
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010 

 
Vol. 9, No. 3, May-June 2010 

 
 
 
 

Farid Mokhati, Brahim Sahraoui, Soufiane Bouzaher, Mohamed Tahar Kimour: “A Tool for 
Specifying and Validating Agents’ Interaction Protocols: From Agent UML to Maude”, in Journal of 
Object Technology, vol. 9, no. 3, May-June 2010, pp. 59 77, 
http://www.jot.fm/issues/issue_2010_05/article2/ 

A Tool for Specifying and Validating 
Agents’ Interaction Protocols: From 
Agent UML to Maude 

Farid Mokhati, Department of Computer Science, University of Oum-El-
Bouaghi, Algeria 
Brahim Sahraoui, Department of Computer Science, University of Sétif, Algeria 
Soufiane Bouzaher, Department of Computer Science, University of Oum-El-
Bouaghi, Algeria 
Mohamed Tahar Kimour, Department of Computer Science, University of 
Annaba, Algeria 

Abstract 
To achieve the multi-agent systems’ goals, agents interact to exchange information, to 
cooperate and to coordinate their tasks. Interaction is generally recognized as an 
important characteristic of multi-agent systems (MAS). The usual approaches to model 
agents’ interactions consist of describing them as protocols [Hug04]. In the literature, 
several representation formalisms of agents’ interactions have been proposed. AUML is 
one among the most used formalisms [Hug02]. However, AUML diagrams only offer a 
semi-formal specification of interactions. Indeed, the lack of formal semantics in AUML, 
can lead to several incoherencies in the description of a MAS’ behaviour. We present, in 
this paper, a visual tool that essentially allows: (1) translating the description of agents’ 
interaction protocols (AIP), specified by means of AUML formalism, in a Maude 
specification and, (2) validating the generated formal descriptions through simulation. 
Based on rewriting logic, the formal and object-oriented language Maude offers an 
interesting way for concurrent systems formal specification and programming. By an 
example of multi-agent systems interaction protocol, we illustrate the proposed 
translation and the developed tool. 

1 INTRODUCTION 

In recent years, agents’ interaction specification has become a central reasearch field. In 
order to describe such interactions, several formalisms and languages have been emerged 
in the literature (CATN [Lem03], RCA [Tra01], AUML [Ode01, Hug04], etc). AUML 
(Agent Unified Modeling Language) is one among the most used formalisms [Hug02]. In 
fact, it represents the first emerged result from the cooperation established between the 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

FIPA (Foundation of Intelligent Physical Agents) and the OMG group (Object 
Management Group) for facilitating the penetration of the agent technology in the 
industry. 

AUML extends UML (Unified Modeling Language) [Mul00] for modeling agents 
and their interactions [Hug04, Pau03]. While adopting a layered approach, AUML offers 
the agent interaction protocol diagrams to represent agents’ interaction on an abstract 
level. Agent interaction protocol diagrams are defined by the FIPA in AUML. The main 
advantage of modeling with AUML is its intuitive graphical representation of the 
architecture and processes. For the usage of the AUML within CASE tools, a well 
defined semantics is required. However, AUML diagrams only offer a semi-formal 
specification of interactions. The semantics of agent interaction protocols are usually 
defined by the semantics of sequence diagrams, which are usually ambiguous and vague. 
This weakness may generate several problems. Indeed, the lack of formal semantics in 
AUML [Ast98, Reg99, Mor05], can lead to several incoherencies in the description of a 
MAS’ behavior. 

In this context, the use of appropriated formal notations offers several advantages. 
Especially, it allows for producing rigorous and precise descriptions supporting efficient 
verification and validation process.  

Based on a sound and complete logic, called the rewriting logic [Mes92], the Maude 
language [Cla99, McC03] seems to be in this context an interesting candidate. It offers, in 
fact, through its various constructions, an interesting way for concurrent systems formal 
specification and programming. It offers all the basic elements allowing specifying and 
verifying formally multi-agent interactions.  

In this paper, we present a visual tool that allows designers to construct and describe 
agents’ interaction protocols using AUML diagrams and to generate formal specification 
in Maude from such AUML interaction diagrams. Moreover, it allows for validating the 
generated specification by means of simulation techniques supported by Maude platform. 
In fact, the developed tool implements the approach proposed in our previous work 
[Mok07]. 

The remainder of the paper is organized as follows. In section 2, we give a general 
outline on related work. We summarily present, in section 3, the AUML formalism. In 
section 4, we give an overview of Maude. In section 5 we present the proposed 
translation process. We illustrate in section 6, the developed tool. Finally, in section 7, we 
give some conclusions and future work directions.  

