
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

JOURNAL OF OBJECT TECHNOLOGY

Vol. 9, No. 2, March-April 2010
Towards a theory and calculus of aliasing
Bertrand Meyer, ETH Zurich and Eiffel Software, se.ethz.ch

Abstract
A theory, graphical notation, mathematical calculus and implementation for finding
whether two given expressions can, at execution time, denote references attached to
the same object. Intended as the basis for a comprehensive solution to the “frame
problem” and as an alternative (for the specific issue of determining aliases) to
separation logic, shape analysis, ownership types and dynamic frames.

1 DYNAMIC ALIASING
You have, most certainly, read Homer. I have not (too much blood), but then I listen to
Offenbach a lot, so we share some knowledge: we both understand that “the beautiful
daughter of Leda and the swan”, “poor Menelaus’s spouse” and “Pâris’s lover” all denote
the same person, also known as Helen of Troy. The many modes of calling Helen are a
case of aliasing, the human ability to denote a single object by more than one name.

Aliasing is at its highest risk of causing confusion when it is dynamic, that is to say when
an object can at any moment acquire a new name, especially if that name previously denoted
another object. The statement “I found Pâris’s lover poorly dressed” does not necessarily cast
aspersion on Helen’s sartorial tastes, as Pâris might by now have found himself a new lover;
but if we do not carefully follow the lives of the rich and famous we might believe it does.

Stories of dire consequences of dynamic aliasing abound in life, literature and drama.
There is even an opera, Smetana’s The Bride Sold1, whose plot entirely rests on a single
aliasing event. To the villagers’dismay, Jeník promises the marriage broker, in return for
good money, not to dissuade his sweetheart Mařenka from marrying the son of the farmer
Mícha. Indeed Mícha wants Mařenka for his dimwit son, Vašek, but it is suddenly
revealed that Jeník, believed until then to be a stranger to the village, is Mícha’s son from
a first marriage: he has tricked everyone.

To a programmer, this tale sounds familiar: the
equivalent in program execution is to perform an operation
on certain operands, and inadvertently to modify a property
of a target that is not named in the operation — hence the risk
of confusion — but aliased to one of the operands. For
example an operation may, officially, modify the value of x.a; but if x denotes a reference
and y another reference which happens at the time of execution to be aliased to x (meaning
that they both point to the same object), the operation will have an effect on y.a even though
its text does not cite y. If b is aliased to a, we might even have an operation that modifies
y.b although its description in the programming language mentions neither y nor b.

1. A title incorrectly rendered, in the standard English translation, as The Bartered Bride.

a
yx

b

Towards a theory and calculus of aliasing
Bertrand Meyer, ETH Zurich and Eiffel Software, se.ethz.ch

Abstract
A theory, graphical notation, mathematical calculus and implementation for finding
whether two given expressions can, at execution time, denote references attached to
the same object. Intended as the basis for a comprehensive solution to the “frame
problem” and as an alternative (for the specific issue of determining aliases) to
separation logic, shape analysis, ownership types and dynamic frames.

1 DYNAMIC ALIASING
You have, most certainly, read Homer. I have not (too much blood), but then I listen to
Offenbach a lot, so we share some knowledge: we both understand that “the beautiful
daughter of Leda and the swan”, “poor Menelaus’s spouse” and “Pâris’s lover” all denote
the same person, also known as Helen of Troy. The many modes of calling Helen are a
case of aliasing, the human ability to denote a single object by more than one name.

Aliasing is at its highest risk of causing confusion when it is dynamic, that is to say when
an object can at any moment acquire a new name, especially if that name previously denoted
another object. The statement “I found Pâris’s lover poorly dressed” does not necessarily cast
aspersion on Helen’s sartorial tastes, as Pâris might by now have found himself a new lover;
but if we do not carefully follow the lives of the rich and famous we might believe it does.

Stories of dire consequences of dynamic aliasing abound in life, literature and drama.
There is even an opera, Smetana’s The Bride Sold1, whose plot entirely rests on a single
aliasing event. To the villagers’dismay, Jeník promises the marriage broker, in return for
good money, not to dissuade his sweetheart Mařenka from marrying the son of the farmer
Mícha. Indeed Mícha wants Mařenka for his dimwit son, Vašek, but it is suddenly
revealed that Jeník, believed until then to be a stranger to the village, is Mícha’s son from
a first marriage: he has tricked everyone.

To a programmer, this tale sounds familiar: the
equivalent in program execution is to perform an operation
on certain operands, and inadvertently to modify a property
of a target that is not named in the operation — hence the risk
of confusion — but aliased to one of the operands. For
example an operation may, officially, modify the value of x.a; but if x denotes a reference
and y another reference which happens at the time of execution to be aliased to x (meaning
that they both point to the same object), the operation will have an effect on y.a even though
its text does not cite y. If b is aliased to a, we might even have an operation that modifies
y.b although its description in the programming language mentions neither y nor b.

1. A title incorrectly rendered, in the standard English translation, as The Bartered Bride.

a
yx

b

Bertrand Meyer: “Towards a theory and calculus of aliasing”, in Journal of Object Technology, vol.
9, no. 2, March - April 2010, pages 37-74, http://www.jot.fm/issues/issue_2010_03/column5/

http://se.inf.ethz.ch
http://www.jot.fm
http://se.inf.ethz.ch

 TOWARDS A THEORY AND CALCULUS OF ALIASING §1
It is not hard to justify the continued search for effective verification techniques covering
aliasing. In the current state of proof technology, the aliasing problem (together with the
associated frame problem, to which it provides the key) is the principal obstacle on the road to
full proofs of correctness for sequential programs; it also plays a role in the specific difficulties
of proving concurrent programs correct.

A symptom of this situation is that industrial-grade proving tools often preclude the use of
pointers altogether. The Spark environment, which has made a remarkable contribution towards
showing that production programs can be routinely subjected to proof requirements, provides a
striking example. Spark relies on a programming language, presented as a subset of Ada but in
reality a subset of a Pascal-like language (plus modules), without support for pointers or
references. In considering how to make such pioneering advances relevant to a larger part of the
industry, it is hard to imagine masses of programmers renouncing pointers and other
programming languages advances of the past three decades.

The absence of a generally accepted solution is not for lack of trying. The aliasing problem
has been extensively researched, and interesting solutions proposed, in particular shape
analysis, separation logic, ownership types and dynamic frames. Few widely used proof
environments have integrated these techniques. That may still happen, but the obstacles are
significant; in particular, the first two approaches suffer (in our opinion) by attempting to draw
a picture of the run-time pointer structure that is more precise than needed for alias analysis; and
the last three assume a supplementary annotation effort (in addition to standard Hoare
assertions) at which programmers may balk.

The theory, calculus and prototype implementation described in the present work strive to
avoid these limitations. A typical application example is the absence of any aliasing between any
elements of two linked lists created and modified through typical object-oriented techniques.
Assume a standard implementation of lists with an operation to add elements at the end:

In class LIST:
extend (a: ELEMENT)

-- Add cell at end, with a as item.
local

new: CELL
do

if first = Void then
create first ; last := first

else
from

last := first
until last.right = Void loop

last := last.right
 end

end
create new ; new.set (a) ; last.set_right (new)

end

right

item item

rightright

item

a
new(ELEMENT)

(CELL)

lastfirst
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§1 DYNAMIC ALIASING
Consider references x and y denoting two such lists built
through any number of applications of extend and similar
operations. The theory, and its implementation, determine
that if they are not aliased to each other (x ≠ y) no CELL or
ELEMENT reachable from x is also reachable from y. The
proof is entirely automatic: it does not require any
annotation. In the implementation, it is instantaneous.

In its present state the theory suffers from some
limitations (section 9), but it makes the following claims:
• It provides a comprehensive treatment of aliasing issues and, potentially, a solution to the

“frame problem”.
• It includes a graphical notation, alias diagrams, which helps reason about aliasing.
• Alias analysis is almost entirely automatic, requiring no assertions or other annotations

from the programmer. The only exception is the occasional need to add a cut instruction
(4.4) to inform the calculus with results obtained from other sources; this case should arise
only rarely. Outside of it, alias analysis enjoys the advantage often invoked in favor of
model checking and abstract interpretation against annotation-based approaches to
program proving: full automation.

• The loss of precision (inevitable because of the undecidability of aliasing in its general
form) is usually acceptable, and, when not, can be addressed through cut.

• The theory is at a suitably high level of abstraction, avoiding explicit references to such
implementation-oriented concepts as “stack” and “heap”.

• The theory can model the full extent of a modern object-oriented language.
• The reader will, it is hoped, agree that it is simple (about a dozen rules) and provides insights

into the nature of programming, especially object-oriented programming. An example is the
final rule /37/, for qualified calls: (a » call x.r) = (x ((x’ a) » call r)), which conveys the
essence of the fundamental mechanism of O-O computation, concisely capturing the notion
of current object and the principle of relativity, both central to the O-O model.

