
ranges over the QueryContinuation domain) are subscripted with a label later used

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

64 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

Table 4 – Other syntactic domains

Id, V ∈ Identifier = (([a-zA-Z][a-zA-Z0-9]*) - Keyword)
SG ∈ (SelectClause ∪ GroupByClause)
E ∈ Exp = (QueryExp ∪ ArithExp ∪ BoolExp ∪ UnaryExp

∪ BinaryExp ∪ PrimaryExp ∪ DotSeparated ∪ . . .)
EL ∈ ExpOrLambda = (Exp ∪ Lambda)
P ∈ PrimaryExp = (Application ∪ QueryExp ∪ NewExp ∪ PrimitiveLit ∪ . . .)

T ∈ TypeName ::= Id1..* <separator:.>
fragments

D ∈ DotSeparated ::= Ppre . Ppost

A ∈ Application ::= Idhead Cast0..1
cast (EL0..* <separator:,>

args)

L ∈ Lambda ::= (Id0..* <separator:,>
params) => Ebody

to denote particular child nodes in the transformations rules. The superscript of a
reference indicates the allowed range of occurrences.

LINQ is mostly implicitly typed: only variables in from or join clauses may op-
tionally be annotated with type casts. Several ambiguities have to be resolved with
arbitrary lookahead (e.g. to distinguish between a JoinClause and a JoinIntoClause)
requiring rule priorities or syntactic predicates.

The denotational semantics of LINQ gives meaning to a query in terms of its
syntax components. An auxiliary definition and two kinds of valuation functions are
needed. A binding-set B ≡ {v1 7→ t1, . . .} is a finite map from non-duplicate variables
vi to values ti. We write vi 7→ ti as a shorthand for the pair (vi, ti). LINQ forbids
declaring a variable whose name would hide another, so a non-ordered map is enough.
As usual, an expression E can be evaluated in the context of B by induction on its
syntactic structure, with a non-defining occurrence of variable v evaluating to its
image t under B.

The kinds of valuation functions are: (1) JQKenvs denotes the sequence of binding-
sets generated by Q (a query body) given the incoming sequence of binding-sets envs;
while (2) JEK(env) denotes the evaluation of E in the context of the single binding-
set env. To simplify the formulation of valuation functions, a query is regarded as a
sequence S of body clauses Q, with query continuations desugared into subqueries [15].

The valuation JQKenvs denotes simply the (sub-)query results when Q is a Select-
Clause or a GroupByClause:

J select Eselexp Kenvs
def= [JselexpK(env) | env← envs] (1)

Informally speaking, group result by key returns a Grouping, i.e., a finite ordered
map with entries key 7→ cluster, a cluster being a sequence of results. The valuation
of GroupByClause involves a left-fold, taking an empty grouping as initial value and
progressively adding the valuation of result to the cluster given by the valuation of
key. Using syntax common in functional languages like Haskell,

J group Eresult by Ekey Kenvs
def= foldl cf [] envs (2)

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 65

where cf, the combining function, captures the provided result selector and key ex-
tractor, has type Grouping → BindingSet → Grouping, and is defined as:

cf g bs = let r = (JresultK(env)) in
let k = (JkeyK(env)) in
if hasKey g k then appendToCluster g k r

else append g [(k,[r])]

For Q other than select or groupby, JQKenvs denotes a sequence of binding-sets,
which constitute the envs in effect for the next clause in S, the first Q in S being
evaluated with an empty incoming envs.

Jfrom Vvar in EsrcSeq Kenvs
def= [env’ | env← envs, item← JsrcSeqK(env),

let env’ = env ∪ {var 7→ item}] (3)

Jlet Vvar = Eexp Kenvs
def= [env’ | env← envs,

let env’ = env ∪ {var 7→ JexpK(env) }] (4)

Jwhere Etest Kenvs
def= [env | env← envs, JtestK(env)] (5)

The valuation of an OrderByClause permutes the incoming binding-sets, sorting the
sequence envs according to the multi-key given by expressions keyi and sort directions
diri. In terms of the Haskell function Data.List.sortBy,

J orderby key1 dir1 . . . keyn dirn Kenvs
def= sortBy comp envs (6)

where comp is a comparison function (specific to the given keyi and diri, i = 1 . . . n)
between two binding-sets bsA and bsB, returning one of GT, EQ, LT. First, J key1 K(bsA)
and J key1 K(bsB) are compared taking dir1 into account. If they are not equal that’s
the outcome of comp bsA bsB. Otherwise, J key2 K(bsA) and J key2 K(bsB) are compared
taking dir2 into account, and so on. If no GT or LT is found for i = 1 . . . n, EQ is returned.