2 RELATED WORKS 

Multi-agent System technology has impressively emerged as a new paradigm for 
software development. As autonomous software components, agents can interact through 
a standard protocol and collaborate with each other to achieve common goals. For 
capturing interaction protocols, many works adopted the widely-used Agent UML 
(AUML) notation. 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 61 

In [Pad07] PDT (Prometheus Design Tool) [Tha05] has been extended with two 
significant new features: support for Agent UML interaction protocols, and code 
generation. PDT provides graphical support for the design phases of the methodology, 
allowing the designer to enter and edit diagrams and descriptors for entities. Once a 
design for an agent system has been developed, the design needs to be implemented. PDT 
allows generate skeleton code in the JACK agent-oriented programming language 
[Bus99]. However, it’s so difficult to verify the correctness of the generated code because 
the specification of interaction protocols has been not developed in a formal way. 

In [Aye08], L. Jemni et al. proposed an event-B based approach to reasoning about 
interaction protocols. The objective of this approach is to show how an event-B model 
can be structured from AUML protocol diagrams and then used to give a formal semantic 
to protocol diagrams which supports proofs of their correctness. For describing 
concurrent object-oriented models, event-B must use an intermediate object-oriented 
style specification notation [Edm08]. 

L. Kahloul et al. [Kah05] presented an approach allowing translating Agent UML 
description into a recursive colored Petri net (RCPN) model. The proposed approach aims 
to formalize agent interaction in MAS in order to facilate analysis and verifcation 
processes. However, the validation and verification of the generated specification 
requires the use of tools supporting RCPN formalism.  

Of course, those works have considerably forwarded the domain by creating AUML 
diagrams and translating them into another form. However, it’s important, in this context 
to use more formal notations which essentially allows for producing rigorous and precise 
descriptions supporting efficiently the verification and validation process. 

We present, in this paper, a visual tool that allows the generation of a Maude formal 
specification from AUML diagrams. The developed tool essentially allows: (1) 
translating the description of agents’ interactions, specified using AUML formalism, in a 
Maude specification and, (2) validating the generated formal descriptions through 
simulation. The formal and object-oriented language Maude, based on rewriting logic, 
supports formal specification and programming of concurrent systems [McC03, Eke02, 
Mes03, Cla05]. Maude is a multi paradigm language [Mes03, Cla05] that supports the 
semantics of concurrency (intra and inter-objects). Furthermore, the Maude language is 
supported by a tool, which allows validating the generated formal descriptions through 
simulation. Maude also integrates a model checker supporting the verification of Linear 
Temporal Logic (LTL) properties [Eke02, Mes03, Cla05].  

3 AUML 

The UML language [Mul00, OMG05] was widely used in the modeling and design of 
object-oriented systems (OOS). However, it is not adapted for the modeling of MAS. 
This is essentially due to the fundamental differences between OOS and MAS. Compared 
to objects, agents are relatively active and autonomous. Furthermore, objects are reactive 
where agents are proactive and social [Ode00, Kav03]. To fill those weaknesses, FIPA 
and OMG established a cooperation to facilitate the penetration of the agent technology 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

in the industry. The first result of that cooperation was the definition of the Agent UML 
language (AUML) [Ode00, Bau01]. It supports the specification of multi-agent 
interactions. To represent multi-agent interaction protocols, AUML adopts in fact an 
approach organized in three layers. It uses, in the first layer, packages and templates to 
represent the entire protocol. Sequence, collaboration, activity and state-transition 
diagrams are used to represent the interactions between agents. Furthermore, activity and 
state-transition diagrams are also used to capture the internal behaviour of agents (for 
further details, the reader is referred to [Ode00]). This paper presents an alternative in 
witch we use the concepts of packages and templates to represent an interaction protocol, 
as well as sequence diagrams to describe the interaction between agents and state-
transition diagrams for the specification of the internal behaviour of an agent. The rest of 
AUML concepts will be considered in a future work. 

3.1. Level 1: Representation of agents’ interaction protocol 
Figure 1 presents an interaction protocol between agents. It describes, using an AUML 
sequence diagram, the FIPA Contract Net protocol. As soon as it is called, the Initiator 
agent sends a call-for-proposal to a Participant agent. Before a given limit date (deadline), 
the Participant agent can send to the Initiator agent a proposal, refuse to send that 
proposal (refuse) or indicate that it did not understand properly (not-understood). The 
proposal formulated by the Participant agent can be accepted or refused by the Initiator 
agent. When it receives a positive answer to its proposal (accept-proposal), the 
Participant agent informs the Initiator agent of the execution of its proposition. However, 
the Initiator agent can cancel the execution of the proposition at any given time. Figure 1 
also illustrates two fundamental concepts relative to that level: 

• Package: a conceptual aggregation of interaction sequences. It allows treating the 
protocol as a reusable entity. The top left corner indicates that the protocol is a 
package. 

• Template: represented by a box in the top right corner. The template concept 
allows a protocol described by a package to be personalized for similar problem 
domains. 

