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The size and complexity of web applications is increasing at an extremely rapid rate.
Many web applications have evolved from simple HTML pages to complex service-
oriented applications that have high maintenance costs. UML web design metrics
are used to gauge whether the maintainability cost of the system can be controlled
by correlating the UML design metrics to different measures of maintainability. This
research empirically explores the relationships between existing UML design metrics
based on Conallen’s extension for web applications and maintenance effort. This
research is evaluated, through an empirical case study of an industrial web application
from the telecommunications domain.

1 INTRODUCTION

Web applications are one of the fastest growing classes of software systems. They
have diffused into many different business domains such as scientific activities, prod-
uct sale and distribution and medical activities[1]. Many of these web applications
have evolved into complex applications that have high maintenance costs. The high
maintenance cost is due to the inherent characteristics of web applications, to fast
internet evolution and to the pressing market which imposes short development
cycles and frequent modifications. It has been measured that in the maintenance
phase software professionals spend at least half of their time analyzing software in
order to understand it [2]. The cost of software maintenance accounts for a large
portion of the overall cost of a software system [3]. A survey on Web applications
conducted by the Cutter Consortium in 2000 revealed that 79% of web projects
presented schedule delays. Also, 63% of web projects exceeded their budgets [4].

Many Companies are still asking how to assess and predict the maintainability
of their software. Maintainability can be defined as:

The ease with which a software system or component can be modified
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to correct faults, improve performance or other attributes, or adapt to a changed
environment [5].
Measures of software maintainability can be taken either late or early in the de-
velopment process. Late measurements of software maintainability can be used for
assessing the software system, and planning for future enhancements. On the other
hand, early measures of software maintainability can help in allocating project re-
sources efficiently, predicting the effort of maintenance tasks and controlling the
maintenance process. Maintainability can be measured by measuring some of the
sub-characteristics of maintainability such as understandability, analyzability, mod-
ifiability and testability. Some studies have measured maintainability by measuring
both modifiability and understandability [6, 7]. In some studies the maintainability
has been quantified in the Maintainability Index (MI) [8, 9]. Other studies used
effort for measuring maintainability [10]. This paper has two goals. Firstly, we
explore the relationship between UML class design metrics and maintenance effort
which is measured by the number of lines of code changed and by the number of
revisions for components in a class diagram. Secondly, we investigate how accurately
our UML design metrics are in predicting maintenance effort. More detail is given
in the empirical case study section.

2 RELATED WORK

Most research related to maintainability measurement has been carried out on struc-
tured and object-oriented systems. Little work has been done in this regard using
web applications.

Web Application Maintainability Model (WAMM) [11] used source code metrics
and the maintainability was measured using the Maintainability Index. In WAMM
new metrics were defined but there is still a need to validate those metrics empir-
ically and theoretically. There is a need to prove how practical WAMM will be in
an industrial environment. WAMM captures many metrics which might make it
impractical to implement unless there is a tool which can simply and quickly cap-
ture all the metrics and provide a single Maintainability Index. The most common
approach used is Regression Analysis. There is research which uses Regression Anal-
ysis to define and validate metrics and models for web applications. In [12] design
and authoring effort were the dependent variables. The independent variables were
based on source code metrics. There is still a need for more empirical studies to
validate these newly defined metrics in order to make general conclusions. In [13]
design metrics were introduced based on W2000 [13] which is a UML like language.
In the study the dependent variables were variations of design effort. The indepen-
dent variables were measured from the presentation, navigational and information
models. It is not known how useful this approach would be, since it is not known
if the W2000 language is used outside the educational environment and if it will
become popular in industrial environments.

Genreo et al [14] use object-oriented UML metrics to measure maintainability for
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object-oriented systems. Their approach is similar to our approach in using UML
class diagram metrics. Our approach is different in the type of metrics used which
are based on an extension of Conallen’s model. Also in our approach we measure
different dependent variables for maintainability. We decided to use UML design
metrics since most of the studies use source code metrics for measuring maintain-
ability despite the fact that many studies have shown that early metrics are much
more useful [15, 16]. For the authors previous research upon which this plan is based
please refer to [17, 18, 19].

