
Journal of Object Technology
Published by ETH Zurich, Chair of Software Engineering, c© JOT 2010

Online at http://www.jot.fm.

A Dependence Representation for
Coverage Testing of Object-Oriented

Programs

E.S.F. Najumudheena Rajib Malla Debasis Samantab

a. Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, India

b. School of Information Technology
Indian Institute of Technology, Kharagpur, India

Abstract We propose a dependence-based representation for object-or-
iented programs, named Call-based Object-Oriented System Dependence
Graph (COSDG). Apart from structural features, COSDG captures im-
portant object-oriented features such as class, inheritance, and polymor-
phism. Novel features of COSDG include details of method visibility in a
derived class, and different types of method call edges to distinguish be-
tween various calling contexts—simple, inherited, and polymorphic. We
also propose an algorithm for the construction of COSDG, and subse-
quently explain its working with an example. COSDG has been devel-
oped primarily to aid test coverage analysis. However, it can be used in a
variety of other software engineering applications such as program slicing,
software re-engineering, and debugging.

Keywords Coverage analysis, program representation, software testing,
object-oriented programs.

1 Introduction

Various software techniques such as test coverage analysis, program slicing, program
debugging, software re-engineering, and compiler optimization convert a program into
a suitable intermediate representation by code analysis, and use it for subsequent
operations. An intermediate representation is essentially a model of a program that
captures those characteristics that are relevant to a specific task while abstracting
out the rest.

A variety of models have been proposed in the past to represent various features
of programs. Control flow graph (CFG) [2, 6], data flow graph (DFG) [16, 6], program
dependence graph (PDG) [6], system dependence graph (SDG) [8], and call graph (CG)

E.S.F. Najumudheen, Rajib Mall, Debasis Samanta. A Dependence Representation for Coverage
Testing of Object-Oriented Programs. In Journal of Object Technology, vol. 9, no. 4, 2010,
pages 1–23. Available at http://www.jot.fm/contents/issue_2010_07/article1.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm/contents/issue_2010_07/article1.html
http://www.jot.fm/contents/issue_2010_07/article1.html

2 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

[20] are some of the well known representations. Each of these captures some specific
features of a program: CFG depicts the flow of control between various program
elements, DFG depicts data flow information between various program elements, PDG
captures both control and data dependences for a single procedure, SDG represents
dependences and procedure calls between multiple procedures, and CG represents
calling relationships between various modules of a program.

These models were proposed to represent procedural programs. However, they
cannot be used satisfactorily for object-oriented programs since the object-oriented
paradigm introduces several features such as encapsulation, inheritance, polymor-
phism and dynamic binding.

In the past, several researchers have proposed extensions to dependence-based rep-
resentations such as PDG and SDG, to incorporate features specific to object-oriented
programs. Some of them were intended to meet the specific needs of a particular ap-
plication [17, 10, 11], whereas some others were intended to support a variety of
applications [13, 7]. Rothermel and Harrold proposed the class dependence graph
(ClDG) [17]. Larsen and Harrold proposed a system dependence graph for object-
oriented software (ESDG) [10]. Liang and Harrold proposed extensions to ESDG for
the purpose of object-slicing [11]. Malloy et al. proposed a layered representation, the
object-oriented program dependency graph (OPDG) [13]. Harrold and Rothermel pro-
posed a family of representations for object-oriented software: class hierarchy graph
(CHG), class call graph (CCG), class control flow graph (CCFG), class dependence
graph (ClDG), and framed graph [7].

Although SDG and its modified versions have been used as intermediate represen-
tations for various software engineering applications [17, 10, 11, 23, 22, 9], attempts
to perform test coverage analysis of object-oriented programs based on a dependence-
based representation are scarcely reported in the literature. Earlier work have used
control flow graphs, data flow graphs, def-use graphs, and call graphs as intermedi-
ate representations to perform test coverage analysis [4, 21, 1, 12, 18, 19], but not a
dependence-based graph. Moreover, to perform an object-oriented coverage analysis,
we need a representation that has the following aspects: be capable of capturing im-
portant object-oriented features, should help track the coverage of various program
elements and features during execution, and facilitate accurate and efficient compu-
tation of object-oriented coverage measures. SDG or its modified versions either lack
some of these aspects or possess unnecessary details (discussed in Section 6), and
hence, cannot be used satisfactorily for test coverage analysis. Therefore, a specific
representation is needed.

In this paper, we propose a dependence-based representation, based on ESDG, for
test coverage analysis of object-oriented programs. We have named our representation
Call-based Object-Oriented System Dependence Graph (COSDG). Our representation
incorporates dependence, flow, call graph, and inheritance details. Dependence details
include control dependence, data dependence, and membership dependence. Flow
details include control flow and data flow. Call graph details consists of simple,
inherited, and polymorphic method calls. Inheritance details consists of inheritance
hierarchy among classes, and method visibility in a derived class. Though COSDG
was developed specifically for coverage analysis operations, it has all the essential
features needed for use in a variety of other software engineering applications such as
program slicing, software re-engineering, and program debugging.

The rest of the paper is organized as follows. Section 2 provides the basic details
needed to understand our representation. Section 3 describes our proposed represen-

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 3

tation, the Call-based Object-Oriented System Dependence Graph (COSDG). Section
4 describes the construction of the graph with the help of an example. Section 5 briefly
describes our coverage analysis technique using the COSDG, and also discusses the
results of our experimental study. We compare our work with related work in Section
6. Section 7 concludes this paper.

2 Background

In this section, we first provide a few definitions that would help the reader to un-
derstand the subsequent discussions. Next, we give an overview of SDG, ClDG, and
then ESDG, which forms the basis of our proposed representation, COSDG.

Definition 2.1. Control Dependence: For two statements X and Y in a program,
if Y is control dependent on X, then X must have two exit paths; one of the exit paths
always results in Y being executed, and the other exit path may result in Y not being
executed [6].

Definition 2.2. Data Dependence: For two statements X and Y in a program, Y
is data dependent on X, if X defines a variable v, Y uses v, and there exists a directed
path from X to Y along which there is no intervening definition of v [8, 17].

2.1 System Dependence Graph

The System Dependence Graph (SDG) is an extension of the program dependence
graph [6], and represents a program that consists of multiple procedures and involves
procedure calls. An SDG includes a program dependence graph to represent a sys-
tem’s main program, procedure dependence graphs to represent a system’s auxiliary
procedures, and some additional edges to interconnect these graphs [8].