The following ideas are believed to be new (although of course heavily influenced by previous
work): the notion of alias calculus; alias diagrams (a simplification of “shape graphs”); the
canonical form of alias relations; limiting analysis to expressions occurring in the program; using
alias analysis as a preprocessing step for axiomatic-style proofs; cut; inverted variables; the
handling of arguments, loops and conditionals.

The ambition behind the present work is that it will complement the methods listed earlier
and, for the problem of determining aliases (which is only a part of their scope), possibly
provide an alternative.

With, in class CELL:
item: ELEMENT
set (v: ELEMENT) do item := v end
set_right (c: CELL) do right := c end

x

y

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 3

 TOWARDS A THEORY AND CALCULUS OF ALIASING §2
Section 2 sets the context. Section 3 describes the properties of alias relations. Section 4
introduces the calculus for a simple language without remote object access, which section 5
extends with procedures. Section 6 generalizes the language and the calculus to the target
domain of interest: object-oriented programming. Section 7 presents the prototype
implementation. Section 8 summarizes how to apply the calculus to an actual object-oriented
programming language. Section 9 lists the remaining problems.

All the examples of this article can be tried out in the implementation, which the reader can
download (as a Windows executable) from se.ethz.ch/~meyer/down/alias.zip.

2 GENERAL OBSERVATIONS

The goal of the calculus is to allow deciding whether two reference expressions appearing in a
program might, during some execution, have the same value, meaning that the associated
references are attached to the same object.

2.1 Adding the alias calculus to an axiomatic framework

The key to the simplicity of the calculus is the expectation that cases of aliasing are, in practice,
the exception: most of the time, two expressions are not aliased to each other. As a consequence,
the intended approach to program proving is an incremental modification of standard axiomatic
(Hoare-style) techniques:
1 A first step uses the alias calculus to determine the possible aliases of expressions that

appear in assertions.
2 The second step applies standard axiomatic reasoning to the program equipped with the

resulting set of assertions — the original enriched with alias variants.
The techniques used in these two steps are independent. Step 2 uses ordinary axiomatic
semantics (including backward reasoning because of the assignment axiom); step 1 uses the
calculus (which happens to work in a forward style).

The following example illustrates the process. Assume we
are asked to prove

We are dealing with objects having a boolean attribute a, which
the procedure set_a sets to True. Assume that we have at our disposal a proof framework (not
detailed here, but relying on standard techniques) that applies axiomatic semantics, enabling us
to prove

{not y.a} /1/
x.set_a
{not y.a}

{True} /2/
x.set_a
{x.a}

a

yx
?

a

37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

http://se.ethz.ch/~meyer/down/alias.zip

§2 GENERAL OBSERVATIONS
The proof of /2/ will involve the assignment axiom, as set_a performs a := True, and a
procedure rule. (If we informally understand the call as x.a := True, the proof is a trivial
application of the assignment axiom.)

If we naïvely applied similar techniques to prove /1/, the proof would proceed smoothly:
since the instruction does not name y, the postcondition sails through that instruction unchanged.
Such reasoning, however, is not sound if y can be aliased to x. The alias calculus will allow us,
through its own techniques distinct from axiomatic semantics, to determine possible aliasings.
If it finds that some computations might alias y to x, it will inform the axiomatic reasoning by
automatically enriching the postcondition of /1/ to read not y.a and not x.a. Then /1/ is no
longer a correct Hoare triple since application of the assignment axiom to not x.a yields the
weakest precondition False.

2.2 Handling imprecision
The theory and calculus will be defined in terms of successive programming languages of
increasing ambition, each a superset of the previous one: E0 introduces variables and basic
instructions; E1 introduces procedures; E2 introduces object-oriented mechanisms. To apply the
calculus in practice, it will be necessary to translate the programming language of interest (such
as a modern O-O language) into E2. Elements of the following discussion, and the summary in
section 8, describe how to perform the translation and, as a consequence, how to apply the
calculus to practical programs.

Until then, we will concentrate on the calculus itself. We must, however, note the principal
property of the translation: it must be sound, meaning that if two expressions in the original
language may become aliased in some execution the calculus must reflect that property. In the
reverse direction, there is no such exigency: the calculus might infer possible aliasing between
two translated expressions where no aliasing can occur between the original expressions, a case
we may call imprecision. We will, as we go, keep on the alert for cases where the translation
may introduce imprecision.

Imprecision is an inevitable risk of any practical approach to alias analysis, but might
prevent some program proofs because of the possible loss of information. The alias theory
introduces a special solution to this problem in the form of the cut instruction (section 4.4). A
cut corrects any undesired imprecision resulting from the simplifications of the alias calculus
by stating that two expressions are not aliased at a particular point of the program. The alias
calculus itself is not, in such cases, able to prove this property; the proof falls back on its partner
in the proof duo — axiomatic semantics. As an example, consider

if not cond then
x := y /3/

end
Other_instructions-- Not affecting any of cond, x and y.
if cond then /4/

z := x /5/
end
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 5

 TOWARDS A THEORY AND CALCULUS OF ALIASING §2
The alias theory correctly determines that at the start of the conditional instruction /4/ x may be
aliased to y as a result of the earlier conditional assignment /3/. It will also determine, as a
consequence, that the assignment /5/ may alias z, through x, to y. Such aliasing cannot occur in
practice because of the role of the condition cond. The alias calculus, however, has no way of
establishing that no run-time execution path can include both /3/ and /5/; such a property is
beyond its scope. If the imprecision is unacceptable — in other words, if the spurious aliasing
of z to x precludes proving the properties of interest — the prover must add a cut instruction to
the second conditional, which becomes

For the alias calculus, the cut instruction is a guarantee from the environment (as provided by
require in Eiffel and assume in JML and Spec#) that x /= y. For the axiomatic proof framework,
it is a proof obligation (check in Eiffel, assert in JML and Spec#).

2.3 Scope of the theory

The purpose of the alias theory and calculus is to answer a specific question:

In line with the preceding observations, the calculus looks for a sound but possibly imprecise
answer: it may — as rarely as possible — answer “yes” even if e and f could never become aliased
in actual executions; but if they can, the calculus is required to answer “yes”.

The most important word of the above definition is the first one: “Given”. What makes the
calculus possible is that it takes the pragmatic view of an existing program, possibly equipped
with assertions. Then program proofs do not need to know all aliasing properties of all possible
expressions; they only need the properties of expressions actually appearing in the program and
its assertions. Expressions not named in the program are no more interesting to the prover than
(except to the philosopher) the tree that falls unheard and unseen in the forest.

This observation allows us, in addition, to consider finite sets only. Without it, the analysis
of a typical data structure traversal loop such as

if cond then
cut x, y
z := x

end

The aliasing question
Given two expressions of a program, e and f, of reference type, and a program
point p, can e and f ever be attached to the same object during an execution of
the program?
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§3 ALIAS RELATIONS
would have to reflect that x can become aliased to first, first.right, first.right.right and so on,
an infinite list of expressions. It might even lead us to extend the assertion language with a
regular-expression-like notation (such as first.right*) to cover the possible values. While the
alias calculus could be extended to handle such extensions, it does not need them for the
fundamental applications discussed here.

3 ALIAS RELATIONS

The theory relies on a notion of “alias relation”, describing the possible aliasings between
variables and expressions of a program.

3.1 Definition

E ↔ E, defined as P (E × E), is the set of binary relations on E. For our needs E will be a set of
variables and expressions in a program. The presence of a pair [x, y] in an alias relation
associated with a program point expresses that x and y may be attached to the same object at that
program point during some execution.

Such a relation must be symmetric. As to irreflexivity, we might take the reverse
convention (reflexivity on E), considering that every expression is aliased to itself; such trivial
aliasing obscures the interesting cases, however, and choosing irreflexivity yields simpler rules.

If r1 and r2 are alias relations, so are r1 ∪ r2 and r1 ∩ r2.
If r is relation, but not necessarily an alias relation, r will denote the alias relation

obtained from r by removing all reflexive pairs and symmetrizing all pairs; for example
{[x, x], [x, y], [y, z]} is the alias relation {[x, y], [y, x], [y, z], [z, y]}.

Formally, r is (r ∪ r-1) — Id [E] where “—” is set difference and Id [E] is the identity
relation on E. If r is an alias relation, then r = r.