3 MODELING & UML DESIGN METRICS

Figure 1: Web Applications Model

Modeling is a technique used to represent complex systems at different levels
of abstraction, and helps in managing complexity. UML is an object-oriented lan-
guage that can be used to model object-oriented systems [20]. It is possible to use
UML to model web applications by using extensions supported by UML. Conallen
proposed an extension of UML for web applications [20]. Conallen’s model defines
the following relations as generic associations between different components: builds,
redirects, links, submit, includes, and forwards. The builds relationship is a direc-
tional relationship from the server page to the client page. It shows the HTML
output coming from the server page. The redirects relationship is a directional re-
lationship that requests a resource from another resource. The links relationship is
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an association between client pages and server or client pages. It models the anchor
element in HTML. The links relationship can have parameters which are modeled as
attributes in the relationship. The submit relationship is a relationship between the
form and the server page that processes it. The include relationship is a directional
association between a server page and another client or server page. The forward
relationship is a directional relationship between a server page and a client or server
page. This presents delegating the server request to another page.

In Figure 1 Conallen’s model is further extended [21] to include Interface Ob-
jects which have an association relationship with the server page. The Scriplets are
divided into server scripts and client scripts. The server scripts have an aggregation
relationship with the server page and the client scripts have an aggregation rela-
tionship with the client page. As mentioned in the related work section, we choose
Conallen’s notation for representing web applications because of its popularity and
compliance with UML. Another advantage of using Conallen’s model is that Ratio-
nal Rose Web Modeler [22] and WARE [21] can be used to reverse engineer web
applications to the Conallen model. Conallen’s model has been referenced and used
in many papers in literature [23, 21, 20]. The metrics used in this research are based
on the web application reference model shown in Figure 1. They are based on Web
Application Extension (WAE) for UML and measure attributes of class diagrams.
Table 1 provides a description of the metrics which will be described further in the
Empirical Evaluation section.

4 EMPIRICAL EVALUATION

This section will describe the case study that is used in this study.

Case Study Context

The web application used is from the telecommunication Operational Support Sys-
tem (OSS) domain. It is a provisioning application which is used to provision and
activate the wireless service in the network. We refer to the web application as Pro-
visionWebApp. ProvisionWebApp has around 10,000 users of which 2,000 are con-
current. It is a critical application that is used by customer care advocates to resolve
provisioning issues for wireless subscribers. The ProvisionWebApp is divided into
the following functional modules: Login Module, Search Module, Current Transac-
tions Module, Service Transaction Module, Device Transaction Module , UserName
Module, Retrigger IOTA Module, Error Queue Module, Password Module, Network
Provisioning Status Module, and Help Module. ProvisionWebApp is built using the
latest web technologies and frameworks such as Struts, and EJBs, and uses Oracle
for the database. The web application uses Java as its main language. It has a
Concurrent Versions System (CVS) repository for storing code changes. The data
used in this case study is from year 2002 to year 2005.
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Table 1: Web Application Class Diagram Metrics

Metric Type Metric Name Description
Size NServerP Total number of server pages
Size NClientP Total number of client pages
Size NWebP=(NServerP +

NClientP)
Total number of web pages

Size NFormP Total number of form pages
Size NFormE Total number of form elements
Size NClientScriptsComp Total number of client scripts components
Size NServerScriptsComp Total number of server scripts components
Size NC Total number of classes
Size NA Total number of attributes
Size NM Total number of methods
Structural Complexity NAssoc Total number of associations
Structural Complexity NAgg Total number of aggregation relationships
Structural Complexity NLinkR Total number of link relationships
Structural Complexity NSubmitR Total number of Submit relationships times

NFormE
Structural Complexity NbuildsR Total number of builds relation-

ships times (NServerScriptsComp +
NClientScriptsComp)

Structural Complexity NForwardR Total number of forward relationships
Structural Complexity NIncludeR Total number of include relationships
Coupling WebControlCoupling =

(NLinkR + NSubmitR +
NbuildsR + NForwardR +
NIncludeR )/ NWebP)

Number of relationships over number of web
pages

Coupling WebDataCoupling =
(NFormE/NServerP )