 
 
 

 

 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 63 

 

 

 

 

 

 

 

 

3.2 Level 2: Representation of the interactions between agents 
Figure 2 shows the basic format of communication between agents. Instead of the 
message style defined in UML, AUML uses communication acts (CA).  

To support the description of concurrent interaction threads, AUML introduced three 
ways that allow expressing multiple threads (see figure 3). Figure 3(a) indicates that all 
CA-I (CA-1…CA-n) are transmitted concurrently. Figure 3(b) introduces a decision box 
indicating which the CAs (0 or more) will be transmitted. Figure 3(c) indicates that a 
unique CA is to be transmitted. Concurrent communication acts can be sent by a sender 
agent to an agent playing different roles. They can also be sent to different agents. 

3.3 Level 3: Representation of the internal behaviour of agents 
AUML offers two alternatives to represent the internal behaviour of an agent. The first 
consists on using state-transition diagrams (state-charts), and the second uses activity 
diagrams. As we mentioned earlier, we use state-charts in this paper for the modeling of 
the internal behaviour of an agent. Figures 4(a) and 4(b) present respectively the internal 
behaviour of agents Initiator (I) and Participant (P) of figure 1. 

 

FIPA Contrat Net Protocol 

Initiator, Participant 
Deadline 

call-for-proposal, refuse*,  
not-understood*, propose, 
reject-proposal*, accept-

proposal*, cancel*, inform* 

Initiator Participant 

call-for-proposal 

refuse 

not-understood 

propose 

x 

accept-proposal 

reject-proposal 

x 

cancel 

inform 

 

 

 

 

 

 

 

 

Figure 1. An interaction protocol expressed as a 
template package.

deadline CA‐2 

CA‐1 

Agent-1/Role :Class Agent-1/Role :Class

  

Figure 2. Basic format for agents 
communication. 

(a) 

CA-1 

CA-2 

… 
CA-n 

(b) 

CA-1 

CA-2 

… 
CA-n 

(c) 

CA-1 

CA-2 

… 
CA-n 

x

Figure 3. Recommended extensions that 
support concurrent threads of interaction. 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

 

 

 

 

 

4 MAUDE  

Maude is a language for specifying and programming systems and is based on rewriting 
logic [Cla99, Mes03]. It allows for describing easily the intra and inter-object 
concurrency. Furthermore, Maude has its own model-checker that is used in checking 
system’s properties.  

In rewriting logic, the logic formulas are called rewriting rules. They have the 
following forms: R:[t]  [t’] or R:[t]  [t’] if C. Rule R indicates that term t becomes 
(is transformed into) t’. On its second form, a rule could not be executed except that a 
certain condition C if verified. Term t represents a partial state of a global state S of the 
described system. The modification of the global state S of the system to another state S’ 
is realized by the parallel rewriting of one or more terms that express the partial states. 
The distributed state of a concurrent system is represented as a term whose sub-terms 
represent the different components of the concurrent state.  

Three types of modules are defined in Maude. The functional modules allow 
defining data types and their functions through equation theory. Figure 5(a) represents the 
functional module Nat specifying the natural numbers. The natural numbers sort 
hierarchy has top sort Nat and (disjoint) sub sorts Zero and NzNat. The sort Nat is 
generated from the constant 0 (of sort Zero) and the successor operator s_. 

The NAT module is imported in the FACT module (figure 5(b)) to calculate the 
factorial of natural numbers using the operator !. Such an operator uses the successor 
operator s_ in a recursive way. 

(a)                                                                                            (b) 
 

Figure 4. Internal behaviour of the agents Initiator and Participant.  

NotClear/ 
NotUnderst 

ExpiredTimeOut/ReadAllMsg 

TrueCond/ 
SendAccProp 
SendRejProp 

HasProp/DecProcess 

NoExpTimeOut/ 
Wait 

TrueCond/ 
SendCFP 

Start Wait 

OfEval 

Failure 

Success 

ComDec 

NoProp/NoAction 

IsRefused/ 
SendReject 

ReceiveRejProp/ 
NoAction ReceiveCFP/ 

DecProcess 

IsAccepted/ 
SendProp 

NoMail/ 
Wait 

Start Wait 

OfEval Failure 

Success 

ReceiveAccProp/ 
NoAction 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 65 

 

 

 
 

 

 
The system modules allow defining the dynamic behaviour of a system. This type of 
module augments functional modules by the introduction of rewriting rules. A maximum 
degree of concurrency is offered by this type of module. Finally, object-oriented modules 
can, in fact, be reduced to system modules. This last type of module offers more 
explicitly the advantages of the object paradigm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Compared to system modules, an object-oriented module offers a more appropriate 
syntax to describe the basic entities of the object paradigm such as objects, messages and 

(a)                                           (b) 

Figure 5. Functional Modules Nat and FACT. 