It is useful to extend the notation to a subset A of E, defining A as A × A. (A × A is the
“universal” relation involving all pairs in A.) So {x, y, z} is {[x, y], [y, x], [x, z], [z, x], [y, z], [z, y]}.

from
x := first

until some_condition loop
x := x.right

end

Definition: alias relation
A relation in E ↔ E for some set E is an alias relation if it is symmetric and irreflexive.
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 7

 TOWARDS A THEORY AND CALCULUS OF ALIASING §3
For a set A described by extension, as in this example, we may omit the braces, writing just
x, y, z. We may express any alias relation in a union form T, U, V, …, meaning T ∪ U ∪ V …,
where every operand is a universal relation with reflexive pairs removed. With this notation, we
may write the first example, {[x, y], [y, x], [y, z], [z, y]}, as x, y, y, z.

An alias relation need not be transitive, as illustrated by the program extract

which (as the alias calculus will determine) yields the alias relation x, y, x, u, z but does not
cause aliasing between y and z.

3.2 Canonical form and alias diagrams

An alias relation may have several union forms; for example the union forms x, y, x, u, z and
x, y, x, u, x, u, z denote the same relation. The first of these variants, like the other examples
given previously, is a canonical form:

Canonical form theorem: For any alias relation a, the canonical form exists and is unique.
Proof: consider all subsets of E. Retain only those whose elements are all aliased to each

other in a. Then remove any that is a subset of another. The resulting subset of P (E) gives the
canonical form.

Although this is a constructive proof, an algorithm applying it directly to display the
canonical form of a relation would be exponential in the size of E; the implementation uses a
more efficient algorithm.

Corollary: each one of the sets T, U, V, … involved in a canonical form has at least two
elements (since an alias reflection is irreflexive).

The reverse theorem also holds: a canonical form defines an alias relation uniquely. All
alias relations for the examples that follow will be given in canonical form.

if cond then
x := y

else
x := z
u := x

end

Canonical form of an alias relation
The canonical form of an alias relation a is a union form T, U, V, … where:

• None of the sets T, U, V, … is a subset (proper or improper) of any of the others.
• Adding or removing any element to or from any of them would invalidate the

property T ∪ U ∪ V … = a.
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§3 ALIAS RELATIONS
Alias diagrams are useful to visualize the theory and in particular the canonical form
theorem. An alias diagram is a labeled directed graph with one special source node representing
a program point and any number of value nodes each representing a set of possible values (not
explicitly specified) in associated program states. At this stage of the theory, the graph is
acyclic, the start node of any edge is the source node, and the end node is a value node; when
we extend the theory to object-oriented programming in section 6, there will also be edges
connecting value nodes.

An edge is labeled by a non-empty set of expressions, for example e, f. The presence of an
expression e in an edge leading to a value node n expresses that e may at the given program point
have one of the values associated with n. An example alias diagram is:

The alias relation associated with such a graph is simply the set of pairs [e, f] such that e and f both
appear in the label for some edge. So the graph above represents the earlier example x, y, x, u, z.

A value node carries no information other than its existence and the label of the edge (a
single one at this stage of the theory) that leads to it. In the following discussion, as a
consequence, “removing an edge” also implies removing the target node.

A diagram is in canonical form if no label is a subset of another. The canonical form
theorem is easy to visualize on alias diagrams: a non-canonical diagram such as

represents the same alias relation as the previous one, so the edge labeled x, u is useless. To turn
an arbitrary diagram into canonical form, remove any edge whose label is a subset of another
edge’s label (and, per the general convention, remove the edge’s end node).

As a consequence of the corollary of the canonical form theorem, the label of every edge
includes at least two expressions. One-expression labels , expressing that x may
have a value at the current program point, may be interesting for other applications but are
irrelevant for the theory of aliasing, at least until it gets extended for object-oriented programming.

3.3 The semantics of an alias relation

If a is an alias relation on the set E of reference variables and expressions appearing in a program
p, we may associate with a the assertion written a– and defined as

x, y

x, u, z Value node
Source node

x, y

x, u, z

x, u

x

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 9

 TOWARDS A THEORY AND CALCULUS OF ALIASING §3
In words: a– is the assertion stating that no two reference values (for distinct variables) may be
equal unless their pair appears in a. This notation reflects the conservative nature of the calculus:
while the presence of a pair [x, y] in a states that x might become aliased to y but does not imply
that it will, its absence from a implies, for soundness, that x will not become aliased to y.

If the set of variables is given, the correspondence defined by /6/ between alias relations
such as a and assertions of the form appearing on the right for a– (a conjunction of clauses
stating that variable pairs have different values) is one-to-one.

We also define the “quotient” a / x of an alias relation a in E ↔ E by an element x of E
(similar to the equivalence class of x in an equivalence relation) as the set containing all
elements aliased to x plus x itself:

3.4 Characterizing the effect of programs on aliasing

Aliasing is not compositional, in the naïve sense of allowing the definition of a function aliases
such that aliases (p) would determine the alias relation induced by the program p in terms of
aliases (pi) for components pi of p. Consider

then aliases (p1) would be x, y, aliases (p2) would be x, u and aliases (p1; p2) would be the
relation y, z, x, u, which cannot be obtained by combination of the previous two since neither
of them mentions z. Instead, the calculus works on formulae of the form

where a is an alias relation and p is a program component. /8/ denotes the alias relation that
holds at the end of an execution of p started in a state where a held. When considering an entire
program p, we will be interested in ∅ » p for the empty relation ∅; the computation of ∅ » p
will also yield the value of the alias relation at key program locations such as routine exit points.

In practice, both a and a » p may be conservative approximations of the actual alias
relation. The semantics of the » notation is captured by the following fundamental soundness
requirement, expressed as a Hoare triple (giving a weakest precondition rule):

a– =Δ ∧ x ≠ y /6/
[x, y] ∉ a

(where x and y are
different variables)

a / x =Δ {y: E | (y = x) ∨ [x, y] ∈ a} /7/

p1: x := y
p2: z := x ; x := u
p1 ; p2: x := y ; z := x ; x := u

a » p /8/
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§3 ALIAS RELATIONS
This states that if we use a as a guarantee about pairs that will not be aliased on entry to p, the
calculus yields a guarantee about pairs that will not be aliased on exit. More precisely, the use of
p← in the precondition indicates that we need only consider variables not affected by p; for
example if p is the assignment x := y and a is x, z, the variable z plays no role in a » p, which
would have the same value if a were the empty relation ∅.

The value of p←, for any kind of construct p, is given by a simple syntactic criterion (see
4.13); for example (x := y)← is {x} if x and y are different variables, and (p ; q)← is p← ∪ q←.

We would still get a sound rule if /9/ were written simply {a–} p {(a » p)–}, without reference
to p← in the precondition; but it would not be a weakest-precondition rule. To see this, and
understand the role of p← in /9/, consider an assignment x := y and assume that the post-state alias
relation a » (x := y) is given, for example x, y. Then for the pre-state alias relation a the simplified
rule would allow not only ∅ but also any alias relation x, u, x, v, … for any u, v, … other than x,
since the assignment overwites the original value of x. Going from alias relations to assertions: ∅–

is the assertion stating that no two variables are aliased; it is not the weakest precondition here since
∅– or (x = u) or (x = v) or … is also a sound precondition for any u, v, … The weakest precondition
is (a \– p←)– (that is to say, ∅– or (x = u) or (x = v) or … for all variables u, v, …other than x).
In the example, p← is {x}, so if a is x, z then (a \– p←)– is the assertion stating that no two
variables may be aliased unless one of them is x.

Standard Hoare-style and weakest-precondition semantics work “backward” because of the
form of the classic assignment axiom {P [y/x]} x := y {P}, which constructs the precondition from
the postcondition. In contrast, the alias calculus works forward: the rules given below construct
a » p from a. The previous observations show that this style is not the result of an arbitrary decision
but a necessity: to obtain a weakest precondition in /9/, we must use not just a– but (a \– p←)–;
but while a and a– are in one-to-one correspondence, there is no way to reconstruct a \– p← (or
(a \– p←)–) from a and p. We may express this observation as a theorem:

The rules of the calculus will now follow, each specifying a » p for a given kind of instruction
p. To be acceptable, each must guarantee that if a is an alias relation so is a » p. In addition,
every rule must satisfy the fundamental soundness rule /9/. The present discussion does not
include a complete proof but gives an example, for one of the rules, in section 4.12.

Alias calculus soundness rule
For any relation a and any construct p:

{(a \– p←)–} p {(a » p)–} /9/
where p← is the set of variables whose value may be modified by p.

Forward alias rule theorem
For the alias properties of any realistic language involving reference assignment, no
weakest precondition rule exists, and hence no backward calculus is possible
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 11

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
4 THE BASIC CALCULUS

The first level of the calculus relies on a simple programming language, E0. The following
subsections introduce the constructs of E0, their informal semantics, and the corresponding alias
calculus rules.