Number of data exchanged over number of
server pages

This study is trying to explore the relationship between the following metric set
(NServerP, NClientP, NWebP, NFormP, NFormE, NLinkR, NSubmitR, NbuildsR,
NForwardR, NIncludeR, NClientScriptsComp, NServerScriptsComp, WebControl-
Coupling, NC, NA, NM, NAssoc, NAgg, CoupEntropy, CohesionEntropy) and main-
tenance effort measured by the number of lines of code changed and the number of
revisions for components in a class diagram. In addition to that we would like to
get an idea of how accurately our UML design metrics predict maintenance effort.
CoupEntropy, and CohesionEntropy are described in the independent variables sec-
tion while the rest of the metrics are described in Table1.

Dependent Variables

The main goal of this study is to empirically explore the relationship between UML
design metrics and maintenance effort. In this research two dependent variables are
used to measure maintenance effort namely:
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• LOC: Total number of Lines of Code added and deleted for components in a
class diagram.

• nRev: Total number of revisions for components in a class diagram

The dependent variables are collected from a Concurrent Version System (CVS)
repository.

Independent Variables

In this research the metrics based on the web application reference model shown
in Figure 1 are used as independent variables. The following metrics (NServerP,
NClientP, NWebP, NFormP, NFormE, NLinkR, NSubmitR, NbuildsR, NForwardR,
NIncludeR, NClientScriptsComp, NServerScriptsComp, WebControlCoupling, Web-
DataCoupling, WebReusability) were defined in the authors previous study [17]. The
following (NC, NA, NM, NAssoc, NAgg) metrics were defined in the study carried
by Genero [14] on class diagram metrics for object oriented applications. The met-
rics use the different components of the web application reference model as units
of measurement. In addition to the above mentioned metrics this study also uses
the following two metrics: CoupEntropy and CohesionEntropy. They were first pre-
sented in [24], but we have modified them a little bit to fit in the context of UML
class diagram metrics. A description of each of the metrics investigated is given as
follows:

• CoupEntropy: The CoupEntropy is computed as shown in the following equa-
tion: 1/n × (− log 1/(1 +m)) where n is the total number of elements in the
class diagram and m is the total number of relationships in the class diagram.
The total number of elements in the class diagram is the sum of all server
pages, client pages, form pages, and interface classes. The total number of
relationships is the sum of all builds, links, submit, includes, forwards, NAssoc,
and NAgg relationships.

• CohesionEntropy: The CohesionEntropy of a class diagram is equal to total
CoupEntropy of all class diagrams over the CoupEntropy of one class dia-
gram. The CohesionEntropy is computed as shown in the following equation:∑k

i=1
(1/n×(− log 1/(1+m)))

(1/n×(− log 1/(1+m)))
where n is the total number of elements in the class

diagram, m is the total number of relationships in the class diagram, and k is
the total number of class diagrams in the application.

Data Collection

In this study an automated tool named WapMetrics [25] is used for the data col-
lection. WapMetrics is a web tool that takes UML diagrams in XMI [26] format as
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input and produces the results in different output formats. WapMetrics is used to
compute the UML metrics from the class diagrams and provide the results in excel
format in order to be used in the statistical analysis phase.

Unfortunately, the class diagrams were out of sync for the ProvisionWebApp
application. IBM Rational Rose Enterprise Edition [22] was used for reverse en-
gineering the ProvisionWebApp application. Rational Rose has a visual modeling
component. It can create the design artifacts of a software system. The Web Mod-
eler component in Rational Rose supports Conallen’s extension for web applications.
The Web Modeler component was used to generate the class diagrams for the various
components of the ProvisonWebApp application.

For some of the class diagrams, we had to hide the visibility of attributes and
methods in classes in order to fit them in one page. This did not affect the compu-
tation of the metrics since all attribute and methods are exported in the XMI file.
Some of the relationships were not in the generated class diagrams. For example
the include and forward relationships shown in our reference model in Figure 1 were
not generated by Rational tool. We had to add these relationships manually to the
class diagrams. After the class diagrams were validated, Unisys Rose XML [22] was
used to export the UML class diagrams into XML Metadata Interchange (XMI)
[26]. The WapMetrics tool was used to compute the independent variables from the
XMI input file. The dependent variables are collected from the CVS system. LOC
is computed by adding the absolute value of Lines of Code for all classes in a class
diagram. nRev is computed by adding all revisions for all classes in a class diagram.