fmod NAT is 
sorts Zero NzNat Nat . 
subsort Zero NzNat < Nat . 
op 0 : -> Zero . 
op s_ : Nat -> NzNat .  
…. 
endfm 

fmod FACT is 
Including NAT . 
op _! : Nat -> NzNat . 
var N : Nat . 
eq 0 ! = 1 . 
eq (s N) ! = (s N) * N !. 
endfm 

 
           (a)                                                             (b) 

Figure 6. The same BANK-ACCOUNT module in system 
module and OO module forms.

mod BANK-ACCOUNT is 
protecting INT . 
including CONFIGURATION . 
op Account : -> Cid. 
op bal :_ : Int -> Attribute . 
ops credit debit: Oid Nat 
    -> Msg. 
var A : Oid . vars M N : Int . 
 
rl [credit] : 
 < A : Account | bal : N >  
 credit(A, M) 
 =>  
< A : Account | bal : N + M >. 
crl [debit] : 
 < A : Account | bal : N >  
 debit(A, M) 
=> 
 < A : Account | bal : N - M >  

If N >= M . 
endm 

(omod BANK-ACCOUNT is 
protecting INT . 
class Account | ba : Int . 
op bal :_ : Int -> Attribute . 
msgs credit debit : Oid Int 
     -> Msg . 
var A: Oid . vars M N : Int . 
 
rl [credit] : 
 < A : Account | bal : N >  
 credit(A, M) 
 =>  
< A : Account | bal : (N + M) > . 
crl [debit] : 
< A : Account | bal : N > 
 debit(A, M) 
=>  
< A : Account | bal : (N – M) >  

If N >= M . 
endom) 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

configurations, for example. A single rewriting rule can express the consumption of 
certain floating messages, the sending of new messages, the destruction of objects, the 
creation of new objects, state changes of certain objects, etc. all at the same time. Figure 
6(a) shows a system module called BANK-ACCOUNT to define a bank account object A 
and two operations that can influence its contents: credit and debit by the execution of the 
rewriting rules of that module. Figure 6(b) represents the same module BANK-
ACCOUNT with a more appropriate object-oriented syntax. We can then conclude that 
after the execution of unconditional rule [credit], the credit(A, M) message is consumed 
and the content of the account is augmented. Also, starting the conditional rule [debit] 
needs the condition (N>=M) to be true before it can begin. The execution of a rule brings 
the consumption of message debit(A, M) and the reduction of the content of the account. 

5 TRANSLATION PROCESS 

We use, in what follows, several examples to illustrate the defined process to support the 
translation of the AUML specifications in Maude. The hierarchical vision in three layers 
for describing a system in AUML can be captured by Maude. Using the Maude language, 
we can define a module whose behavior can be extended by another module. 

5.1 Translation of the template concept  
We define a TEMPLATE module in Maude for modelling the template concept of 
AUML. The different constructions Act, Role and DeadlineType allow us to represent 
respectively types of acts, of roles as well as the concept of deadline defined in AUML. 
For example, we translate the AUML template given by the figure 1 in the Maude 
functional module described by figure 7. This last defines the Initiator and Participant 
roles that are, in fact, constants of type Role. We define, furthermore, call-for-proposal 
like a constant of the proposed type Act. 
 
 
 
 
 
 
 
This module is generic and remains open to extension. We extend its behaviour by adding 
a description of the behaviour of its operations in another module that will implement the 
concept of Package of AUML. Before detailing the translation of the package, we give 
the translation of class and role. 

fmod TEMPLATE-FIPA-CONTRACT-NET-PROTOCOL is 
 
 sorts Act Role DeadlineType . 
 ops Initiator Participant : -> Role . 
 op Deadline : -> DeadlineType . 
 ops call-for-proposal refuse not-understood propose reject-proposal  
    accept-proposal cancel inform : -> Act . 
endfm 

Figure 7. Modeling Template in Maude.



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 67 

• Basic object-oriented concepts: The basic concepts of the object paradigm 
(class, object, inheritance, and message) correspond naturally to the defined 
equivalent concepts in Maude. 

• Role: A role in AUML reflects, in fact, an agent's particular behaviour. This 
behaviour exhibited by the agent controls the type of sent or received messages by 
an agent. An agent's role is described by a set of rewriting rules. Each time that an 
agent plays a role, we orient this agent to only execute the rewriting rules of this 
role. In addition of rewriting rules, we use an attribute to describe a role explicitly. 
The definition in AUML agent-name/role: class will be described in Maude as 
follows: <agent-name: class | Play-role: Role,…>, where agent-name is an agent's 
identifier. We define Role like an enumerated type containing roles values for this 
agent and Play-role like an attribute that contains the role played by the agent, at a 
given moment. 