The semantics is defined over a core syntax where explicit type annotations have
been desugared into type casts (in from and join clauses).

Jjoin VinnerVar in Eisrc on EouterKey equals EinnerKey Kenvs
def= [ienv | env← envs, innerItem← JisrcK(env) ,

let ienv = env ∪ { innerVar 7→ innerItem } ,

JouterKeyK(env) = JinnerKeyK(ienv)] (7)

Jjoin VinnerVar in Eisrc on EouterKey equals EinnerKey into VresVar Kenvs
def= [renv | env← envs,

let group = [innerItem | innerItem ← JisrcK(env)
let ienv = env ∪ {innerVar 7→ innerItem},
JouterKeyK(env) = JinnerKeyK(ienv)],

let renv = env ∪ { resVar 7→ group }] (8)

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article3.html

66 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

References
[1] EDM. http://msdn.microsoft.com/en-us/magazine/cc700331.aspx.
[2] Entity SQL. http://msdn.microsoft.com/en-us/library/bb387118.aspx.
[3] PLINQ. http://msdn.microsoft.com/en-us/magazine/cc163329.aspx.
[4] M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. MOVIE: an

incremental maintenance system for materialized object views. Data Knowl.
Eng., 47(2):131–166, 2003.

[5] Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and Sukyoung
Ryu. Growing a syntax. In Intnl. Workshop FOOL, 2009. http://www.cs.
cmu.edu/~aldrich/FOOL09/allen.pdf.

[6] Malcolm Atkinson and Ronald Morrison. Orthogonally persistent object sys-
tems. The VLDB Journal, 4(3):319–402, 1995.

[7] Nicolas Bruno and Pablo Castro. Towards declarative queries on adaptive data
structures. In Intnl. Conf. on Data Engineering, pages 1249–1258, Los Alami-
tos, CA, USA, 2008. IEEE Computer Society.

[8] Daniel K. C. Chan and Philip W. Trinder. A processing framework for object
comprehensions. Information & Software Technology, 39(9):641–651, 1997.

[9] Austin Clements. A comparison of designs for extensible and extension-
oriented compilers. Master’s thesis, Massachusetts Institute of Technology,
Feb 2008. http://pdos.csail.mit.edu/xoc/clements-thesis.pdf.

[10] Ezra Cooper. The script-writer’s dream: How to write great SQL in your own
language, and be sure it will succeed. In 12th Intnl. Symp. on Database Pro-
gramming Languages (DBPL 2009), pages 36–51. http://ezrakilty.net/
pubs/dbpl-sqlizability.pdf.

[11] Bart De Smet. Query validation by query providers. http:
//bartdesmet.net/blogs/bart/archive/2007/07/05/
linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.
aspx.

[12] Alan Dearle, Graham N.C. Kirby, and Ron Morrison. Orthogonal persistence
revisited. In Moira C. Norris and Michael Grossniklaus, editors, Proc. of the
2nd Intnl. Conf. ICOODB 2009, pages 1–22, July 2009. http://www.cs.
st-andrews.ac.uk/files/publications/download/DKM09a.pdf.

[13] Gilles Dubochet. On Embedding Domain-specific Languages with User-friendly
Syntax. In 1st Workshop on Domain-Specific Program Development, pages 19–
22, 2006. http://infoscience.epfl.ch/record/85862.

[14] Leonidas Fegaras and David Maier. Towards an Effective Calculus for Object
Query Languages. In SIGMOD ’95: Proc. of the 1995 ACM SIGMOD Intl
Conf. on Management of Data, pages 47–58, New York, NY, USA, 1995. ACM
Press. http://lambda.uta.edu/sigmod95.ps.gz.