In an SDG, a method call statement in a program (the corresponding program
point is referred to as a call site) is represented by using a call-site vertex. Parameter
passing between a call site and a called procedure is modeled by the introduction of
four types of parameter vertices: formal-in, formal-out, actual-in, and actual-out ver-
tices. A formal-in vertex is used to represent each formal parameter of the procedure,
and a formal-out vertex is used to represent each formal parameter that may be mod-
ified by the procedure. Similarly, an actual-in vertex is used to represent each actual
parameter at the call site, and an actual-out vertex is used to represent each actual
parameter that may be modified by the called procedure. Formal-in and formal-out
vertices are control dependent on the entry vertex of the procedure, whereas actual-in
and actual-out vertices are control dependent on the call-site vertex.

A call edge is used to connect a call vertex to entry vertex of the called procedure.
A parameter-in edge is used to connect an actual-in vertex to a formal-in vertex, and
represents data flow from a call temporary1 to a formal parameter. A parameter-out
edge is used to connect a formal-out vertex to an actual-out vertex, and represents
data flow from a formal parameter to a return temporary. In a procedure call, the
value of an actual parameter represented by an actual-out vertex may depend on
the value of another actual parameter represented by an actual-in vertex. Such a

1An intermediate temporary variable created for each parameter, to effect the transfer of value
between a call site and a called procedure [8].

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

4 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

dependence, termed as transitive dependence, is represented by using a transitive
dependence edge to connect the actual-in to the actual-out vertex.

Data dependence edges are used to represent data flow between two statements
within a method. Let two statements in a method be represented by vertices v1 and
v2. If vertex v2 is data dependent on vertex v1, then v1 is connected to v2 by a data
dependence edge.

2.2 Class Dependence Graph

The Class Dependence Graph (ClDG) represents the control and data dependencies
within a class [17]. For a given class, the ClDG consists of a set of program dependence
graphs (PDGs) [6] with additional edges to represent inter-procedural control and data
dependences. Each method (procedure) in a class is represented by an individual
PDG. Hence, in a ClDG, each PDG is actually a procedure dependence graph.

Each procedure dependence graph contains an entry vertex that represents entry
into a procedure. A statement in a procedure is represented by a statement vertex.
Control and data dependences between program statements are represented by control
dependence and data dependence edges, respectively. For example, a control depen-
dence edge from a vertex A to a vertex B implies that the statement represented by
B is control dependent on the statement represented by vertex A (similarly for data
dependence).

A representative driver node (RDN) serves as the root of the graph, and summa-
rizes the set of drivers for class testing. Each public method in a class (represented
as a PDG) is made a child of the root, by adding a driver edge from the root to the
entry vertex of the PDG of that method.

A state vertex summarizes variables that make up the state of an object of a class.
A state vertex is also made a child of the root vertex. The location of a method call
in the program is referred to as a call site. A call to a method is represented by a call
edge which connects a call site to the entry vertex of the called method.

2.3 Extended System Dependence Graph

Larsen and Harrold extended the System Dependence Graph to represent object-
oriented programs [10]. In this paper, we refer to this graph as Extended System
Dependence Graph (ESDG). Since an object-oriented software consists of a group of
interacting classes, ESDG uses a class dependence graph (ClDG) to represent each
class in a system. In an ESDG, the root node in the original ClDG is replaced by
a class entry vertex which uniquely identifies a class, and driver edges are replaced
by class member edges. A method in a class is represented by a method dependence
graph which is similar to the procedure dependence graph discussed in ClDG. Class
member edges connect a class entry vertex to the method entry vertex of each method
in a class.

A call site in a method is represented as a call vertex. Parameter passing is modeled
similar to the SDG with the introduction of parameter vertices and parameter edges.
The transitive dependence edge in SDG is called a summary edge in ESDG. Moreover,
since instance variables of a class are accessible to all methods in a class, a formal-in
and a formal-out vertex is created for each instance variable that is referenced in a
method.

For a derived class, the representation of the base class method is reused for an
inherited method. Apart from connecting the class entry vertex of a class to the

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 5

method entry vertices of locally defined methods, class member edges also connect it
to the method entry vertices of the methods inherited by the derived class.

A method call is termed as a polymorphic method call if there are several possible
destinations of the call, and the actual destination is determined dynamically. ESDG
uses a polymorphic choice vertex to represent the dynamic choice among the possible
destinations of a polymorphic call. A polymorphic call vertex is connected to a poly-
morphic choice vertex by a call edge. Calls to each possible destination is represented
by a subgraph, and call edges are used to connect the polymorphic choice vertex to
the individual subgraphs.

3 Call-based Object-Oriented System Dependence Graph (COSDG)

In this section, we present our dependence-based representation for object-oriented
programs, named Call-based Object-Oriented System Dependence Graph (COSDG).
The COSDG is based on ESDG. Like ESDG, each class in a COSDG is represented
by a class dependence graph, but those aspects that are not needed for test coverage
analysis (e.g., polymorphic choice vertex) are excluded from the representation. More-
over, it incorporates visibility details of inherited methods in the representation, and
represents polymorphic and inherited method calls differently. These modifications
are intended to help achieve accurate polymorphic and inheritance coverage measures
for object-oriented programs.

COSDG is a directed, connected multigraph G = (V,E), consisting of a set V of
vertices and a set E of edges. A vertex v ∈ V represents one of the three categories
of vertices, namely, statement vertices, entry vertices, and parameter vertices. An
edge e ∈ E represents one of the seven categories of edges, namely, control depen-
dence edges, data dependence edges, parameter dependence edges, method call edges,
summary edges, class member edges, and inheritance edges.

In the discussions to follow, we have provided a pictorial view of the graphs (par-
tial or subgraphs of COSDG) representing the programs and code snippets given as
examples. The graphical representation for different types of vertices and edges in a
COSDG are shown in Figure 1. For clarity, vertices are labeled with their suffixes.
For example, vertices ve1.01, vs1.05, and vp1.01 are labeled as e1.01, s1.05, and p1.01,
respectively. The different types of vertices and edges are explained in the following
sections.

 class entry,
 method entry

 parameter

 statement,
 call

 control dependence inheritance
 data dependence simple method call
 parameter dependence inherited method call
 class member polymorphic method call
 summary

Representation for EdgesRepresentation for Vertices

Figure 1 – Graphical Representation for different types of vertices and edges in a COSDG

3.1 Vertices

A vertex is denoted as vt.n (vt.n ∈ V) where t specifies the type of a vertex and
n is an integer suffix that uniquely identifies a vertex. Program statements within

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

6 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

the body of a method are represented by statement vertices (Vs). These are of two
types, namely, simple statement vertices and call vertices. Statements that invoke a
method (call sites) are represented by call vertices (Vs2), whereas program statements
other than method calls, such as assignments, loops, and conditions, are represented
by simple statement vertices (Vs1). Class and method headers are represented by
entry vertices (Ve): class headers by class entry vertices (Ve1), and method headers
by method entry vertices (Ve2). Hence, Vs = Vs1 ∪ Vs2, and Ve = Ve1 ∪ Ve2.