5.2 Translation of the package concept  

A Package in AUML can be described like a module in Maude. This module can 
encapsulate, as in AUML, a description of aggregation of interaction sequences. Every 
interaction in AUML, can be described by a rewriting rule. We give in figure 8, a part of 
an object-oriented module in Maude to describe the template package. In this module, we 
find the definition of the class Agent (line [1]).  



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

 

 

 

 

 

 

 

 

Figure 8. Example of modeling of Package in Maude 

This class is characterized by the presence of the three attributes: Play-role of Role type 
denoting an agent's role, MBox of MailBox type serving to contain proposals to come, 
AcqList of AcquaintanceList type containing the list of the agent's acquaintances and the 
State attribute of AgentState type that is a enumerated type containing the set of own state 
values for an agent. We define the form of the message allowing the exchange of 
information between Initiator and Participant. ComingMsg (line [2]) has three parameters 
expressing in the order the agent sender of the message, the agent receiver and the 
communication act. 

The rule in this figure (line [4]) describes the sending of message call-for-proposal 
on behalf of the agent I in the Initiator role to all its acquaintances (agents playing the 
Participant role). Note that the variable I and P are Aoid type (line [3]) representing the 
identification space of the class Agent and the Sender and Receiver types are sub-types of 
Aoid. The execution of this rule requires the presence of the Initiator agent (left part of 

 
(omod PACKAGE-FIPA-CONTRACT-NET-PROTOCOL is 
 extending TEMPLATE-FIPA-CONTRACT-NET-PROTOCOL . 
 …  
 class Agent | Play-Role : Role, MBox : MB, AcqList : AcquaintanceList, State : AgentState .  *** [1] 
  
 msg ComingMsg : Sender Receiver Act -> Msg .                                     *** [2] 
 vars I P : Aoid .                                                               *** [3] 
 … 
crl [IsendmsgP]:  < I : Agent | PlayRole : Initiator, MBox : MB, AcqList : ACL, State : StartI >    ***[4] 
           => 
              ComingMsg(I, HeadA(ACL), call-for-proposal)  
             < I : Agent | PlayRole : Initiator, MBox : MB, AcqList : TailA(ACL), State : StartI >  
             if ACL =/= EmptyacquaintanceList . 
 
rl [PreceiningmsgI]: ComingMsg(I, P, call-for-proposal)                         ***[5] 
           < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : StartP > 
          => Execute(P, DecisionProcess) 
           < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > . 
 
crl [Pdecision1]: Execute(P, DecisionProcess) Event(P, Cond)      ***[6]  
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
        => ComingMsg(P, I, propose) 
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : WaitP > 
         if Cond = IsAccepted . 
 
crl [Pdecision2]: Execute(P, DecisionProcess) Event(P, Cond)       ***[7] 
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
       => ComingMsg(P, I, notunderstood) 
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : WaitP > 
         if Cond = NotClear . 
 
crl [Pdecision3]: Execute(P, DecisionProcess) Event(P, Cond)      ***[8]  
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
       => ComingMsg(P, I, refuse) 
         < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : FailureP > 
         if Cond = IsRefused . 
… 
endom) 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 69 

the rule) and gives as a result the agent itself and the creation of the ComingMsg(P, I, 
Propose) (right part of the rule). During each iteration, a ComingMsg(P, I, Propose) 
message is sent to one of participant agents . The execution of the rule stops when each 
participant appears in the list of acquaintances receives such a message. 

5.3 Description of the agents’ interaction modes in Maude  

The three interaction modes defined in AUML (figure 3) are all supported by Maude. We 
use only one rewriting rule (see figure 9) to describe the interaction form that is in the 
diagram (3.a).  

  

 

Figure 9. Modelling of the concurrent threads of interaction in Maude. 

This clearly indicates the spontaneous sending of the Mi messages containing as 
parameters the communication acts CA-i. In the case of ' inclusive or ' and of 'exclusive 
or', it doesn't exist a 'standard' evaluation strategy allowing to choose an alternative 
among several. This makes it difficult (and impossible in some cases) to propose a 
precise translation of these two interaction modes in Maude. Their translation remains an 
open issue. However, thanks to the flexibility of the Maude language, we can recommend 
some solution directions. To describe the form of interaction concerning the 'inclusive 
or', we propose one of the following solutions to capture this concept in Maude, the use 
of m rewriting rules (m ≤ n) of the form (figure 10).  

 

 

Figure 10. Modelling of the interaction mode concerning 'inclusive or' in Maude using the conditions. 

In fact, i =1,..., m and CA-i1 CA-i2… CA-ik are communication acts among CA-1 CA-2… 
CA-n. They present acts that must appear spontaneously. The condition Ci validates the 
Li rule. Therefore, it controls its execution. Instead of using conditions, another 
considered alternative (figure 11) consists of using a common message to all Li rules, in 
the following manner:  

 

 
 

Figure 11. Modelling of interaction mode concerning 'inclusive or' in Maude using the messages. 