In E0, all variables denote references; the value of a reference is an object identifier. A
formal definition of E0 appears below (4.12), but we will for the basic presentation rely on an
intuitive understanding of the instructions.

4.1 Skip

It is convenient to include a null instruction skip with the rule

(will signal rules of the alias calculus.)

4.2 Forget

If x is a variable, the notation forget x denotes an instruction that removes any association of x
with any object. Corresponding programming language notations are:

(The reason for the special E0 syntax forget x is that experience has shown that using an
assignment syntax, such that x := Void, causes confusion with the regular form of assignment
seen in 4.5 below.)

The rule is:

The operator \– is defined as follows: r \– A, where r is a relation in E ↔ E and A is a subset of
E, is r deprived of any pair that involves a member of A as first or second element. Formally:
r \– A is r — A × E. If r is an alias relation, so is r \– A. (The operator’s definition will be extended
in 6.5 to cover dot expressions.)

Imprecision: this rule introduces no imprecision.
Alias diagram: to carry out forget x on a diagram, remove x from all edge labels that

included it; to maintain the canonical form, we must also remove any edge that as a result goes
down to a one-element label, as in this example:

a » skip = a /10/

x := Void -- Eiffel
x = null; -- C, Java etc.

a » (forget x) = a \– {x} /11/

Shaded lines
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§4 THE BASIC CALCULUS
4.3 Creation

If x is a variable, the notation create x denotes an instruction that allocates a new object at a
previously unused address. Corresponding programming language notation are:

The effect on an alias diagram is the same as for forget x, and so is the rule:

Imprecision: this rule introduces no imprecision.
The forget and create instructions have different semantics — one removes all

associations of a given variable with any objects, the other associates it with a new object — but
in the alias calculus they are governed by identical rules.

4.4 Cut

If x and y are variables, the notation cut x, y denotes an instruction that removes any aliasing
between x and y. It does not correspond to any common instructions of programming languages
but, as noted in 2.2, will serve as an essential escape mechanism to remove undesired cases of
imprecision in the calculus. The constructs

will be translated into cut x, y. (The semantics of check p end in Eiffel is that the program is
only valid with a proof that p will always hold at the given program point; it is also possible for
compilers that cannot perform such proofs to generate a run-time check that will stop the
program if p does not hold. The rules for assert in Spec# and JML are similar.)

The alias calculus rule is:

create x -- Eiffel
x = new Type_of_x (); -- C, Java etc.

a » (create x) = a \– {x} /12/

check x /= y end-- Eiffel
assert x != y;-- JML, Spec#

x, y

x, u, z u, z

Initial state State after forget x
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 13

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
Imprecision: this rule introduces no imprecision.
Alias diagram: to carry out cut x, y, remove any edge with label x, y; replace any edge whose

label includes x, y and a non-empty set A of other expressions by two edges, labeled x, A and y, A,
to two separate nodes.

The need, in the second case, to replace an edge (and node) by two reflects the suggested practical
use of cut: the operator lets us take advantage of finer-grain information, possibly coming from
other sources, to improve the precision of the information provided by alias analysis. In the
second case of the diagram above, the initial state conflated all of x, u, z into a single alias class;
as we find out that x and u are not related after all, we separate these into two classes x, z and u, z
listing z’s aliasing associations separately. The formal rule /13/ covers this semantics succinctly;
it does not need to distinguish between the two cases illustrated by the diagram.

4.5 Assignment

The basic operation that creates alias pairs is assignment, written x := y. The rule is:

The intuition behind this operator is that the assignment causes:
• Removal of any previous aliasing of x.
• Then, aliasing of x to y and to any other expression previously aliased to y.
Rule /14/ expresses this property. The relation b is a deprived of any pair involving x. The right
side yields all the aliases not involving x, then adds the pairs [x, u] where u is in b / y, that is to say
(/7/) either is y or was aliased to y in b, and applies the overline operator to symmetrize the relation
and remove reflexive pairs (ensuring that the rule correctly handles the trivial case x := x).

a » (cut x, y) = a — x, y /13/

a » (x := y) = given b =Δ a \– {x} then /14/
b ∪ ({x} × (b / y))

end

x, y

x, u, z

Initial state x, y

u, z
x, z

State after cut x, y

u, z
x, z

State after cut x, u
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§4 THE BASIC CALCULUS
Example 1: the value of a » (z := f), where a is

is (this example and all the following ones are as computed by the prototype implementation at
se.ethz.ch/~meyer/down/alias.zip, on which the reader may try them):

where z has been removed from its previous association with y, then added to the associations
of f.

Alias diagram: to carry out an assignment x := y on an alias diagram, remove x from all
edge labels (removing the edge if the label goes down to zero or one element); if y does not
appear in any edge label, add a value node and an edge to it, labeled y; then add x to any edge
label containing y. Here are some examples:

4.6 Compound

If p and q are E0 instructions, the notation p ; q denotes an instruction that executes p then q.
The alias calculus rule is:

If the other rules of the calculus guarantee that a » p is an alias relation whenever a is, this one
also recursively yields an alias relation on the right side.

Imprecision: this rule introduces no imprecision.
Alias diagram: to carry out p ; q, apply the transformations associated with p, then apply

to the resulting graph those associated with q.

b, c, x, f, g, x, y, z /15/

b, c, x, f, g, x, z

a » (p ; q) = (a » p) » q /16/

x, y

x, u, z

Initial state

State after t := x

x, t, y

x, t, u, z
State after x := u

x, u, z

State after x := t

u, z

x, t
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 15

http://se.ethz.ch/~meyer/down/alias.zip

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
4.7 Conditional

E0 has a conditional instruction of the form

where p and q are instructions. The informal semantics of this instruction is that it executes
either p or q.

The rule is:

The ∪ operator is here applied to two relations viewed as sets of pairs. As noted, r1 ∪ r2 is an
alias relation if both r1 and r2 are.

Imprecision: the conditional rule does not by itself introduce any imprecision, if we take
the semantics of then p else q end to be that an execution can carry out either p or q. In the
translation of an ordinary programming language to E0, the source instruction would be if cond
then p else q end for some condition cond. The condition is lost in translation; this may cause
imprecision as in the earlier example (/3/).

Example 2: the program

yields, when applied to b, c, f, g, the alias relation a = b, c, x, f, g, x, y, z used as starting relation
for the assignment example /15/.

Note on the example: the reader may wonder whether the assignment z := y makes any sense
without a prior assignment of a meaningful value to y. Such cases already arose in previous
examples. For the alias calculus, however, this question need not alarm us, as it is a matter of
convention for the underlying programming language. Some languages, such as the current void-
safe version of Eiffel, guarantee that in any valid program y will automatically be initialized on
first use to a legal address, denoting an object. Alternatively, we may take the convention that every
example program in this article implicitly starts with a sequence of create x instruction, one for
every variable x appearing in the program. Or we could pass on the requirement to the programmer
by including a static rule that disallows access before creation, in which case /18/ is invalid.

Alias diagram: to carry out then p else q end, produce two diagrams by separately applying
p and q to the original diagram. Then combine the diagrams by retaining all their value nodes
and all their edges. The result correctly represents the effect of the conditional but may not be
in canonical form; make it canonical following the procedure seen in 3.2.

then p else q end

a » then p else q end = (a » p) ∪ (a » q) /17/

then x := b else x := f ; z := y end /18/
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§4 THE BASIC CALCULUS
4.8 Repetition
E0 has an instruction

where n is a natural integer. The semantics is that of Skip if n = 0 and otherwise, recursively, to
execute pn-1 ; p. Informally, this means n executions of p.

The instruction is not important by itself (as only a few programming languages support it,
such as Fortran with its DO loop) but as a stepstone to the next construct, the loop instruction.

The rule is:

and is a direct consequence of the compound rule /16/.
Imprecision: the rule does not introduce any imprecision.
Example 3 to 8: take x := y ; y := z ; z := x for p and c, y, d, z for a. Then:

The sequence oscillates indefinitely, for odd and even n, between the values of a » p1 and a » p2.
This is as intuitively expected since p swaps the values of y and z.

4.9 Loop

The E0 instruction

has the informal semantics of executing p repeatedly any number of times, including zero.
Formally, if an instruction is defined as a relation between input and input states (see 4.12
below), then loop p end is simply .

pn

a » p0 = a /19/
a » pn = (a » pn-1) » p -- For n > 0 /20/

a » p0 = a = c, y, d, z
a » p1 = c, x, z, d, y
a » p2 = a » p0 = c, y, d, x, z
a » p3 = a » p1 = c, x, z, d, y
a » p4 = a » p2 = c, y, d, x, z
etc.

loop p end

∪ pn
n: N
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 17

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
A first form of the loop rule follows from this definition:

Imprecision: the rule by itself does not introduce any imprecision. Imprecision may follow,
however, from translating loop constructs as found in actual programming languages into the E0
form, since the translation will lose any information that the programmer or prover may have about
the actual number of iterations, as might be deduced for example from the loop exit condition.