[15] Miguel Garcia. Compiler plugins can handle nested languages: AST-level
expansion of LINQ queries for Java. In Moira C. Norris and Michael Gross-
niklaus, editors, Proc. of ICOODB 2009, pages 41–58, July 2009. http://www.
sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.
pdf.

Journal of Object Technology, vol. 9, no. 4, 2010

http://msdn.microsoft.com/en-us/magazine/cc700331.aspx
http://msdn.microsoft.com/en-us/library/bb387118.aspx
http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
http://www.cs.cmu.edu/~aldrich/FOOL09/allen.pdf
http://www.cs.cmu.edu/~aldrich/FOOL09/allen.pdf
http://pdos.csail.mit.edu/xoc/clements-thesis.pdf
http://ezrakilty.net/pubs/dbpl-sqlizability.pdf
http://ezrakilty.net/pubs/dbpl-sqlizability.pdf
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
http://www.cs.st-andrews.ac.uk/files/publications/download/DKM09a.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/DKM09a.pdf
http://infoscience.epfl.ch/record/85862
http://lambda.uta.edu/sigmod95.ps.gz
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/icoodb/compplugin.pdf
http://www.jot.fm/contents/issue_2010_07/article3.html

Extending Scala with Database Query Capability · 67

[16] Miguel Garcia and Anastasia Izmaylova. Compiling LINQ and a Scala subset
into SQL:1999. Technical report, Software Systems Institute (STS), Technis-
che Universität Hamburg-Harburg, Germany, Sep 2009. http://www.sts.
tu-harburg.de/people/mi.garcia/pubs/2009/ScalaQLTechRep01.pdf.

[17] Peter M. D. Gray, Larry Kerschberg, Peter J.H. King, and Alexandra Poulo-
vassilis (Eds.). The Functional Approach to Data Management: Modeling, Ana-
lyzing, and Integrating Heterogeneous Data. SpringerVerlag, 2004.

[18] Torsten Grust, Manuel Mayr, and Jan Rittinger. XQuery join graph isolation.
In Proc. of the 25th Intnl. Conf. on Data Engineering (ICDE 2009), Shanghai,
China, pages 1167–1170. Extended version at http://arxiv.org/abs/0810.
4809.

[19] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry:
database-supported program execution. In SIGMOD’09: Proc. of the 35th
SIGMOD Intnl. Conf. on Management of Data, pages 1063–1066, New York,
NY, USA, 2009. ACM.

[20] E. N. Hanson, S. Bodagala, and U. Chadaga. Trigger Condition Testing and
View Maintenance Using Optimized Discrimination Networks. IEEE Transac-
tions on Knowledge and Data Engineering, 14(2):261–280, 2002.

[21] Joseph M. Hellerstein and Michael Stonebraker. Readings in Database Systems:
Fourth Edition. The MIT Press, 2005.

[22] Michael Isard and Yuan Yu. Distributed data-parallel computing using a high-
level programming language. In SIGMOD’09: Proc. of the 35th SIGMOD
Intnl. Conf. on Mgmt. of Data, pages 987–994, New York, NY, USA, 2009.
ACM.

[23] Sergey Melnik, Atul Adya, and Philip A. Bernstein. Compiling mappings to
bridge applications and databases. In SIGMOD ’07: Proc. of the 2007 ACM
SIGMOD Intnl. Conf. on Mgmt. of Data, pages 461–472, New York, NY, USA,
2007. ACM.

[24] Adriaan Moors. Type Constructor Polymorphism for Scala: Theory and
Practice. PhD thesis, Katholieke Universiteit Leuven, May 2009. https:
//lirias.kuleuven.be/handle/1979/2642.

[25] Anders Bach Nielsen. Compiler phase and plug-in initialization for Scala 2.8,
2008. Scala Improvement Document 2, http://www.scala-lang.org/sid/2.

[26] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a com-
prehensive step-by-step guide. artima, Mountain View, Calif., 1st edition, 2008.