In the context of this solution, only one instance of the M message generated in advance 
allows to launch the execution of only one rewriting rule among the Lis. Values Vi of 

rl [L] :   < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
     => < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …>  
       M1(CA-1, …)  M2(CA-2,…) … Mn(CA-n,….) 

crl [Li] : < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
 => < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M1(CA-i1, …)  
M2(CA-i2, …) … Mk(CA-ik, …) if Ci . 

rl [Li] : < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M(Vi) 
=> < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …>  
M1(CA-i1 , …) M2(CA-i2, …) … Mk(CA-ik, …) .                                                  



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

parameters of M allow selecting the Li rule among the other rules. Let's note that values 
of parameters of M are unique for every rule. 

The 'exclusive or' is described in Maude in a similar way to the one of the previous 
case. In this case, we adopt the solution based on conditions and we get n-rules. The form 
of these rules is described in figure 12. 
 
 
 

Figure 12. Modeling of interaction mode concerning 'exclusive or' in Maude using the conditions. 

i =1, ..., n. If CA-i is the chosen message to be sent, it is therefore necessary that the 
condition Ci be verified for rewrite the appropriate rule Li, while all other conditions Cj (j 
=1,.. ,n, j≠i) are false. The solution based on messages in the interaction mode 'inclusive 
or', can be adapted also to implement the 'exclusive or'. In this case, the execution of 
every Li rule consists in creating only one act CA-i (see figure 13). 
 
 
 

 
Figure 13. Modelling of interaction mode concerning 'exclusive or’ in Maude using the messages. 

In the example of figure 8, after receiving the message ComingMsg(I, P, call-for-
proposal) (line [5]) the participant launches its decision process by generating an 
Execute(P, DecisionProcess) message. This message is common to three rewriting rules 
(lines 6, 7 and 8). One of these rules, solely, will be executed. The message 
ComingMsg(I, P, call-for-proposal) will be consumed after the rewriting of this rule, 
blocking so the rewriting of the two another ones. 

Note that all rewriting rules proposed in this section are terminating. The left part of 
each rule is different than the right one. 

5.4 Agent's internal behaviour 

This behaviour is described by a state-transitions system. This system presents, in fact, a 
particular case in Maude [Mes03].   

6. OUR TOOL SUPPORT APPROACH  

We developed, along this work, a tool supporting the generation of Maude specification 
from an AUML description of an Agents’ Interaction Protocol. This tool allows the user 
creating and manipulating different AUML diagrams. 

rl [Li] : < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
 => < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> CA-i  if Ci . 

rl [Li] : < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M(Vi) 
=> < A1 : C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> Mi(CA-i , …) . 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 71 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Architecture of the tool. 

 
 

The developed tool is easy to use. It guides the user during the generation process of the 
Maude specification. Furthermore, by using this tool, the user can validate the generated 
specification.  

Figure 14 shows the principal steps to be followed in order to achieve the task. For 
that, the user has to: 

1. Create AUML diagrams (package, sequence, and state chart diagrams), 
2. Apply the translation process in order to generate a Maude Specification 

describing the created AUML diagrams, 
3. validate the generated specification by means of simulation, 

The obtained results must to be analysed by the user (designer) in order to detect errors. If 
errors have been detected, the user must return back to AUML diagrams for correcting 
them. 

Errors 

Package 
Diagram 

Sequence 
Diagram 

Instanciation 
process 

  Statechart Diagram 

Creation of AUML Diagrams

Level 1 Level 2 

Level 3

Application of the 
translation process 

Maude Specification 

Validation by 
simulation 

Validated Specification 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

Figure 15 presents the result of the creation of AUML Sequence diagram by instantiating 
package diagram. It illustrates the diagrams describing the Contract Net protocol.  

 
Figure 15. Creation of AUML Sequence diagrams. 

To describe agents’ internal behavior, users have to create a state chart diagram for each 
agent role. Figure 16 shows two state chart diagrams associated to the Initiator and 
Participant roles.  

 
Figure 16. Creation of AUML state chart diagrams. 

Once created, the AML diagrams will be translated into a formal Maude specification. 
Figure 17, illustrates the generated Maude specification, as well as, the initial 
configuration used to validate this specification. The initial configuration shows, all 
agents (one initiator (I) and four participants (P1, P2, P3, and P4) in their initial states. It 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 73 

also shows, the different cost proposed by the participants to accomplish the call for 
proposal. 
 

 
Figure 17. The generated Maude specification. 

After it sends a call-for-proposal to all participants, the initiator agent begins to receive 
the proposal on behalf of participant agents. It arranges the received proposals in its 
mailbox in an increasing order according to the proposed costs. 