Theorem: the alias relation induced by a loop per /21/ is finite.
Proof: trivial since our alias relations are members of P (E × E) for a finite set E (of

variables and expressions appearing in a program), so they can only be finite.
This theorem, and the loop rule in its first form /21/, are not directly useful since they do

not yield a practical way of computing a » loop p end. A more interesting version of the
theorem, the loop aliasing theorem, follows from the discussion of continuity appearing next,
and yields the practical version of the loop rule, given as /26/ below.

4.10 Monotonicity and the loop aliasing theorem

To deal effectively with loops, and procedures as introduced next, we need structural properties.
For any instruction p, we define monotonicity of the » operator, with respect to the partial order
relation ⊆ (here over relations, that is to say, subsets of E × E), as the following property for any
alias relations a and a’:

Alias monotonicity theorem: all rules given so far satisfy monotonicity.
Proof: the rules for the control structures — compound, conditional, repetition and loop —

clearly preserve monotonicity if the constituent instructions satisfy it; so we must establish
monotonicity for basic instructions. Since a » p is deduced from a, and a’ » p similarly from a’,
by some set of additions and removals of pairs, the proof must show that any pair added to a is
also added to a’ and that any pair removed from a’ either was not in a or is also removed from a.
The only direct source of additions is the assignment rule /14/; added pairs for the assignment
x := y include [x, y], which will also be added to a’, and [x, z] where a pair [y, z] was in a, and
hence in a’, so that the same pair will be added to a’. Removal of pairs occurs through the rules
for forget, create, cut and assignment. In the first three cases the pairs marked for removal depend
entirely on the instruction and not on a or a’: removing any of them from a’ will remove it from
a if it was there. In the assignment case, the pairs removed are of the form [u, v] where either u or
v is x; if any such pair in a’ is also in a, it will be removed from a. The rule also removes all
reflexive pairs, but none of those comes from the original a or a’ as they are alias relations.

a » loop p end = ∪ (a » pn)
 n: N

/21/

a ⊆ a’ ⇒ (a » p) ⊆ (a’ » p) /22/
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§4 THE BASIC CALCULUS
The following properties are also of interest:

In each case the left side is a subset of the right side as a consequence of the alias monotonicity
theorem. The proof of the reverse inclusions follows, as for that theorem, from considering
additions and removals for each kind of instruction.

The next theorem yields a practical way to compute the alias relation induced by a loop:

Proof: the first two properties are immediate:
• The sequence tn is non-decreasing over a finite set, and hence has a fixpoint.
• A non-decreasing sequence might encounter two or more equal consecutive elements (a

plateau) before it reaches its fixpoint. This, however, cannot happen for a sequence defined
in the form tn+1 = f (tn) (here tn+1 = tn ∪ (tn » p)): if tN = tN+1, then tN+2 = f (tN+1), also equal
to f (tN) and hence to tN+1 and tN; all subsequent elements are equal as well. So the fixpoint
is reached at the first N such that tN = tN+1; this is the N of the theorem.

Property 3 is informally clear if we consider loop p end as equivalent to skip ∪ (loop p end ; p),
the fixpoint of the sequence tn. For a more rigorous proof, let us show that tn is the same sequence
as the sequence sn defined as

This will give us the desired result since a » loop p end, defined in /21/ as , is also

as a consequence ; since sn ⊆ sn+1 for all n, the fixpoint of the sequence (the first N

such that sN = sN+1) will, if the sequences sn and tn are the same, yield a » loop p end.

The proof that the sequences are the same uses induction. First, s0 = t0 = a and s1 = t1 = (a ∪
(a » p)). (The second part of the proof needs both base steps.) For the induction step, we prove
separately that sn+1 ⊆ tn+1 and that tn+1 ⊆ sn+1. For the first property we expand the definition:

((a » p) ∪ (a’ » p)) = (a ∪ a’) » p /23/
(a ∩ a’) » p = ((a » p) ∩ (a’ » p)) /24/

Loop aliasing theorem
For given p, let the sequence t be defined by t0 = a and tn+1 = tn ∪ (tn » p). There
exists an integer N such that
1 • For any i < N, ti ≠ ti+1.
2 • For any i > N, ti= tN.
3 • tN = (a » loop p end).

sn
Δ= ∪ (a » pn)

i:

0.. n /25/

∪ a » pn

n: N
∪ snn: N
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 19

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
Since sn = tn by the induction hypothesis and tn ⊆ tn+1 by the definition of t, it suffices to prove
that a » pn+1 ⊆ tn+1. By the definition of repetition, a » pn+1

1 = (a » pn) » p. We note that
(a » pn) ⊆ sn by the definition of sn /25/, so (a » pn+1) ⊆ tn by the induction hypothesis. This
implies by monotonicity that ((a » pn) » p) ⊆ (tn » p) and hence (by the definition of the sequence
tn) that ((a » pn) » p) ⊆ tn+1. This completes the proof that sn+1 ⊆ tn+1.

For the induction step in the reverse direction, we expand the other definition :

Since sn ⊆ sn+1 it suffices to prove that (sn » p) ⊆ sn+1. Since we have two base steps (n = 0 and
n = 1), we may assume n > 1 and expand sn as sn–1 ∪ (a » pn), so that by /23/ sn » p is (sn–1» p) ∪
(a » pn+1); since the first operand is tn–1 » p by the induction hypothesis and hence a subset of
tn (which is also sn), both terms are subsets of sn+1.

As a consequence of this theorem we will use the following version of the loop rule:

Example 9: a loop with the same body as in the repetition example

and started with the same initial alias relation a = c, y, d, z reaches its fixpoint at t2:

In this example, the sequence a » pn did not converge, as we saw in 4.8. But the loop aliasing
theorem tells us that the sequence tn always reaches a fixpoint finitely.

sn+1 = sn ∪ a » pn+1

tn+1 = tn ∪ (tn » p) -- By the definition of tn
= sn ∪ (sn » p) -- By the induction hypothesis

a » loop p end = tN /26/
-- For the first N such that tN = tN+1,
-- with t0 = a and tn+1 = tn ∪ (tn » p).

loop x := y ; y := z ; z := x end

t0 = a = c, y, d, z
t1 = c, x, z, c, y, d, y, d, z
t2 = c, x, z, c, y, d, y, d, x, z
t3 = t2
-- etc. (all subsequent values equal to t2).
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§4 THE BASIC CALCULUS
4.11 A more intricate example

Example 10: as a more extensive application of the E0 calculus, involving instructions of all the
kinds encountered so far, consider the following program p (semicolons omitted at end of lines):

The value of ∅ » p is: a, c, h, c, e, f, c, f, g, y, c, g, h.

4.12 Formalizing E0 and soundness
This subsection does not introduce any new properties of the alias calculus but shows how the
calculus can be proved in reference to a formal definition of the E0 language. Readers interested
mostly in the rules of the alias calculus can skip to section 5.

An E0 program may be defined as a relation in State ↔ State. A deterministic language
would use functions, possibly partial, rather than relations; non-determinism keeps the language
definition simple, in particular for the loop construct.

A state s is characterized by:
• A set of variables that have a value in that state: s.def (a member of P (Variable)).
• A set of addresses allocated in that state: s.addr (a member of P (Address), assuming a

suitable set Address).
• The values of the variables in the state, as represented by a function s.value, a member of

Variable Address (using for the set of possibly partial functions), where domain
(s.value) = {v: Variable | v ∈ s.def}.

To define a state s, it suffices to give s.def, s.addr and s.value.
To define E0 formally we specify each instruction as a relation in State ↔ State, by

considering in each case an arbitrary state σ and stating the properties of states σ’ that may result
from applying p. For example, in the case of skip (the identity relation on State), σ’ = σ.

For the instruction forget x, the definition is: σ’.def = σ.def – {x}; σ’.addr = σ.addr;
σ’.value (y) = σ.value for y ≠ x.

For create x, for some na in Addresses such that na ∉ s.addr: σ’.def = σ.def ∪ {x};
σ’.addr = σ.addr ∪ {na}; σ’.value (y) = na; σ’.value (y) = σ.value (y) for y ≠ x.

For x := y: if y ∉ s.addr, as for forget x; otherwise: σ’.def = σ.def ∪ {x}; σ’.addr =
σ.addr; σ’.value (x) = σ.value (y) ; σ’.value (z) = σ.value (z) for z ≠ x.

then x := y else x := a end
then cut x, y ; z := x else end
g := h ; x := y ; z := a; b := x
loop e := f ; a := e end
loop

then c := b ; a := f ; g := x else c := a ; a := g end
f := x

end
b := z ; forget b ; a := e ; create z ; a := h ; cut a, g ; create x

→| →|
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 21

 TOWARDS A THEORY AND CALCULUS OF ALIASING §4
For the compound p ; q: what this notation means as a mathematical convention, taken to
denote composition of relations in the order given (the same as q o p).