COSDG adopts the ESDG’s model for parameter passing between a caller and
a callee2. It is modeled by using parameter vertices (Vp) and parameter dependence
edges (Section 2.1). There are four types of parameter vertices, namely, formal-in
(Vp1), formal-out (Vp2), actual-in (Vp3), and actual-out (Vp4) vertices. These vertices
are similar to the parameter vertices mentioned in Section 2.1.

In the discussions to follow, vs1.n ∈ Vs1, vs2.n ∈ Vs2, ve1.n ∈ Ve1, and ve2.n ∈
Ve2 denote a simple statement, a call, a class entry, and a method entry vertex,
respectively. Similarly, vp1.n ∈ Vp1, vp2.n ∈ Vp2, vp2.n ∈ Vp3, and vp4.n ∈ Vp4 denote a
formal-in, a formal-out, an actual-in, and an actual-out vertex, respectively.

3.2 Edges

An edge is denoted as et.n (et.n ∈ E) where t specifies the type of an edge, and n is an
integer suffix that uniquely identifies an edge. Passing of values between actual and
formal parameters is represented by parameter dependence edges (Ep), which are of
two types: parameter-in (Ep1) and parameter-out (Ep2) edges. Data dependence edges
(Ed) represent the flow of data between different statement vertices of the COSDG.
These edges are similar to the parameter and data dependence edges described in
Section 2.1. Summary edges (Es) represent the transitive flow of dependence between
actual-in and actual-out vertices.

Thus, ep1.n ∈ Ep1, ep2.n ∈ Ep2, ed.n ∈ Ed, and es.n ∈ Es denote a parameter-in, a
parameter-out, a data dependence, and a summary edge, respectively. Other types of
edges are explained in the following subsections.

3.2.1 Class Member Edges

Class member edges (Eb) are used to represent the membership relation between a
class and its methods. They associate all locally defined and overriding methods of a
class with the class entry vertex. A class entry vertex is connected to a method entry
vertex by using a class member edge. It is denoted as eb.n where b specifies a class
member edge, and n is an integer suffix that uniquely identifies the edge.

The Java program shown in Figure 2(a) has three classes A, B, and C consisting of
three, four, and two methods, respectively. Figure 2(b) shows the connection between
each class and its member methods by class member edges.

3.2.2 Inheritance Edges

Inheritance edges (Ei) represent the inheritance relation between classes. An inheri-
tance edge connects a child class to its parent class in the direction of the inheritance
dependence. It is tagged with a list of methods of a parent class that are visible in its
child class, i.e., method declared as protected and public in a parent class, but not

2We use the terms ‘caller’ and ‘callee’ to refer to a ‘calling statement’ (a call site) and a ‘called
method’, respectively.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 7

01: class A {
02: private void m0(){

// base
}

03: protected void m1(){
// base
}

04: public void m2(){
// base
}

}
05: class B extends A {
06: public void m2(){

// overriding
}

07: private void m3(){
// locally defined

}
08: public void m4(){

// locally defined
}

09: public void m5(){
// locally defined
}

}
10: class C extends B {
11: private void m6(){

// locally defined
}

12: public void m7(){
// locally defined
}

}

(a) An example Java program

e1.05

e2. 06 e2.07 e2.08 e2.09

e1.01

e2.02 e2.03 e2.04

e1.10

e2.11 e2.12

(b) Class member edges

e1.05

e1.01

e1.10

ei.02 = { m2 , m4 , m5 }

ei.01 = { m1 }

(c) Inheritance edges with tags
showing method visibility

Figure 2 – (a) A Java program depicting class membership and inheritance dependences
(for clarity, only relevant edges are shown)

overridden in a child class. An inheritance edge is denoted as ei.n where i specifies
an inheritance edge, and n is an integer suffix that uniquely identifies the edge.

Figure 2(c) illustrates the inheritance hierarchy of classes A, B, and C for the Java
program in Figure 2(a). In the example, class B is derived from class A, and class C
is derived from class B. Hence, class entry vertex ve1.05 is connected to class entry
vertex ve1.01 by an inheritance edge ei.01, and vertex ve1.10 is connected to vertex
ve1.05 by another inheritance edge ei.02. Out of the three methods defined in class A,
m0 is declared as private, m1 as protected, and m2 as public. However, as method
m2 is overridden in the derived class B, only method m1 is visible in class B. Hence,
edge ei.01 is tagged with m1 only. Similarly, edge ei.02 is tagged with m2, m4, and m5.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

8 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

3.2.3 Control Dependence Edges

Control dependence edges (Ec) represent control conditions on which the execution
of a program element depends. A control dependence edge is used to connect a pair
of vertices, say v1 to v2, if v2 is control dependent on v1. Pairs of program elements in
which the second element is control dependent on the first element is listed below.

A.1. A method and a statement defined within its body.

A.2. An iterative (loop) or a conditional statement and a statement nested
within the loop or condition.

A.3. A statement and itself (indicates a loop).

A.4. A method and its formal parameter.

A.5. A call site and its actual parameter.
An control dependence edge is denoted as ec.n where c specifies a control dependence
edge, and n is an integer suffix that uniquely identifies the edge.

Figure 3 depicts the various instances of control dependence in a program. From
the Java code in Figure 3(a), it can be noted that the statements in line 11, 12, 14, and
16 are directly dependent on the statement in line 10 (method header). Hence, the
method entry vertex ve1.10 is connected to statement vertices vs1.11, vs1.12, vs1.14, and
vs1.16 by control dependence edges in Figure 3(b) (Clause A.1). The statements in
line 13 and line 15 are dependent on the while statement in line 12 and if statement
in line 14 respectively. Therefore, statement vertices vs1.12 is connected to vs1.13, and
vs1.14 is connected to vs1.15, by control dependence edges (Clause A.2). The edge
from vs1.12 to itself indicates a loop (Clause A.3). Vertices vp1.01 and vp1.02 represent
the formal parameters x and y of method mult, and vertex vp2.03 represent the value
returned by mult. Hence, entry vertex ve1.10 is connected to vertices vp1.01, vp1.02,
and vp2.03 by control dependence edges (Clause A.4). Similarly, call vertex vs2.60
representing the call to mult in line 60, is connected to actual parameter vertices
vp3.04, vp3.05, and vp4.06 (Clause A.5).

3.2.4 Method Call Edges

Method call edges (Em) are of three types, namely, simple call edges (Em1), inherited
call edges (Em2), and polymorphic call edges (Em3). We introduce a few definitions
prior to describing different types of method call edges.

Definition 3.1. Inherited method: A method in a derived class that is inherited
from one of its ancestor classes, but not overridden in that class is called an inherited
method.

Definition 3.2. Non-inherited method: A method that is locally defined in a
class or that overrides a method in an ancestor class is called a non-inherited method.