[27] Daniel Spiewak and Tian Zhao. ScalaQL: Language-integrated database
queries for Scala. In Software Language Engineering: 2nd Intnl. Conf., SLE
2009, Denver, Colorado, USA, 2009. To appear. http://www.cs.uwm.edu/
~dspiewak/papers/scalaql.pdf.

[28] Jens Teubner. Pathfinder: XQuery Compilation Techniques for Relational
Database Targets. PhD thesis, Technische Universität München, October 2006.
http://www-db.in.tum.de/~teubnerj/publications/diss.pdf.

[29] Philip W. Trinder. A Functional Database. PhD thesis, Oxford University,
December 1989. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.52.4456.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/ScalaQLTechRep01.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/ScalaQLTechRep01.pdf
http://arxiv.org/abs/0810.4809
http://arxiv.org/abs/0810.4809
https://lirias.kuleuven.be/handle/1979/2642
https://lirias.kuleuven.be/handle/1979/2642
http://www.scala-lang.org/sid/2
http://www.cs.uwm.edu/~dspiewak/papers/scalaql.pdf
http://www.cs.uwm.edu/~dspiewak/papers/scalaql.pdf
http://www-db.in.tum.de/~teubnerj/publications/diss.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.4456
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.4456
http://www.jot.fm/contents/issue_2010_07/article3.html

68 · Miguel Garcia, Anastasia Izmaylova, Sibylle Schupp

[30] Franklyn A. Turbak and David K. Gifford. Design Concepts in Programming
Languages. The MIT Press, 2008.

[31] Ben Wiedermann, Ali Ibrahim, and William R. Cook. Interprocedural query
extraction for transparent persistence. SIGPLAN Not., 43(10):19–36, 2008.

[32] Darren Willis, David J. Pearce, and James Noble. Efficient Object Querying
for Java. In Dave Thomas, editor, ECOOP, volume 4067 of LNCS, pages 28–
49. Springer, 2006.

[33] Limsoon Wong. The functional guts of the Kleisli query system. In ICFP ’00:
Proc of the Fifth ACM SIGPLAN Intnl. Conf. on Functional Programming,
pages 1–10, New York, NY, USA, 2000. ACM.

About the authors

Miguel Garcia completed his PhD on formal methods for model-
driven software engineering at the Institute for Software Systems,
Hamburg University of Technology (Germany). His current re-
search is reported at http://www.sts.tu-harburg.de/people/
mi.garcia.

Anastasia Izmaylova graduated from the Bauman Moscow
State Technical University with an MSc degree in Applied Mathe-
matics. Currently, she is finishing an MSc in Information and Me-
dia Technologies at the Hamburg University of Technology (Ger-
many). She can be reached at FSAnastasia@gmail.com.

Sibylle Schupp is Professor and Head of the Institute for Soft-
ware Systems at Hamburg University of Technology. See http:
//www.sts.tu-harburg.de/people/schupp/ for contact details.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.sts.tu-harburg.de/people/mi.garcia
http://www.sts.tu-harburg.de/people/mi.garcia
mailto:FSAnastasia@gmail.com
http://www.sts.tu-harburg.de/people/schupp/
http://www.sts.tu-harburg.de/people/schupp/
http://www.jot.fm/contents/issue_2010_07/article3.html

	Introduction
	Background
	Semantic foundation: query comprehensions
	Ferry: optimizing database comprehensions
	Extended example
	Microsoft LINQ

	Levels of integration of host and query languages
	Level 1: Native query syntax
	Level 2: Static guarantee of database evaluation
	Level 3: Optimizability known at shipping time
	Level 4: Client-side processing
	ScalaQL and LINQ under the light of integration levels

	LINQ to Scala
	Comprehensions in LINQ and Scala
	Handling of orderby and group by

	Scala to Ferry
	Relational encoding of Scala values
	Isomorphism of operators, types, and values between Scala and Ferry
	Translation rules: Collection operators
	Translation of Scala comprehensions

	Query optimization
	Related Work
	Database query languages
	Orthogonal persistence

	Conclusions
	Appendix: Syntax and Semantics of LINQ
	References
	About the authors