All the elementary constructs defined so far are functions (deterministic). Non-function
relations (representing possible non-determinism) may arise with:
• Conditional: then p else q end is defined simply as another notation for p ∪ q.

• Loop: loop p end is defined as . The term pn (corresponding to the E0 repetition

construct) retains its definition from mathematics: p0 = skip, pn+1 = (pn ; p).
In this framework, every state induces an alias relation defined as

An earlier formula /9/ defined soundness in an axiomatic semantics style. For a language such
as E0, where instructions and programs are defined directly as relations, we may use the
following version of the soundness rule, for any instruction p:

As an example of soundness proof, consider forget x. For a given σ, the above definition of the
forget instruction tells us that there is only one σ’ and that a pair [y, z] is in aliases (σ’) if and only
if y ≠ x, z ≠ x and σ.value (y) = σ.value (z). The pair is also in aliases (σ) » forget x since the
forget rule /11/ defines aliases (σ) » forget x as aliases (σ) \– {x}}.

In this example the ⊆ relationship of the soundness requirement /27/ is actually an
equality. This is also the case with other constructs seen so far since, as noted, they do not
introduce imprecision.

Soundness proofs should similarly be provided for every instruction, although they do not
appear in the present article.

4.13 Instruction targets
The soundness rule /9/ relies on the knowledge of p←, the set of variables that p may set, for
every kind of instruction p. A simple syntactic criterion gives p← for the constructs seen so far:

aliases (σ) =Δ {[x, y] | x ∈ σ.def ∧ y ∈ σ.def ∧ σ.value (x) = σ.value (y)}

[σ, σ’] ∈ p ⇒ aliases (σ’) ⊆ (aliases (σ) » p) /27/

(skip)← = ∅
(forget x)← = {x}
(create x)← = {x}
(cut x, y)← = ∅ -- Conservative rule
(x := y)← = {x} -- if x and y are different variables
(x := x)← = ∅
(p ; q)← = p← ∪ q←
(then p else q end)← = p← ∪ q←
(pn)← = p←
(loop p end)← = p←

∪ pn
n: N
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§5 INTRODUCING PROCEDURES
5 INTRODUCING PROCEDURES

Our next language, E1, simply adds to E0 the notion of procedure, without arguments. A
procedure p is defined by a program name, written p.name, and an instruction, written p.body.
E1 has a new instruction, call p, where p is a procedure; the effect is to execute p.body. (In a
directly usable programming language the concrete syntax would use call pn where pn is
p.name.) A program is defined by a non-empty set of procedures and the name of one of them,
designating it as the main procedure.

The rule for the call instruction is:

and for a program pr with main procedure Main:

which will be used in practice with ∅ for a, assuming every program starts with an empty alias
relation. Correspondingly:

In the absence of mutually recursive procedures, computing the alias relation of a program can
simply proceed as in the previous examples: for every program element p, starting with the
entire program, apply the corresponding alias calculus rule, which expresses a » p in terms of
a’ » p’ for sub-elements p’ of p; the process terminates when applied to atomic elements such
as assignments. This scheme no longer directly works for a program that includes mutually
recursive procedures, since the computation of a » r.body through the call rule /28/ may lead to
a new evaluation of a » call r. To obtain a directly applicable process, we note that if a program
consists of a number of procedures r1, r2, … rn, and use the notation bi (a) for a » ri.body, we
may write the application of the call rule to any one of them, expanding a » ri.body, as

where all the functions involved, ALi and fj, i, deduced from applying the rules of the calculus
to the text of bi, are monotone. If ri is the main procedure, defining the alias relation induced by
the whole program, computing b1 (∅) will give us, in the resulting b vector, the alias relation at
the exit point of every procedure (which is where we need it to apply axiomatic semantics, for
example in weakest-precondition style). Since all functions involved are monotone and the set
of relations is finite, standard reasoning shows that starting with empty relations for all the bi
and iterating will reach a fixpoint finitely, yielding the desired result. The prototype
implementation directly applies these ideas, as illustrated by the following example.

a » call r = (a » r.body) /28/

a » pr = (a » Main.body) /29/

(call r)← = (r.body)←

bi (a) = ALi (b1 (f1, i (a)), b2 (f2, i (a)), … bn (fn, i (a)))
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 23

 TOWARDS A THEORY AND CALCULUS OF ALIASING §5
Imprecision: by itself this rule introduces no imprecision. Translations from programming
languages will cause imprecision because the procedure mechanism does not directly support
arguments, local variables and return values. For a typical procedure

the translation will replace a by a variable, and understand a call p (x) as the E1 instructions

The same scheme applies to local variables, and (since the language only supports procedures)
to the result value of a function. As a consequence, the translation will lump together, for the
computation of aliases of a local variable, result or formal argument, values that belong to
different recursive incarnations of a given recursive routine (or to concurrent executions of that
routine in different threads).

Example 11 (in this example and the following ones the starting alias relation is empty): we
consider the recursive procedure

The resulting relation is just x, y: the second branch of the conditional can never contribute anything.
Example 12: If we reverse the order of the instructions in the else clause of the previous

example (giving call Main ; x := a), we get a, x, x, y.
Example 13: the following are mutually recursive procedures (still simple, to enable

intuitive manual verification of the result):

p (a: SOME_TYPE) do … end

a := x
call p

procedure Main
then

x := y
else

x := a ; call Main
end

end

procedure Main
then x := y else x := a ; call q end

end
procedure q

x := b ; then call Main else a := c end
end
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§6 THE OBJECT-ORIENTED CALCULUS
The result, with Main as the main procedure, is a, c, b, x, x, y. In particular, x can get aliased
to a and a to c, but not x to c.

Example 14: another case of mutually recursive procedures:

The result is a, h, m, c, e, f, g, y, m, n. This example is not drawn from any actual program but
illustrates the application of the calculus to procedures with a complex recursion and control structure.

6 THE OBJECT-ORIENTED CALCULUS

The next and last language level, E2, introduces object-oriented mechanisms. E2 is sufficiently
powerful to support applying the calculus to a modern object-oriented language such as Eiffel,
Java or C#. The relevant part of object technology here is the dynamic object model: dynamic
object creation, pointers or references (we will consider the two terms synonymous), and the
possibility for objects to contain pointers to other objects. This last facility is the only novelty
of E2’s dynamic model, since E0 and E1 already offered the first two.

Other object-oriented mechanisms such as inheritance and genericity have only marginal
influence on aliasing. Dynamic binding does introduce some interesting issues which another
article will address.

6.1 New language concepts

Making E2 support object-oriented programming means adding three language concepts:

procedure Main
thenx := y else x := a end
then cut x, y ; z := x else end
then call q else g := h end
x := y ; z := a ; b := x
loop

e := f
then a := e else end

end
then c := b ; a := f ; g := x else

loop c := a ; a := g end
call Main

end
f := x ; b := z; forget b ; a := e ; create z; a := h
cut a, g ; create x

end
procedure q

then m := n else m := h ; call Main end
end
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 25

 TOWARDS A THEORY AND CALCULUS OF ALIASING §6
• Qualified expressions, such as x.y.z, which can be used as sources of assignments, as in
u := x.y.z.

• Qualified calls, such as x.f (v); as before we will limit ourselves to argument-less
procedures and take care of argument passing through assignments.

• The notion of current object (Current in Eiffel, this in C++ and Java, self in Smalltalk).
This is the central concept of object technology, giving rise to the “general relativity”
principle of O-O programming: every operation is relative to a current object; starting a
qualified call x.f (v) makes a new object (the object attached to x) current; ending such a
call restores the previous current object as current.

We will not directly consider qualified assignments of the form x.a := v permitted by
programming languages such as Java, C# and C++. It may be possible to include qualified
assignments directly into the theory, a task that the present article does not undertake (as a
matter of principle, since qualified assignments fly in the face of all principles of software
engineering, and even the designers of languages that include this mechanism advise against
using it); it happily leaves it for other authors to solve. The omission of this mechanism in the
theory and calculus as described here has no practical consequence on the application to the
relevant programming languages, since it suffices to assume a pre-processing step that translates
all qualified assignments x.a := v into qualified calls to setting procedures, such as x.set_a (v).

6.2 Object-oriented alias diagrams

E2 alias diagrams still have a source node, which now represents the current object, but that
node no longer has any special property; edges can exist between value nodes (from now on
called object nodes), as illustrated by the figure below. As the example suggests, cycles are now
possible (between objects nodes only). As we will see, cycles arise as a result of passing
arguments to qualified calls. The new forms of expressions appearing in the figure, Current and
“inverted variables” such as x’, will be explained shortly.