Definition 3.3. Sender and receiver objects: A sender object is an object that
sends a request (a message) to another object. A receiver object is an object that
receives a message from another object. Both sender and receiver may be the same
object.

Definition 3.4. Receiver class: The class of a receiver object is called a receiver
class.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 9

01: public class Ex1 {
. . .

10: int mult(int x, int y){
int sum, i;

11: sum = 0;
12: while (y-- > 0)
13: sum += x;
14: if (x < 0 || y < 0)
15: sum = -sum;
16: return sum;

}
. . .

50: void test(){
int res;
. . .

60: res = mult(10,20);
. . .

}
}

(a) Java code snippet

s1.14

p2.03p1.02p1.01

s1.12s1.11

e1.10

s1.16

s1.13 s1.15

p4.06p3.05p3.04

.

e1.50

s2.60

(b) Respective vertices and edges
showing control dependences

Figure 3 – Various instances of control dependence in a COSDG
(only relevant edges are shown)

Definition 3.5. Candidate receiver class: A receiver class that is feasible to be
bound to a receiver object at a polymorphic call site is called a candidate receiver
class.

Definition 3.6. Target method: The method invoked by a receiver object as a
reaction to a message is called a target method.

Definition 3.7. Candidate target method: A target method that is feasible to
be invoked by a receiver object at a polymorphic call site is called a candidate target
method.

Simple Call Edge

A simple call edge connects a call site to a method defined in the class of an invoking
object. It is denoted as em1.n where m1 specifies a simple method call, and n is
an integer number that uniquely identifies the call edge. An edge is designated as a
simple call edge in each of the following situations.

B.1. A constructor of a class is called.

B.2. An object reference calls its non-inherited method.

B.3. A method calls itself (recursion) or another method of its own class.

B.4. A reference to an object calls an inherited method (m1), which in
turn calls another overriding method (m2) in the receiver class at a
call site Ck. Then, the call at Ck adds a new simple call edge from
Ck to m2

3, in addition to other edges that may exist at Ck.
3Since m2 is overridden, m2 defined in the receiver object is called. Hence, the call would be a

simple call.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

10 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

Class X in the example Java program shown in Figure 4 depicts the different
instances of a simple method call. Figure 5(a) illustrates the creation of simple call
edges at the respective call sites in method mx.

Call sites c1 and c2 in method mx are calls to constructors B() and C() (Clause
B.1). Therefore, we have simple call edges, em1.01 and em1.02 from vertices vs2.19 and
vs2.20 to entry vertices ve2.04 and ve2.13 respectively. The call to method m1 by Obj_B
is a simple call (call site c3) since m1 is a non-inherited method in B (Clause B.2).
Hence, call vertex vs2.21 is connected to method entry vertex ve2.05 by a simple call
edge em1.03. Method m1 in turn calls method m2 (call site c4). Since m2 is defined
locally in class B, it is a simple call (Clause B.3). Therefore, call vertex vs2.06 is
connected to entry vertex ve2.07 by a simple call edge em1.04. Finally, Obj_C calls m1,
a method inherited from its parent B. This call is an inherited method call (discussed
in the following section). However, as method m2 is overridden in class C (receiver
class), in the current context, the overriding method m2 is called at call site c4 (Clause
B.4). This call is represented as a simple call edge em1.06 from call vertex vs2.06 to
method entry vertex ve2.14.

Inherited Call Edge

An inherited call edge connects a call site to a method inherited by the class of an
invoking object. It is denoted as em2.n where m2 specifies an inherited method call,
and n is an integer number that uniquely identifies the call edge. An edge is designated
an inherited call edge in each of the following situations.

C.1. An object reference calls its inherited method.

C.2. A method calls a method of its super class.

C.3. A reference to an object calls an inherited method (m1), which in
turn calls another inherited method (m2) in the receiver class at call
site Ck. Then, the call at Ck adds a new inherited call edge from Ck

to m2, in addition to other edges that may exist from at Ck.

Class Y in the program shown in Figure 4 depicts the different instances of an
inherited method call. Figure 5(b) illustrates the creation of inherited call edges at
the respective call sites in method my.

After the calls to constructors B() and C() (call sites c6 and c7), reference variable
Inh_B calls method m3 at call site c8. Since m3 is a locally defined method, it is a
simple method call. Method m3 in class B calls method m0 in class A (parent class) at
call site c9 (Clause C.2). Therefore, call vertex vs2.09 is connected to method entry
vertex ve2.02 by an inherited method call edge em2.10. Next, reference variable Inh_C
calls an inherited method m4 at call site c10 (Clause C.1). So, call vertex vs2.28 is
connected to entry vertex ve2.10 by an inherited call edge em2.11. Method m4, in turn,
calls method m1. As the receiver class is C, in the current context, the call to method
m1 is an inherited method call (Clause C.3). Hence, call vertex vs2.11 is connected to
entry vertex ve2.05 by an inheritance call edge em2.12.

Polymorphic Call Edge

A polymorphic call edge connects a call site to a method defined in one of the candidate
receiver classes. It is denoted as em3.n where m3 specifies a polymorphic method call,
and n is an integer number that uniquely identifies the call edge. An edge is designated
as a polymorphic call edge in the following situation.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 11

D.1. A reference to an object calls a method at a call site Ck. If the target
method can not be determined statically, polymorphic call edges are
added at Ck from the caller to the callee, for each candidate target
method.

Class Z in the program shown in Figure 4 depicts a polymorphic method call.
Figure 5(c) illustrates the creation of polymorphic call edges at the call site. Since
the reference variable Poly_B at call site c15 in method mz of Class Z can refer to
an instance of one of the three classes, B, C, or D, the call to method m2 by Poly_B
is a polymorphic method call. Therefore, polymorphic call edges em3.16, em3.17, and
em3.18 are added from the call vertex vs2.37 to the method entry vertices ve2.07, ve2.14,
and ve2.14, respectively.