 
Figure 18. Result of the unlimited rewriting of the initial configuration of the figure 17 

Once the deadline considered is expired, the initiator launches its evaluation process by 
choosing the most appropriate proposal (here we adopt the strategy based on the 
minimum cost). So, the initiator sends to the chosen participant (here P4) an acceptance 
(accept-proposal), and to the remainder of participants (here P1, P2, and P3) a reject 
(reject-proposal). The chosen participant must inform the initiator of the execution of the 



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

proposition by sending it a message (inform). It expresses the fact that the participant 
consumed the message accept-proposal. 
 

7. CONCLUSION AND FUTURE WORK 
Modeling languages have received a lot of attention since they offer important modeling 
facilities by using diagrammatic notations. They enable developers to view large systems 
via diagrammatic notations, which can increase understanding [Tal03]. Agent UML is 
one among the modeling languages in multi-agent systems area. It offers several 
diagrams allowing describing interactions between agents. However, the lack of formal 
semantics in AUML, can lead to several incoherencies in the description of a MAS’ 
behavior. 

We presented, in this paper, a visual tool supporting our approach proposed in a 
previous work [Mok07]. We focused on the translation of AUML diagrams into Maude 
specification. Using the developed tool, designers can construct their own interaction 
models via AUML diagrams and translating them into Maude specification. Furthermore, 
they may validate the generated specification by means of simulation techniques using 
the Maude platform. 

As future work, we plan to extend our tool for, on the one hand, taking into account 
agents’ static aspects using class diagrams, and on the other hand, verifying the generated 
descriptions by using Maude’s incorporated model checker. 

REFERENCES 

[Ast98] E. Astesiano. UML as “Heterogeneous Multiview Notation. Strategie for a 
Formal Foundation”. In L. Andrade, A. Moreira, A.  deshpande, and S. Kent, 
editors, proc. Of the Conference on Object Oriented programming, Systems, 
Languages and Applications (OOPSLA’98) – Workshop on Formalizing 
UML. Why ? How ?, Canada 1998. 

[Aye08] L.J. Ben Ayed, Fatma Siala, "From AUML Protocol Diagrams to Event B for 
the Specification and the Verification of Interaction Protocols in Multi-agent 
Systems," compsac, pp.581-584, 2008 32nd Annual IEEE International 
Computer Software and Applications Conference, 2008 

[Bau01] B. Bauer, J. P. Muller, J. Odell. ‘‘Agent UML: A Formalism for Specifying 
Multiagent Interaction’’. Agent-Oriented Software Engineering, Paolo 
Ciancarini and Michael Wooldridge eds., Springer, Berlin, pp. 91-103, 2001. 

[Bus99] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK intelligent agents --- 
components for intelligent agents in Java. AgentLink News, Issue 2, 1999.  

[Cla99] M. Clavel and al. “Maude : Specification and Programming in Rewriting Logic”. 
Internal report, SRI International, 1999. 



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 75 

[Cla05] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Mesenguer, and C. 
Talcott. Maude Manual (Version 2.1.1), April 2005. 

[Edm08] A. Edmunds, M. Butler. “Linking Event-B and Concurrent Object-Oriented 
Programs”. Electr. Notes Theor. Comput. Sci. 214: 159-182 (2008) 

[Eke02] S. Eker, J. Meseguer, A. Shridharanarayannan. ‘’The Maude LTL model 
checker’’. In: proc. WRLA’02. Volume 71 of ENTCS., Elsevier (2002). 

[Hug04] M.P. Huget and J. Odell ‘’Representing Agent Interaction Protocols with Agent 
UML’’. In AAMAS’04, pp.1244-1245, New York, NY, USA, 2004. 

[Hug02] M.F. Huget. ‘’Model Checking Agent UML Protocols Diagrams’’. Technical 
report ULCS-02-012. Department of Computer Science, University of 
Liverpool. Version 16/04/2002. 

[Kah05] L. Kahloul, K. Barkaoui, Z. Sahnoun, "Using AUML to derive formal modeling 
agents interactions," aiccsa, pp.109-vii, ACS/IEEE 2005 International 
Conference on Computer Systems and Applications (AICCSA'05), 2005. 

[Kav03] K. kavi and al. ‘‘Extending UML for Modeling and Design of Multi-Agent 
Systems’’. Proc. of ICSE'03 Workshop on Software Engineering for Large 
Multi-Agent Systems (SELMAS'03), Portland, Oregon, May 3--4, 2003. 

[Lem03] C. Lemaître, X. Prat, L0 Magnin, L. et A. Dury “Description, programmation et 
validation d'interactions par Coupled Augmented Transition 
Network(CATNs)’’. Dans les Actes des Secondes Journées Francophones sur 
les Modèles Formels d'Interactions (MFI’03). Lille, France, 20-23 mai 2003. 

[McC03] T. McCombs. “Maude 2.0 Primer, Version 1.0”. Internal report, SRI 
International, 2003. 