An object node represents a set of possible objects, all of the same type (class); the interpretation
of an edge with labels x, y… between two object nodes, representing sets of objects OS1 and
OS2, is that every object in OS1 may have reference fields to an object in OS2; since in typed
object-oriented programming every field of an object corresponds to an attribute (also called
“member variable” or “data member” in various O-O languages) in the relevant class, the fields
involved are those corresponding to attribute names x, y…

x, y

x, z

Object node
Source node

a, b

m, x’

Current, t
e

f, g, h

x’
z

37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§6 THE OBJECT-ORIENTED CALCULUS
One-expression edge labels , previously discarded, are useful for O-O alias
diagrams. Also, we no longer systematically remove the end node when we remove an edge, but
only do so if no other edge leads to that node. (This property reflects the need for garbage
collection in an object-oriented model.)

The variables appearing in labels represent attributes from the corresponding class. In the
figure, x, y and z are attributes of the class of the current object; e, f, g and h are attributes of the
class covering the object in the middle-bottom node. The calculus does not need information about
the classes; we assume that it is applied to a type O-O language after type checking, so that every
attribute name refers unambiguously to a class. This convention is particularly important in Eiffel
where style rules suggest the systematic use, for consistency, of a small set of feature names such
as first and item. In the application of the calculus to a specific programming language, a good
convention might be to identify the class as part of the attribute name, as in itemLIST, itemCELL etc.
We will need no such convention here; note in particular that the leftmost and middle-bottom nodes
in the last figure might correspond to objects of the same type or different types.

The other major innovation of the E2 calculus is the kind of possibly aliased expressions
(the set E of earlier discussions) under consideration. In addition to single variables as before,
expressions now include three more variants:
• The special expression Current represents the current object (relative to any node).

Informally, Current denotes a link from a node to itself, as in the bottom-right node of the
last figure.

• For any variable x, the inverse of x is written x’. Informally, consider a call x.r, executed
on behalf of a certain client object, which applies r to a supplier object referenced by x; then
x’ represents a reference back from the supplier to the client. It will appear in edges
between the corresponding nodes, as in the preceding figures. Together with Current, the
inversion operator is the reason why E2 graphs, unlike E0 and E1 graphs, may be cyclic.

• Finally, E2 supports dot expressions of the form x.y.z…
The presence of dot expressions gives alias diagrams a richer meaning: aliases arise not only from
edges but also from paths in the diagram. The rule is that if two paths have the same starting node
and the same ending node, the corresponding dot expressions are aliased. Consider for example,
in the last diagram, the edge labeled z from the source node to the top-right node; it implies that z
is aliased to x.a, x.b, y.a, y.b (paths through top nodes) as well as x.e and z.e (bottom paths).

6.3 Formal model
Adapting the previous formal model (4.12) for E3 involves changing the representation of states
and the signature of instructions. The state now involves a set of objects, where each object may
contain references to other objects. An instruction, previously a relation in State ↔ State, now
has the signature Object → State ↔ State; the use of an Object as the first argument reflects the
notion of current object and the principle of general relativity.

The full refinement of the formal model, and the corresponding proofs of soundness for the
remaining rules given below, belong in another article.

x

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 27

 TOWARDS A THEORY AND CALCULUS OF ALIASING §6
6.4 Dot expression properties

For simplicity it is convenient to add the dot to the calculus as an operator on variables and
expressions representing paths: if v is a variable and e an expression x.y.z…, we write v.e to
denote the path v.x.y.z… and extend this notation to two expressions, writing e.f for the
concatenation of e and f.

The following fundamental property, reflecting the preceding observation on alias
diagrams, characterizes the semantics of aliasing with dot expressions:

This requirement is added to the basic definition of alias relations as symmetric and irreflexive
(3.1). If a is a symmetric and irreflexive relation, a. will denote the smallest symmetric and
irreflexive relation that includes a and satisfies dot completeness. For example if a is
x, y, x.u, v.y, then a.adds the pairs [y.u, v.y], [x.u, v.x] (symmetrized).

In the dot calculus, Current plays the role of zero element and variable inversion the role of
the inverse operation. For any expression e (including a single variable) and any variable x:

and as a consequence, for non-empty e:

/31/ and /32/ express that Current always represent a link to the current node. Note that the
interpretation of Current, like everything else in the general relativity of object-oriented
programming, pertains to an object and the corresponding class; /32/ describes a situation such as

where the various nodes involved might correspond to different classes. Current is really
CurrentC for some class C. Clearly, e.CurrentC only makes sense if C is the class of the
objects reached by e (the rightmost node in the figure); the alias calculus need not concern itself
with this question, since we assume it is applied to type-checked programs.

Dot completeness
An alias relation a involving dot expressions must satisfy, for any expression e1, e2,
f1 and f2:

[e1, e2] ∈ a ∧ [f1, f2] ∈ a ⇒ [e1.f1, e2.f2] ∈ a /30/

Current.e = e /31/
e.Current = e /32/
x.x’ = Current /33/
x’.x = Current /34/

x.x’.e = e /35/
x’.x.e = e /36/

Currente
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§6 THE OBJECT-ORIENTED CALCULUS
In this framework, the alias calculus needs only two more rules to account for object-
oriented programming: an adaptation of the assignment rule to account for multidot sources;
and a rule for qualified calls call x.r.

6.5 Dot expressions as sources of assignments

In an assignment x := y, the source expression y may now be a multidot expression, such as
u.v.w. An illustration with an example alias diagram (in this case with no aliasing) is:

The original assignment rule /14/ only requires a small adaptation. In fact the rule itself does
not change:

but the operator \– must account for possible dots in y. The original definition (4.2) was that r \–A
is r deprived of any pair that involves a member of A. The revised definition (which covers the
previous one for non-dot expressions) also removes from r any multidot expression whose first
component (in the sense of u in u.v.w) is in A.

As a consequence, the set b / y (as used in the last set of pairs, {x} × (b / y), added to the
relation on the second line above) may be empty, in which case {x} × (b / y) is itself empty. This
reflects an important practical property: while in the non-O-O calculus an assignment x := y
always adds the pair [x, y] to the alias relation, this is not necessarily the case with dot
expressions. In the assignment

we should not alias x to x.a! The instruction removes all aliases of x, and creates no new
aliasing unless x was previously aliased to some other expressions; then for every such
expression y, it aliases x to y.a.

These observations do not rule out the possibility for x to
become aliased to x.a; although such a case cannot be the result
of the assignment above, it will happen if a is aliased to Current.

The rule captures all these cases.
Imprecision: the rule introduces no imprecision.

a » (x := y) = given b =Δ a \– {x} then -- Same as /14/

b ∪ ({x} × (b / y))
end

x := x.a

u v w

x

ax

y

x a,
Current
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 29

 TOWARDS A THEORY AND CALCULUS OF ALIASING §6
Example 15: the following program uses dot expressions as assignment sources:

The result (if we only include pairs that involve at least
one non-dot expression) is a, b, x, y.a, z, x, y.b, z.

6.6 Qualified call

The last remaining construct is the qualified procedure call call x.r. To handle it in the alias
calculus, we need the following notation: if a is a relation (in our examples, an alias relation),
x a denotes the relation containing all pairs [x.e, x.f] such that a contains [e, f].

In a naïve approach to handling x.r, we would note that if a call to r (unqualified) aliases
e to f then a call to x.r aliases x.e to x.f. Then a » x.r would be x (a » r). This does not,
however, capture the possible changes to aliasing on the side of the client (the object on whose
behalf the call x.r is made). Consider for example, in an object-oriented programming
language, the instructions

with

As usual, the alias calculus sees a call x.r without arguments, whose execution starts with an
assignment u := c of the actual argument to the attribute representing the formal argument. The
tentative rule would give us the (symmetrized) pairs [c, d], [f, u] and [x.f, x.u], which are
correct, as well as [u, c] and as a result [f, d] which are meaningless since they involve attributes
applicable to different objects (and possibly classes). It misses, on the other hand, the aliasing
of x.f to c and d. It is unsound.

Obtaining a sound rule requires the inversion operator. The translation into E2 from an
actual object-oriented programming language, where procedures may have arguments, will use
the following convention (not part of the alias calculus, but necessary for an understanding of
the rule): translate x.r (c), where the corresponding formal argument in r is u as above, into call
x.r, and add at the beginning of r’s body the assignment

x := y ; a := b
z := x.a ; x := x.a

c := d
x.r (c)

r (u: T)
do

f := u -- f is an attribute of the enclosing class.
end

ax

y

x, z

b

x

c, d f, u ?
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§6 THE OBJECT-ORIENTED CALCULUS
This convention explains the role of inverted variables such as x’: in a qualified call, provide a
link back to the client. This enables the supplier, if needed, to update references that belong to
the client side — a principal facility, although one fraught with obvious risks (aliasing risks in
particular), of the object-oriented style of programming.