01:class A {
02: void m0() {

//base class method
}

}

03:class B extends A {
04: B() { //constructor }
05: void m1() {

//locally defined - 1
06: m2(); // (c4)

}
07: void m2() {

//locally defined - 2
}

08: void m3() {
09: m0(); // (c9)

}
10: void m4() {
11: m1(); // (c11)

}
}

12:class C extends B {
13: C() { //constructor }
14: void m2() {

//overriding
}

}

15:class D extends C {
16: D() { //constructor }

//inherited
}

17:class X {
18: void mx() {
19: B Obj_B = new B(); // simple (c1)
20: C Obj_C = new C(); // simple (c2)
21: Obj_B.m1(); // simple (c3)
22: Obj_C.m1(); // inherited (c5)

}
}

23:class Y {
24: void my() {
25: B Inh_B = new B(); // (c6)
26: C Inh_C = new C(); // (c7)
27: Inh_B.m3(); // simple (c8)
28: Inh_C.m4(); // inherited (c10)

}
}

29:class Z {
30: void mz() {
31: int x;

. . .
32: B Poly_B = new B(); // (c12)
33: if (x == 10)
34: Poly_B = new C(); // (c13)

else
35: if (x == 20)
36: Poly_B = new D(); // (c14)
37: Poly_B.m2(); //polymorphic (c15)

. . .
}

}

Figure 4 – An example Java program depicting different types of method calls

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

12 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

s2.21s2.20s2.19

e2.18

e1.17

s2.22

e2.05

e1.03

e2.13

e1.12

e2.07

e m1.01
e m1.02

e2.04e2.14

e m1.03 e m2.05

s2.06

e m1.04
e m1.06

(a) Method call edges in method mx

s2.27s2.26s2.25

e2.24

e1.23

s2.28

e2.08

e1.03

e2.13

e1.12

e2.05

e m1.07e m1.08

e2.04

e m1.09 e m2.11

s2.09

e m2.10

e1.01

e2.02e2.10

e m2.12
s2.11

(b) Method call edges in method my

 simple call
 inherited call
 polymorphic call

s2.36

s2.34

s2.32

e2.30

e1.29

s2.37

e1.03

e2.13

e1.12

e2.07

e m1.13
e m1.14

e2.04 e2.14

e m1.15
e m3.16

e2.16

e1.15

e m3.18e m3.17

s1.33

s1.35

(c) Method call edges in method mz

Figure 5 – Edges illustrating various types of method calls in the program shown in
Figure 4 (only relevant vertices and edges are shown)

4 Construction of a COSDG

In this section, we discuss the construction of the COSDG representation of a program.
We first outline the various steps in constructing the CODSG for a complete program.
First, the class dependence graph for each class is constructed. Next, the inheritance
hierarchy is established among classes by connecting the parent and child classes with
inheritance edges. Finally, algorithm BuildCallSite processes the call sites in each

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 13

method to establish a connection between a call site and a callee, which results in
a connected multigraph. This is done in two stages. First, call-sites in all the non-
main4 methods are processed to build clusters. Next, call sites in the main method are
processed to establish a connection between the class that contains the main method
and the classes within each cluster. Thus, it builds a call graph for the complete
program by incrementally adding method call edges at the call sites. These steps have
been presented in pseudo-code form in Figure 6(a) (Algorithm ConstructCOSDG).

The pseudo code for algorithm ConstructMDG is shown in Figure 6(b). It outlines
the different steps in constructing the method dependence graph for a method defi-
nition. First, the method header is processed and a method entry vertex is created.
Subsequently, formal-in and formal-out parameter vertices are created. The parame-
ter vertices are connected to the method entry vertex with control dependence edges.
Next, the statements within the method definition are processed, and corresponding
statement and call-site vertices are created. Then, after performing control depen-
dence and data dependence analyses, control dependence and data dependence edges
are added.

Algorithm BuildCallSite shown in Figure 6(c) outlines the different steps in pro-
cessing a method call statement (call site). First, actual-in and actual-out parameter
vertices are created at each call site. The parameter vertices are connected to the
corresponding call vertex with control dependence edges. Next, data flow between a
call site and its callee is established by adding parameter edges between actual and
formal vertices. Then, summary edges are added to indicate transitive dependencies
between actual-in and actual-out parameter vertices. Finally, various method call
edges are added (described in Section 3.2.4).

Example

We now illustrate the construction of the COSDG with the help of an example Java
program shown in Figure 75. Class A is the base class. Class B is derived from class A,
C is derived from B, and D is derived from C. The main method in class Test contains
the test driver code.

The class dependence graph for each class is created in three steps. First, the
class entry vertex for a class is created (Step 1a). In Step 1b(i), ConstructCOSDG
calls ConstructMDG to construct the method dependence graphs for the methods of
each class in the program. Then, the method dependence graphs are associated with
the class entry vertex by adding class member edges (Step 1b(ii)). Figure 8(a) illus-
trates the creation of class entry vertices and the construction of method dependence
graphs. In Step 2, ConstructCOSDG establishes the inheritance hierarchy. Figure 8(b)
illustrates the addition of class member edges, and the construction of the inheritance
tree. In Step 3, the algorithm invokes BuildCallSite to process the call sites. For
simple method calls, a simple call edge is added from the call vertex to the method
entry vertex of the callee. For polymorphic calls, a polymorphic call edge is added
from the call vertex to the method entry vertices of each target method. Method calls
from various call sites to their respective method entry vertices are shown in Figure
8(c). It shows the final form of the COSDG for the Java program given in Figure 7.
To avoid cluttering, only some of the data dependence edges have been shown in the
figure. Also, parameter and summary edges have not been shown in the figure.

4Here, we assume that the main method represents the test driver code that would test the various
features of classes.

5A detailed description of the working of the algorithm ConstructCOSDG is available in [14].

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

14 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

Algorithm ConstructCOSDG
Input: An Object-Oriented Program /* A set of n interacting classes */
Output: COSDG /* A dependence-based graph */

1. Construct Class Dependence Graphs
For each class
a. Create a class entry vertex
b. Construct Method Dependence Graphs

For each method
i. Construct a method dependence graph by calling ConstructMDG
ii. Add a class member edge /* From class entry to method entry */

2. Build inheritance hierarchy
Add inheritance edges to COSDG

3. Process call sites
a. Perform BuildCallSite for non-main methods
b. Perform BuildCallSite for the main method

(a) Algorithm to construct the COSDG for an object-oriented program

Algorithm ConstructMDG
Input: A Method
Output: A Method Dependence Graph

1. Process method header
a. Create a method entry vertex
b. Create formal parameter vertices /*Add formal-in, formal-out vetices*/
c. Add control dependence edges /* Method entry vertex to parameter vertices */

2. Create statement vertices and call-site vertices

3. Determine control dependences between vertices; Add control dependence edges

4. Determine data dependences between vertices; Add data dependence edges

(b) Algorithm to construct a Method Dependence Graph (subgraph) for a method

Algorithm BuildCallSite
Input: Partially constructed COSDG, a Method
Output: COSDG with method calls added

1. At each call site
a. Create actual parameter vertices /*Add actual-in, actual-out vertices */
b. Add control dependence edges /* Call vertex to parameter vertices */
c. Add a parameter edge for each pair of actual/formal vertices

/*Add parameter-in, parameter-out edges */
d. Determine transitive dependences; Add summary edges
e. Process method calls; Add method call edges

(c) Algorithm to process a method call at a call site

Figure 6 – (a) Algorithms to construct the COSDG and its subgraphs

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 15

01:class A {
02: A() { //constructor }
03: int m2(int x) {
04: return x+1;

}
}

05:class B extends A {
06: B() { //constructor }
07: void m1() {
08: int y = 10;
09: y = m2(y);