Analysis Results

Table 2: Descriptive Statistics

Variable N Min Max Mean Std Deviation
LOC 30 13 13179 2780.9 3725.44
nRev 30 2 229 74.1 78.03
NFormP 30 0 2 .47 .681
NClientScriptsComp 30 0 4 .63 1.098
NServerScriptsComp 30 0 10 4 3.029
NC 30 0 12 3.27 3.704
NA 30 0 218 29.63 54.097
NM 30 0 472 62.47 113.99
NAssoc 30 0 14 3.2 3.745
NAgg 30 0 2 .70 .837
NBuildsR 30 0 14 4.73 3.581
CoupEntropy 30 0 .00644 .0041 .00145
CohesionEntropy 30 1 82.43 31.94 16.41
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Descriptive Statistics

Table 2 shows the descriptive statistics of the independent and dependent variables
used in this study. The measures for LOC dependent variable are much higher
than the measures for nRev. The maximum for LOC is 13179 lines of code added
or deleted while the maximum for nRev is 229 revisions. This result is expected
since each revision will have more than one line of code associated with it. For the
independent variables we can see that NM has the highest value with 472 methods.
For the minimum value we can see that several variables have 0 measures. This is
understandable since some class diagrams in our application did only have client
pages or server pages, which resulted in having 0 measures for several independent
variables.

Univariate Negative Binomial Regression

Table 3: Univariate Analysis Results

Metric Type Metric Name LOC Coef/StdErr/Sig nRev Coef/StdErr/Sig
Size NFormP .639/.286/.025 .580/.283/.040
Size NClientScriptsComp .623/.183/.001 .610/.197/.002
Size NServerScriptsComp .183/.081/.023 .187/.080/.019
Size NC .468/.058/.000 .376/.059/.000
Size NA .017/.007/.017 .016/.006/.012
Size NM .008/.003/.017 .008/.003/.012
Structural Complexity NAssoc .487/.062/.000 .387/.063/.000
Structural Complexity NAgg .650/.205/.002 .672/.213/.002
Structural Complexity NBuildsR .201/.066/.003 .210/.072/.004
Coupling CoupEntropy 1013.9/112.8/.000 970.9/141.8/.000
Cohesion CohesionEntropy -.058/.009/.000 -.078/.013/.000

The main goal of this case study is to investigate the feasibility of using the
metrics described in Table 1 as predictors of maintenance effort. We build 2 models
based on the LOC and nRev dependent variables separately. Both variables are
discrete count variables that are highly skewed and always positive. Modeling using
ordinary least squares regression (OLS)leads to highly non-normal error distribu-
tions leading to invalid final models. In order to cope with variables of this type
Generalized Linear Models have been devised. These models include Poisson and
Negative Binomial Regression. Negative Binomial Regression for log link function
was chosen for this data as it copes with the overdispersion (variance > mean)
found in a Poisson model [27].

We started by looking at the individual relationships between all the metrics
defined in Table 1 and the dependent variables: LOC and nRev.

Table 3 shows the results from applying univariate negative binomial regression
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to the data set. ”Coeff” indicates the coefficient in the regression equation, ”StdErr”
its standard error and ”Sig” its significance or p-value, that is the probability the
coefficient is greater than zero by chance.

For the size metrics (NFormP, NClientScriptsComp, NServerScriptsComp, NC,
NA, NM) all showed significance (p < 0.05) with LOC and nRev. For the structural
complexity metrics only (NAssoc, NAgg, NbuildR) showed significance with LOC
and nRev. Both CoupEntropy, and CohesionEntropy showed significance with LOC
and nRev.

Multivariate Negative Binomial Regression

Table 4: Size Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 5.712 .304 .000
NClientScriptsComp .556 .214 .009
NServerScriptsComp -.212 .069 .002
NC .488 .071 .000
nRev Model
Intercept 2.415 .275 .000
NC .376 .059 .000

Having examined the relationship of individual metrics (the predictors) and the
dependent variables, LOC and nRev, we can now examine the combined effect of
metrics on the dependent variables by performing a multivariate analysis.