[Mes92] J. Meseguer, “A Logical Theory of Concurrent Objects and its Realization in 
the Maude Language”. In G. Agha, P. Wegner, and A. Yonezawa, Editors, 
Research Directions in Object-Based Concurrency. MIT Press, 1992. 

[Mes03] J. Meseguer, “Software Specification and Verification in Rewriting Logic”. In 
M. Broy and M. Pizka, editors, Models, algebras and logic of engineering 
software, pages 133-193. IOS Press, 2003. ISBN 1-58603-342-5.  

[Mok07] Farid Mokhati, Noura Boudiaf, Mourad Badri and Linda Badri: "Translating 
AUML Diagrams into Maude Specifications: A Formal Verification of 
Agents Interaction Protocols", in Journal of Object Technology, vol. 6, no. 4, 
May - June 2007, pp. 77-102 http://www.jot.fm/issues/issue_2007_05/article2  

[Mor05] M. Morge. "Système dialectique multi-agents pour l’aide à la concertation". 
Thèse de doctorat. Ecole Nationale Supérieure des Mines. SAINT-ETIENNE. 
20 juin 2005. 

[Mul00] P.A. Muller et Nathalie Gaertner. “Modélisation objet avec UML”, Deuxième 
Edition 2000 Paris.  



 
A TOOL FOR SPECIFYING AND VALIDATING AGENTS’ INTERACTION PROTOCOLS: FROM 

AGENT UML TO MAUDE 
 
 
 
 

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3 

[Ode00] J. Odell, H. V. D. Parunak, B.Bauer, “Representing agent Interaction protocol In 
UML”, conférence AAAI Agents 2000, Barcelone, 3-7 juin 2000. 

[Ode01] J. Odell, H. V. D. Parunak, B.Bauer, “Representing agent Interaction protocol In 
UML”, Agent Oriented Software Enginering, Paolo Ciancarini and Michael 
Wooldridge (eds.), Springer-Verlag, Berlin, 2001, pp. 121-140. 

[OMG05] Object Modeling Group. “Unified Modeling Language Specification”, version 
2.0, July 2005. 

[Pad07] L. Padgham, J. Thangarajah and M. Winikoff.“AUML Protocols and Code 
Generation in the Prometheus Design Tool”.AAMAS’07, May 14–18, 2007, 
Honolulu, Hawai'i, USA. 

[Pau03] S. Paurobally, J. Cunningham, and N. R. Jennings “Developing Agent 
Interaction Protocols Using Graphical and Logical Methodologies”, in Proc. 
AAMAS03 PROMAS Workshop on Programming Multi-Agent Systems , 
2003. 

[Reg99] G. Reggio and R. Wieringa. “Thirty one Problems in the Semantics of UML 1.3 
Dynamics”. In Conference on Object Oriented programming, Systems, 
Languages and Applications (OOPSLA’99) – Workshop “Rigorous Modeling 
an Analysis of the UML Challenges and Limitations’’, 1999. 

[Tal03] A. Taleghan I, J. Ostrof. “Bon Development Tool”. In Proceedings of the 2003 
OOPSLA workshop on eclipse technology eXchange. Pages: 10-14. 2003. 

[Tha05] J. Thangarajah, Lin Padgham, Michael Winikoff: Prometheus design tool. 
AAMAS 2005: 127-128. 

[Tra01] E. Tranvouez. ‘’IAD et ordonnancement: une approche coopérative du 
réordonnancement par systèmes mulit-agents’’. Thèse de doctorat. Université 
de Droit, d'Economie et des Sciences d'Aix-Marseille III. 2001. 

About the authors 

Farid Mokhati (Mokhati@yahoo.fr) is an assistant professor of 
computer science at the Department of Computer Science of the 
University of Oum El-Bouaghi in Algeria. He holds an HDR 
(Habilitation à Diriger des Recherches), in computer science 
(Distributed Artificial Intelligence) from the University of Annaba in 
Algeria. His main areas of interest include object and agent-oriented 

software engineering, and formal methods.  



 
 
 
 
 
 

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 77 

Brahim Sahraoui (BSahraui@yahoo.fr) is a Master's Degree student at 
the University of Setif in Algeria. His main areas of interest include 
agent-oriented software engineering, and natural language processing.  

 

Soufiane Bouzaher (SBouzaher@yahoo.fr) is a Software Development 
Engineer. His main areas of interest include agent-oriented software 
engineering and formal methods. 

 

Mohamed Taher Kimour (Kimour@yahoo.fr) is an assistant professor 
of computer science at the Department of Computer Science of the 
University of Annaba in Algeria. He holds a Ph.D. in computer science 
(Software Engineering) from the University of Annaba in Algeria. His 
main areas of interest include object and agent-oriented software 
engineering, and embedded systems. 