}
}

10:class C extends B {
11: C() { //constructor }
12: int m2(int x) {

13: return ++x;
}

}

14:public class Test {
15: public static void

main(String[] args) {
//test driver code

16: int x,y;
17: x = args.length;
18: B ObjRef = new B();
19: ObjRef.m1();
20: if (x == 1)
21: ObjRef = new C();
22: y = ObjRef.m2(x);

}
}

Figure 7 – An example Java program to illustrate the construction of the COSDG

ec.05ec.04

s1.04

ec.03
ec.02

p2.02

e2.07

e2.03

s1.08 s2.09

ec.15

ec.09

p1.05

ec.14

ec.13ec.12

e2.15

s2.18 s2.22

s2.21

s1.20s1.17 s2.19

ec.11ec.10

p1.01

ec.01

s1.13

ec.08
ec.07

p2.04

e2.12

p1.03

ec.06

e2.02

e2.06

e2.11

A

B

C

Test
e1.01

e1.05

e1.10

e1.14

(a) Subgraphs created after Step 1b(i) of algorithm ConstructCOSDG

Figure 8 – Incremental construction of COSDG (Contd.)

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

16 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

ec.05ec.04

s1.04

ec.03
ec.02

p2.02

e2.07

e2.03

s1.08 s2.09

p1.01

ec.01

s1.13

ec.08
ec.07

p2.04

e2.12

p1.03

ec.06

e2.02

e2.06

e2.11

A

B

C

e1.01

e1.05

e1.10

ec.15

ec.09

p1.05

ec.14

ec.13ec.12

e2.15

s2.18 s2.22

s2.21

s1.20s1.17 s2.19

ec.11ec.10

Test
e1.14

(b) COSDG after completion of Step 2 of the algorithm

ec.13

ec.09

p1.05

ec.14

ec.10ec.11

e2.15

s2.22 s2.20

s2.21

s1.17s2.19 s2.18

ec.15ec.12

e1.01 e1.05

e1.10

e1.14
Test

ec.04 ec.05

s1.04

ec.03

ec.02

p2.02

e2.07

e2.03

s2.09

s1.08

p1.01

ec.01

s1.13 ec.08

ec.07

p2.04

e2.12

p1.03

ec.06

p3.06
em2.01

e2.02

e2.06

em1.02

em1.03

e1..11

em1.04

em3.05

p4.07

em3.06

p3.08 p4.09
p1.01,
p1.03 x = x_in

p2.02 m2_out = x+1
p2.04 m2_out = x
p1.05 args = args_in
p3.06 x_in = y
p4.07,
p4.09 y = m2.out

p3.08 x_in = x

Legend

(c) COSDG after Step 3 of the algorithm

Figure 8 – Incremental construction of COSDG for the Java program in Figure 7.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 17

5 Test Coverage Analysis using COSDG

In this section, we briefly describe our approach to test coverage analysis of object-
oriented programs using our proposed representation, the COSDG [15]. Figure 9
gives the schematic of our test coverage analysis technique. First, the source code is
parsed by a graph builder to construct the COSDG of the program under test. Next,
the source code is instrumented by a source code instrumenter at particular program
points depending on the criteria specified by the user. The instrumented code is then
executed with different test inputs in an integrated run-time environment (for e.g.,
Java Runtime environment). The execution traces of various test runs form the input
to a graph marker, which marks the edges of COSDG based on the executed features.
Finally, the marking on the different types of edges in the COSDG are analyzed, and
various coverage measures are computed by a coverage analyzer.

Run-time
Environment

Source Code
Instrumenter

Coverage
Analyzer

Coverage
Report

Instrumented
Source Code

Source
Code

Graph
Builder

Graph
Marker

Test
Cases

COSDG

Coverage
Criteria

Figure 9 – Schematic of our test coverage analysis technique.

5.1 Experimental Results

Our test coverage analysis technique has been implemented in a prototype tool. It
has been developed in Java using Eclipse IDE [5] and ANTLR tool [3]. An object-
oriented program (presently, Java), coverage criteria, and a test suite form the input
to the tool. It outputs a coverage report, which provides details of the various program
features exercised by the test suite.

We have performed several experimental studies using the Graph Builder module
for programs of varying sizes. The programs used for our study consisted of 5 to 20
classes, and the program size varied from 233 to 1712 statements. Table 1 summarizes
the results of our experiments. The fourth and the fifth columns denote the number
of vertices and edges created by algorithm ConstructCOSDG, respectively. The sixth
column shows the memory required to store the COSDG constructed by the algorithm,
and the last column provides the time taken to construct the graph. Typically, a base
vertex requires 12 bytes, and a base edge requires 21 bytes of storage. The different
types of vertices and edges of COSDG are derived from the base vertex and base
edge respectively. The size of the vertices varies from 20 to 66 bytes, whereas the
size of the edges varies from 37 to 113 bytes. The data structures for the base vertex

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

18 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

Table 1 – Graph size and time taken by algorithm ConsructCOSDG

Program Classes Stmts. Vertices Edges COSDG Construction
(#) (#) (#) (#) Size (KB) Time (mSecs)

P1 5 233 291 365 30.0 51
P2 7 426 554 667 55.1 74
P3 8 613 842 989 81.4 97
P4 11 827 1103 1301 106.7 115
P5 13 998 1426 1613 134.3 128
P6 14 1224 1738 1924 161.9 152
P7 17 1453 2073 2240 189.6 173
P8 20 1712 2461 2657 224.8 201

public class Node {
private int nodeId;
private int nodeType;
private int lineNo;

}

public class Edge {
private int edgeId;
private int edgeType;
private Node srcNode;
private Node desNode;
private boolean mark = false;

}

Figure 10 – Data structures for a base vertex and a base edge in a COSDG

(Node) and the base edge (Edge) are shown in Figure 10. Apart from the memory
required to store the COSDG, the tool also requires memory to store temporary data
structures like class table, method table, binding sets, etc., which are used during
graph construction. This amounts to approximately 3% of the size of the COSDG.
However, this memory is reclaimed by the system at the end of graph construction,
and hence, have not been included in the table.

From the results, we can observe that both the memory required to store the
COSDG and the time taken to construct it, increase almost linearly with increasing
program size. These results have been illustrated in Figure 11(a) and Figure 11(b).
The linear increase in COSDG size is quite obvious as every program statement adds
a vertex and one or more edges to the graph, depending on the vertex type. The
linear increase in time can be attributed to the combined effect of two components:
code parsing time and the time needed to create graph components.

6 Related Work

In this section, we compare our representation with other similar representations for
object-oriented software proposed in the past by various researchers.