The selection of the predictors can be made using two different stepwise re-
gression techniques: the forward selection method, and the backward elimination
method. The forward method starts with a model that only includes a constant
and then adds single predictors based on a specific statistical criteria. Forward
selection regression is used when there is no previous research telling us what to
expect from the results. The backward method starts with a model that includes
all predictors, which are deleted one at a time from the model based on a specific
statistical criteria until an optimal model is found. In this study, we use α > .05
for excluding the predictors from the model and, the backward elimination method
with Negative Binomial distribution with a log link function for building the model.
The likelihood-ratio chi-square test is used to compare the current model versus
the intercept model. A significance value of less than 0.05 indicates that the cur-
rent models outperforms the intercept model. All models have a value of less than
.05 which means they outperformed the intercept only model. The following is the
discussion of the analysis results:

• Size Metric Model: The Size Metric Model predicting LOC from NClientScriptsComp,
NServerScriptsComp, and NC is statistically significant with χ2(3) = 67.1,
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p < 0.05 The predictors NClientScriptsComp, NServerScriptsComp, and NC
were each statistically significant. The Size Metric Model predicting nRev
from NC is statistically significant with χ2(1) = 38.7, p < 0.05

The predictor NC was statistically significant. Table 4 shows the coeffi-
cients, standard error and significance for all the independent variables in
the size metric models. The negative coefficient for NServerScriptsComp is
counterintuitive, since we expect the Lines of Code to increase as we have
more server script components. The reason for the negative number can be
explained by the suppressor relationship between NServerScriptsComp and
NClientScriptsComp which is common between correlated variables [28]. This
is not of a concern as long as no strong multicollinearity [29] exists which was
determined to be negligible since the condition number was equal to 3.87. A
condition number of more than 30 indicates that strong multicollinearity exists
between variables [29].

Table 5: Complexity Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 5.482 .270 .000
NAssoc .487 .062 .000
nRev Model
Intercept 2.426 .279 .000
NAssoc .387 .063 .000

• Complexity Metric Model: The Complexity Metric Model predicting LOC
from NAssoc, is statistically significant with χ2(1) = 53.4, p < 0.05

The predictor NAssoc was statistically significant. The Complexity Metric
Model predicting nRev from NAssoc is statistically significant with χ1(3) =
37.6, p < 0.05

The predictor NAssoc was statistically significant. Table 5 shows the coeffi-
cients, standard error and significance for all the independent variables in the
complexity metric models.

• Coupling Metric Model: The Coupling Metric Model predicting LOC
from CoupEntropy is statistically significant with χ2(1) = 31.2, p < 0.05.
The predictor CoupEntropy was statistically significant. The Coupling Metric
Model predicting nRev is statistically significant with likelihood ratio χ2(1) =
30.1, p < 0.05. The predictor CoupEntropy was statistically significant. Table
6 shows the coefficients, standard error and significance for all the independent
variables in the coupling metric models.

• Cohesion Metric Model: The Cohesion Metric Model predicting Cohe-
sionEntropy is statistically significant with χ2(1) = 7.2, p < 0.05. The pre-
dictor CohesionEntropy was statistically significant. The Cohesion Metric
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Table 6: Coupling and Cohesion Metrics Model

Parameter Coeff Std. Error Sig
LOC Coupling
Model
Intercept 4.048 .501 .000
CoupEntropy 691.8 95.9 .000
nRev Coupling
Model
CoupEntropy 699.3 111.0 .000
LOC Cohesion
Model
Intercept 8.933 .354 .000
CohesionEntropy -.038 .010 .000
nRev Cohesion
Model
Intercept 5.743 .431 .000
CohesionEntropy -.055 .014 .000

Model predicting nRev from CohesionEntropy is statistically significant with
χ2(1) = 10.3, p < 0.05. The predictor CohesionEntropy was statistically sig-
nificant. Table 6 shows the coefficients, standard error and significance for all
the independent variables in the cohesion metric models.