Larsen and Harrold proposed the System Dependence Graph for object-oriented
programs (ESDG) [10], which forms the basis of our representation. However, in our
representation, we have incorporated several modifications to ESDG to make it suit-
able for test coverage analysis. First, COSDG represents a derived class differently.
In ESDG, a class entry vertex of a derived class is also connected to the methods
inherited by it from the base class, by class member edges. In COSDG, each class

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 19

224.8 KB

189.6 KB

161.9 KB

134.3 KB

106.7 KB

81.4 KB

55.1 KB

30 KB25

50

75

100

125

150

175

200

225

250

200 400 600 800 1000 1200 1400 1600 1800

Program Size (# Statements)

C
O

S
D

G
 S

iz
e

(K
B

)

(a) Increase in graph size with increasing program size

51 ms

74 ms

97 ms

115 ms

128 ms

152 ms

173 ms

201 ms

40

60

80

100

120

140

160

180

200

220

200 400 600 800 1000 1200 1400 1600 1800

Program Size (# Statements)

T
im

e
T

ak
en

 (
m

se
c)

(b) Increase in graph construction time with increasing program size

Figure 11 – Memory required to store COSDG and time needed to construct COSDG by
algorithm ConstructCOSDG for various programs

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

20 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

entry vertex is connected by class member edges to its locally defined methods only.
Second, we have introduced the inheritance edge to represent the inheritance de-
pendence between classes. Methods inherited by a derived class can be known by
using the inheritance edge. Therefore, class member edges to inherited methods have
been removed. Third, COSDG differs from ESDG in the way it models polymorphic
method calls. COSDG does not have polymorphic choice vertices. Instead, at each
polymorphic call site, it adds a polymorphic call edge from the call site to the entry
vertex of each possible target method. These modifications were done to provide an
efficient traversal of the COSDG and also achieve accurate coverage measures.

Rothermel et al. proposed the Class Dependence Graph (ClDG) [17] to select
regression tests for modified or derived classes. ClDG uses a driver node as the
root of the graph, and driver edges to connect the root to the methods (both local
and inherited methods). Liang et al. modified ESDG to provide a representation for
polymorphic objects used as parameters [11]. Their representation uses an object-flow
subgraph to inspect statements in a slice, object by object (object slicing). Malloy et
al. proposed the Object Program Dependency Graph (OPDG) based on the program
dependence graph [13]. OPDG was designed to support applications such as profiling
and debugging, and uses a generalized structure to represent the features of a program.
Harrold et al. proposed a family of graph representations for object-oriented programs
[7].

Since our primary aim is to build a suitable representation to aid test coverage
analysis operations, we have designed the COSDG with the following features.
• Provide various object-oriented coverage measures like inheritance coverage

and polymorphic coverage, in addition to the traditional measures.
• Provide accurate coverage measures by avoiding spurious dependencies (i.e.,
infeasible edges removed to the maximum extent).

• Support efficient traversal of the graph for marking and analysis.

To realize the above features, COSDG distinguishes various types of method calls,
namely, simple, inherited, and polymorphic, with different types of method call edges,
whereas none of the earlier work [17, 11, 13, 7] provide this feature. Furthermore,
unlike in [7], COSDG does not add a polymorphic call vertex and a return edge to
represent a polymorphic call and return. Return from a method call is implied in
the COSDG. Moreover, COSDG neither use a region vertex nor a control flow edge
to represent an explicit control flow in program constructs as in [13], as they are
insignificant for the purpose of coverage analysis; our representation needs to capture
the coverage of various elements of a program (loops, blocks, calls, etc.) by a test
suite rather than the frequency of execution of elements.

Kovács et al. proposed a representation for Java programs based on ESDG [9].
In their representation, class member edges are tagged as public, protected, or private
to indicate the visibility of a method. In contrast, COSDG tags the inheritance
dependence edge with a list of methods that are visible to the subclasses. This is
more suitable for coverage analysis, as we need to know whether each method visible
to a subclass needs to re-tested or not.

Other Java-specific representations like Software Dependence Graph for Java
(JSDG) proposed by Zhao [23] and Java System Dependence Graph (JSysDG) pro-
posed by Walkinshaw [22] have also included Java-specific features like packages, in-
terfaces, and abstract classes in the representations. Zhao’s JSDG adopts the ESDG
model to represent inheritance and polymorphism, and the Kovács model to repre-
sent packages and interfaces. On the other hand, JSysDG adopts Liang’s modified

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 21

ESDG model to represent polymorphic objects, and Kovács model to represent the
visibility of methods in a class. In addition, JSysDG differentiates between normal
and abstract methods by using abstract method edges.

7 Conclusions

We have proposed a dependence-based representation for object-oriented programs,
named Call-based Object-Oriented System Dependence Graph (COSDG), for use as
an internal representation for performing test coverage analysis. Apart from repre-
senting basic features like control flow, data flow, and method calls, COSDG captures
object-oriented features such as class, inheritance, and polymorphism. Novel fea-
tures of COSDG include details of method visibility in a derived class, and different
types of method call edges to depict different calling contexts: simple, inherited, and
polymorphic method calls.

Test coverage techniques can be applied to COSDG to obtain the necessary object-
oriented coverage measures. A prototype tool has been developed in Java for test
coverage analysis of object-oriented programs using the COSDG. We have conducted
experimental studies to ascertain the efficacy of COSDG in testing object-oriented
programs. Results from our study show that both space and time required to construct
the COSDG is linear in program size.

The present version of COSDG represents only the basic object-oriented features.
We are extending our representation to include exception handling features.

References

[1] Hira Agrawal. Efficient coverage testing using global dominator graphs. In
Proc. of the 1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engg. (PASTE ’99), pages 11–20, Toulouse, France, Sep
1999.

[2] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19,
Jul 1970. Proc. of a Symposium on Compiler Optimization.

[3] ANTLR. ANother Tool for Language Recognition. http://www.antlr.org/.
Date Accessed: 31 Sep. 2009.

[4] Peter J. Clarke and Brian A. Malloy. A taxonomy of OO classes to support
the mapping of testing techniques to a class. Journal of Object Technology,
4(5):95–115, Jul-Aug 2005.

[5] Eclipse. http://www.eclipse.org/. Date Accessed: 31 Sep. 2009.
[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-

dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, Jul 1987.

[7] Mary Jean Harrold and Greg Rothermel. A coherent family of analyzable
graphical representations for object-oriented software. Tech. Report OSU-
CISRC-11/96-TR60, Department of Computer and Information Science, The
Ohio State University, Nov 1996.

[8] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing us-
ing dependence graphs. ACM Transactions on Programming Languages and
Systems, 12(1):26–60, Jan 1990.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.antlr.org/
http://www.eclipse.org/
http://www.jot.fm/contents/issue_2010_07/article1.html

22 · E.S.F. Najumudheen, Rajib Mall, Debasis Samanta

[9] Gyula Kovács, Ferenc Magyar, and Tibor Gyimóthy. Static slicing of Java pro-
grams. Tech. Report TR-96-108, Research Group on Artificial Intelligence,
Hungarian Academy of Sciences, József Attila University, Hungary, Dec 1996.

[10] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In
Proc. of the 18th International Conference on Software Engineering, pages
495–505, Berlin, Germany, Mar 1996.

[11] Donglin Liang and Mary Jean Harrold. Slicing objects using system depen-
dence graphs. In Proc. of the IEEE Intl. Conf. of Software Maintenance (ICSM
’98), pages 358–367, Bethesda, MD, USA, Nov 1998.

[12] Raghu Lingampally, Atul Gupta, and Pankaj Jalote. A multipurpose code cov-
erage tool for Java. In Proc. of the 40th Annual Hawaii Intl. Conf. on System
Sciences (HICSS ’07), pages 261b – 271b, Jan 2007.

[13] Brian A. Malloy, John D. McGregor, Anand Krishnaswamy, and Murali
Medikonda. An extensible program representation for object-oriented software.
ACM SIGPLAN Notices, 29(12):38–47, Dec 1994.

[14] E S F Najumudheen. An intermediate representation for test coverage analysis
of object-oriented programs. Tech. Report IITKGP-CSE-TR-17/2008, Indian
Institute of Technology, Kharagpur, India, Jan 2008.

[15] E S F Najumudheen, Rajib Mall, and Debasis Samanta. A dependence graph-
based test coverage analysis technique for object-oriented programs. In Proc.
of the 6th Intl. Conf. on Info. Technology: New Generations (ITNG ’09), pages
763–768, Las Vegas, NV, USA, Apr 2009.

[16] Karl J. Ottenstein. Data-Flow Graphs as an Intermediate Program Form. PhD
thesis, Computer Sciences Dept., Purdue Univ., Lafayette, IN, Aug 1978.

[17] Gregg Rothermel and Mary Jean Harrold. Selecting regression tests for object-
oriented software. In Proc. of the Intl. Conf. on Software Maintenance - 1994,
pages 14–25, Victoria, BC, Canada, Sep 1994.

[18] Atanas Rountev, Scott Kagan, and Michael Gibas. Static and dynamic anal-
ysis of call chains in Java. In Proc. of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’04), pages 1–11, Boston,
MA, USA, Jul 2004, Vol. 29 No. 4.

[19] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Fragment class anal-
ysis for testing of polymorphism in Java software. IEEE Transactions on Soft-
ware Engineering, 30(6):372–387, Jun 2004.

[20] Barbara G. Ryder. Constructing the call graph of a program. IEEE Transac-
tions on Software Engineering, SE-5(3):216–226, May 1979.

[21] A.M.R. Vincenzi, J.C. Maldonado, W.E. Wong, and M.E. Delamaro. Coverage
testing of Java programs and components. Science of Computer Programming,
56(1-2):211–230, Apr 2005.

[22] Neil Walkinshaw, Marc Roper, and Murray Wood. The Java system depen-
dence graph. In Proc. of the Third IEEE Intl. Workshop on Source Code Anal-
ysis and Manipulation, (SCAM ’03), pages 55–64, Amsterdam, The Nether-
lands, Sep 2003.

[23] Jianjun Zhao. Applying program dependence analysis to Java software. In
Proc. of Workshop on Software Engineering and Database Systems, 1998 Inter-
national Computer Symposium, pages 162–169, Tainan, Taiwan, Dec 1998.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article1.html

A Dependence Representation for Coverage Testing of Object-Oriented Programs · 23

About the authors

E.S.F. Najumudheen is currently pursuing the Ph.D. degree in the Department
of Computer Science and Engineering at the Indian Institute of Technology, Kharag-
pur, India. He received the bachelor’s degree in Applied Sciences from Madurai
Kamaraj University. He holds two master’s degree, one in Computer Applications
from Anna University, and another in Computer and Information Technology from
IIT, Kharagpur. He has around two years of experience in the software industry,
and fourteen years of experience in teaching and research. His current research
investigates test coverage analysis, object-oriented testing, and program analysis.
He is member of the IEEE, ACM, and ACM SIGSOFT. He can be reached at
najum@cse.iitkgp.ernet.in.

Rajib Mall is currently a professor in the Department of Com-
puter Science and Engineering at the Indian Institute of Tech-
nology, Kharagpur, India. He has been with IIT, Kharagpur
for the past 15 years. He received the bachelor’s, master’s, and
Ph.D. degrees in Computer Science and Engineering from the
Indian Institute of Science, Bangalore, India. His research in-
terests include program analysis, program slicing, and software

testing. His current research focuses on object-oriented and regression testing. He
has published over 100 research papers in refereed journals and conferences, and
has authored two books. He is a member of the domain experts board of the In-
ternational Journal of Patterns(IJOP). He served as the general chair for the IEEE
Indicon 2004 and the program chair for CIT 2005 conferences. He has also served
as a program committee member for many conferences of international repute. He
is a senior member of the IEEE, and has twice served as the chair of the IEEE
Kharagpur section. He can be reached at rajib@cse.iitkgp.ernet.in. See also
http://www.facweb.iitkgp.ernet.in/~rajib.

Debasis Samanta is currently an assistant professor in the
School of Information Technology at the Indian Institute of Tech-
nology, Kharagpur, India. He received the bachelor’s and mas-
ter’s degree in Computer Science and Engineering from Calcutta
University and Jadavpur University, respectively, and the Ph.D.
degree in Computer Science and Engineering from IIT, Kharag-
pur. He has more than fifteen years of experience in teaching, and

has published more than 50 research papers in refereed journals and conferences. He
has also authored two books. He is a senior member of the IEEE, and served as the
chair of IEEE Kharagpur Section, India Council, during 2009. He can be reached at
dsamanta@sit.iitkgp.ernet.in. See also http://www.facweb.iitkgp.ernet.in/
~dsamanta/.

Journal of Object Technology, vol. 9, no. 4, 2010

mailto:najum@cse.iitkgp.ernet.in
mailto:rajib@cse.iitkgp.ernet.in
http://www.facweb.iitkgp.ernet.in/~rajib
mailto:dsamanta@sit.iitkgp.ernet.in
http://www.facweb.iitkgp.ernet.in/~dsamanta/
http://www.facweb.iitkgp.ernet.in/~dsamanta/
http://www.jot.fm/contents/issue_2010_07/article1.html

	Introduction
	Background
	System Dependence Graph
	Class Dependence Graph
	Extended System Dependence Graph

	Call-based Object-Oriented System Dependence Graph (COSDG)
	Vertices
	Edges
	Class Member Edges
	Inheritance Edges
	Control Dependence Edges
	Method Call Edges

	Construction of a COSDG
	Test Coverage Analysis using COSDG
	Experimental Results

	Related Work
	Conclusions
	Bibliography
	About the authors