• All Metric Model: The All Metric Model predicting LOC from NAssoc,
NClientScriptsComp, NServerScriptsComp and CoupEntropy is statistically
significant with χ2(4) = 71.1, p < 0.05. The predictors NAssoc, NClientScriptsComp,
NServerScriptsComp and CoupEntropy were each statistically significant. The
reason for the negative number for NServerScriptsComp can be explained by
the suppressor relationship between NServerScriptsComp and CoupEntropy
which is common between correlated variables. This is not of a concern as
long as no strong multicollinearity exists which was determined to be negligi-
ble since the condition number was equal to 11.95.

The All Metric Model predicting nRev from NC and CoupEntropy is sta-
tistically significant with χ2(2) = 43.3, p < 0.05 . The predictors NC and
CoupEntropy were each statistically significant. Table 7 shows the coefficients,
standard error and significance for the independent variables in the all metric
models.

Model Validation

In this study we use the Magnitude of Relative Error (MRE)[27] for evaluating the
prediction models. The MRE is shown in Equation 1:
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Table 7: All Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 4.506 .639 .000
NAssoc .439 .079 .000
NClientScriptsComp .568 .212 .007
NServerScriptsComp -.338 .087 .000
CoupEntropy 375.7 187.8 .045
nRev Model
NC .284 .075 .000
CoupEntropy 335.2 148.6 .024

Table 8: Goodness of Fit: Values of MREs for All Models

Size Complexity Coupling Cohesion All Metrics
LOC Model
Mean .1998 .2646 .3972 .5178 .1795
StdDev .22127 .26368 .48582 .57416 .20045
P25 .0695 .0785 .0587 .0717 .0567
Median .1259 .1665 .1385 .1560 .1167
P75 .2624 .4693 .5395 .9762 .2580

Rev Model
Mean .4086 .4160 .4430 .8848 .3222
StdDev .73204 .74078 .55033 1.58322 .25940
P25 .0615 .0523 .1488 .1208 .1688
Median .1580 .1597 .2391 .1795 .2642
P75 .2770 .3043 .6166 .9346 .3951

MRE = |x− y
y
| (1)

where x is the predicted value and y is the actual value. The result can be
multiplied by 100 to get the percentage of deviation from the actual value. The
MMRE is the mean of the MRE, it is one of the most widely used criterion for
assessing the performance of software prediction models[30, 31].

Table 8 shows the values of MRE values in the data set. It shows the mean,
standard deviation, 25th percentile(P25), median, and 75th percentile (P75). When
checking the mean MRE for LOC models we can see that the mean MRE for size,
structural complexity, coupling and all metrics models ranges between .17 to .51.
The best mean MRE value was for the All metric model (.1795) while the worst
mean MRE value was for the cohesion model (5178).

When looking at the results for the nRev models, we can see that the mean MRE
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Table 9: Goodness of Fit: Values of MEAN MREs for All Models using Boostrapping

Size Complexity Coupling Cohesion All Metrics
LOC Model
P2.5 .24 .17 .23 .31 .11
P97.5 .59 .37 .58 .71 .25

nRev Model
P2.5 .27 .18 .27 .40 .23
P97.5 .65 .70 .65 1.44 .41

values ranges between .32 to .88. The best mean MRE value was for the All metric
model (.3222) while the worst mean MRE value was for the cohesion model (.8848).

It is important to have confidence in our results. Bootstrapping is one technique
that is used to obtain confidence intervals for small data sets [15]. In this study
we would like to find 95 percent confidence intervals for our prediction models. We
follow the following bootstrapping procedure [32]:

1. Sample 1000 times and replace randomly our 30 MRE values to obtain 1000
samples of 30 observations.

2. For each sample compute the mean MRE values for each of the models.

3. Compute the 2.5 percent and the 97.5 percent percentiles which is considered
an estimate of the 95 percent confidence interval of the mean MRE values.

Figure 2: ScatterPlot LOC Model

Table 9 shows the results of the bootstrapping procedure described above. One
can see that the best results are for the LOC complexity and LOC All metric models.
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The mean MRE for the LOC complexity model is between .17 and .37. This means
that we can have 96 percent confidence that the mean MRE for the complexity
model will be between .17 and .37. The mean MRE for the LOC ALL metric model
has even better results (.11 to.25). For the nRev model the best results are for the
nRev ALL metric model (.23 to .41).

We used the likelihood-ratio chi-square test to compare current model versus the
intercept only model. All models showed a significance value of less than 0.05 which
indicates that the current models outperforms the intercept only model. We also
have searched for the influential points and outliers in the models. We draw charts
of standardized deviance residual versus and predicted values of the linear predictor
variable. Figure 2 shows the this scatterplot for the LOC ALL Metrics Model. The
resulting scatterplot appears to not have any outlying points. Similarly, we drew
the scatterplots for the Size, Structural Complexity, Coupling, and Cohesion Metric
Models, and we got similar results with no outlying points.

Threats to Validity

It is important to look into threats to validity in order to make sure the results are
valid. We will look into three types of threats that can limit us to draw conclusions
from the results: Construct Validity, Internal Validity, and External Validity.

Construct Validity

Construct Validity is the degree to which the independent variables and the depen-
dent variables are accurately measured in the study. The dependent variables in
this study are LOC and nRev. Both of these measures were measured from a CVS
repository. The CVS repository has an accurate value for both of these measures.
However, human error can happen in computing and recording both dependent vari-
ables, therefore we have repeated the measure for both variables a second time and
made sure that the results from the first and second time match.

Another issue is that the measurement of the independent variables was per-
formed from source code since no complete design was available from which the
measures could be obtained. In practice the measures for the independent variables
should be taken from early UML design diagrams. Measures from source code are
more accurate but an investigation on how these measures compare to measures
taken from design diagrams, and how this can affect the accuracy of the prediction
model must be carried out.

Internal Validity

Internal Validity is the degree to which conclusions can be drawn about the effect of
the independent variables on the dependent variables. In this study we have demon-
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strated that some of the metrics have a statistically and significant relationship with
LOC and nRev. This relationship does not prove a causal relationship, it only pro-
vides evidence that such a relationship might exist. The only way to prove causality
is to run controlled experiments where the independent variables are varied in a
controlled manner while preserving the functionality and size of the application. In
practice this is difficult to accomplish.

External Validity

External Validity is the degree to which results can be generalized to other research
settings. We have used a real industrial application with two years of data stored
in a CVS repository. In addition we have used bootstrapping to have confidence
in the results for the mean MRE values. However, other factors such as developer
experience, size of application and technologies used can limit the generalization of
the results to other web applications.

5 CONCLUSIONS

Early measures of software maintainability can help in allocating project resources
efficiently, predicting the effort of maintenance tasks and controlling the maintenance
process. In this study we explore the relationship between UML class design metrics
and maintenance effort which is measured by the number of lines of code changed
and by the number of revisions. There are many benefits of using our UML metrics.
First, predicting the maintenance and cost of maintenance tasks which helps in
providing accurate estimates that can help in allocating the right project resources
to maintenance tasks [10]. Second, comparing design documents which can help
in choosing between different designs based on the maintainability of the design.
Third, identifying the risky components of a software since some studies show that
most faults occur on only few components of a software system [33, 34]. Fourth,
establishing design and programming guidelines for software components. This can
be done by establishing values that are acceptable or unacceptable and take actions
on the components with unacceptable values. This means providing a threshold of
software product metrics to provide early warnings of the system [27]. Fifth, making
system level prediction where the maintainability of all components can be predicted
by aggregating maintainability of single components. This can be used to predict
the effort it will take to develop the whole software system [27].

The results showed that there is a reasonable chance that useful prediction mod-
els can be built from early UML design metrics. We have obtained good results
using bootstrapping, for the LOC ALL metric model the mean MRE lies between
11 to 25 percent for 95 percent of the cases. For the nRev ALL metric model we
also got good results, the mean MRE lies between 23 to 41 percent for 95 percent
of the cases.
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We can say that for the LOC ALL metric model NAssoc, NClientScriptsComp,
NServerScriptsComp, and CoupEntropy explained the effort measured by LOC(
Lined of Code). For the nRev ALL metric model NC, and CoupEntropy explained
the effort measured by nRev(Number of Revisions). The other size, complexity, and
cohesion measures did not show any goodness in explaining LOC and nRev.

As a conclusion, we will conduct more empirical experiments to validate our
results and show the usefulness of our UML metrics.
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