These observations also explain the inversion rules /33/ and /34/: x.x’ is Current (for the
client) and x’.x is Current (for the supplier).

The following, sound version of the rule describes the correct semantics of aliasing for
qualified calls:

(The last part, call r, can also be written r.body from the unqualified call rule /28/.)
The rule works as follows. To compute the aliasings

induced by call x.r in the aliasing environment a, we need to
compute the aliasing induced by a simple unqualified call
call r; not from a, however, as a is relative to the client object,
but in the view that the supplier object (corresponding to the
target x) has of a. This view is x’ a, with both elements of
every pair in a prefixed by the inverted variable x’, a back
pointer giving access to the client. This means in particular
that if r executes f := u where u is aliased to an actual argument c, known in the routine as x’.c,
then f will get aliased to x’.c. The resulting alias relation, meaningful in the environment of the
supplier, is a’= ((x’ a) » call r). In the end, however, we need to interpret the result back in the
environment of the client, which knows the supplier as x; so we use x a’, prefixing both
elements of every pair in a’ by x. If such an element is of the form x’.e, this prefixing will yield
just e, since the dual rule /33/ tells us that x’.e = Current. In the example, the pair [x.f, x’.c]
in a’ will give [x.f, c], and as a consequence [x.f, d], in a; this is the proper result as illustrated.

Thus we are permitted to prove that the unqualified call creates certain aliasings, on the
assumption that it starts in its own alias environment but has access to the caller’s environment
through the inverted variable, and then to assert categorically that the qualified call has the same
aliasings transposed back to the original environment. This change of environment to prove the
unqualified property, followed by a change back to the original environment to prove the
qualified property, explains well the aura of magic which attends a programmer's first
introduction to object-oriented programming.

u := x’.c

a » call x.r = x ((x’ a) » call r) /37/

x

x’
c(See below the

completion of this figure)
u

x

x’
c, d

(Completion of
preceding figure)

f, u
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 31

 TOWARDS A THEORY AND CALCULUS OF ALIASING §6
In the case of recursive or mutually recursive procedures, the qualified rule /37/ invalidates
he finiteness arguments that the E1 discussion used to show the existence of a fixpoint reached
finitely: every alias pair [m, n] created by call r will yield (in the absence of x’ aliasing) a pair
[x.m, x.n], increasing the dot count of both elements by one; with recursion the count would grow
unbounded. This possibility causes no practical problem, however, since the basic assumption of
the theory of aliasing (2.3) is that it only considers expressions that actually appear in a program.
So it suffices to limit application of rule /37/ to alias relations a whose dot count is no greater than
the maximum dot count of expressions in the program, defining the dot count of a pair of
expressions as the maximum of the dot counts of its elements, and the dot count of a relation as
the minimum dot count of its pairs. (The precise argument is more subtle, since in principle two
expressions of the program could become aliased as a result of rule /37/ aliasing each of them to
an expression not appearing in the program and having a dot count higher than any that will be
computed using the limited rule. It is easy to see, however, that this case is impossible.)

Example 16: the following program includes a qualified call x.q, actually representing a
call with arguments, x.q (Current, f).

The resulting alias relation is Current, x.b, x.d, f, x.a, x.c, x.b.f, x.c. As appropriate, it only
includes aliases reachable from the node representing the current object (the top-left node in the
figure). An aliasing such as a, c, which applies to another node (the rightmost one in the figure,
which represents the target of the call x.q) appears in its form relative to the current object node,
as x.a, x.c.

In the technique used so far, the assignments representing the argument passing appear in
the called procedure (see the first two lines of q), rather than in the caller. If a procedure is called
from several places, the corresponding assignments should then appear as separate branches in
then … else … conditionals. This method is not good for modularity. It is preferable to
introduce in the procedure a variable r_client (where r is the procedure name) representing the
client, and set this variable on the client side prior to the call. With this approach, we may rewrite
the above example as

procedure Main
f := x.a
call x.q

end
procedure q

b := x’
c := x’.f

-- The above two lines represent the argument
-- passing x.q (Current, f), with formal
-- arguments b and c in q.

d := b
end

x

b, d, x’

f
a, c
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§6 THE OBJECT-ORIENTED CALCULUS
Example 17: the program shown above gives the same alias relation as example 16, extended
with properties of q_client.

6.7 Aliasing among list structures

Example 18: for the final example (this variant and the next), consider the list manipulation
program mentioned in the introduction. To model the LIST and CELL procedures

procedure Main
f := x.a
q_client := x
call q_client.q

end
procedure q

b := q_client’
c := q_client’.f
d := b

end

extend (a: ELEMENT) -- In class LIST
local

new: CELL
do

if first = Void then
create first
last := first

else
from last := first until
last.right = Void

loop
last := last.right end

end
create new
new.set (a)
last.set_right (new)

end

set (v: ELEMENT) do item := v end -- In class CELL

set_right (right: CELL)do right := c end -- In class CELL

right

item item

rightright

item

a
new

lastfirst
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 33

 TOWARDS A THEORY AND CALCULUS OF ALIASING §6
we use the following E2 procedures:

Assume two separate lists x and y, to which we may add elements to our heart’s content:

Then we repeatedly access arbitrary elements of either list:

The alias relation (as obtained from running this example in the implementation, and removing the
extend_client variable from the output) is:

procedure extend-- In LIST
a := extend_client’.el
then

create first ; last := first
else

last := first
end
loop last := last.right end
create new ; call new.set ; call last.set_right

end
procedure set-- Called from only one place, with target new and argument a.

item := new’.a
end
procedure set_right-- Called from only one place, with target last and argument new.

right := last’.new
end

procedure build
-- The two lines below could also be in separate branches of a then … else.

extend_client := x ; loop create el ; call x.extend end
extend_client := y ; loop create el ; call y.extend end

end

procedure Main
call build
f := x.first ; g := y.first
loop

then f := f.right else g := g.right end
end

end
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§7 PROTOTYPE IMPLEMENTATION
The full relation, as noted, would be infinite; it includes for example all pairs of the form
[x.first.right.…, x.last] with an arbitrary number of “.right” after x.first.

As discussed in 6.6, the application of the theory to a particular annotated program breaks
off at the highest dot length of expressions found in the program. To run the examples, the
current implementation sets this maximum to thee dots, as illustrated in the above result.

The most important property of that result is that the relation does not include the pair
[f, g], showing that no pointer in either list can ever become attached to a cell of the other:

Example 19: Add the assignment x := y at the beginning of Main; keep the rest of example 18
unchanged. The resulting alias relation now includes f, g, x.first, y.first, f, g, x.first.right etc.
(run the implementation to see the full list). The important property is that now, as a result of
this single change, f can be aliased to g.

7 PROTOTYPE IMPLEMENTATION

The prototype implementation is stand-alone, rather than integrated into the compiler of a
programming language. It is written in Eiffel; mechanisms of inheritance (particularly multiple
inheritance), genericity and contracts have proved essential to the prompt completion of this
implementation. Using an imperative language (including numerous mechanisms found in
functional languages) was a key factor in this process; in particular, many delicate decisions
involved when to duplicate a data structure, such as the representation of an alias relation, and
when simply to update it.

f, x.first, x.last, f, x.first.right, x.last, f, x.first.right.right, x.last, f, x.last.right,
f, x.last.right.right, g, y.first, y.last, g, y.first.right, y.last,
g, y.first.right.right, y.last, g, y.last.right, g, y.last.right.right, x.a, x.new.item,
x.last.right, x.new, x.a, x.new.item, y.a, y.new.item, y.last.right, y.new

x

y

f (may point to any of these cells)

g (may point to any of these cells)

No aliasing
between f and g,
or between any
pointers in the two
structures
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 35

 TOWARDS A THEORY AND CALCULUS OF ALIASING §8
The implementation makes it possible to write an E2 program and produce its alias relation
in canonical form, as illustrated by the examples of this article. All the examples are part of the
implementation and can be tried in the downloadable version.

The response for these examples is immediate, but no complexity analysis has been
performed to explore scalability to large programs.

8 APPLICATION TO A PROGRAMMING LANGUAGE
The translation from an actual programming language involves the steps discussed earlier:
ignoring conditions of conditionals and loops; replacing functions by procedures; replacing
arguments, local variables and function results by attributes; associating inverted variables with
actual arguments of qualifed calls.

9 OPEN PROBLEMS
A number of problems remain to be addressed:
• Although the existing implementation provides a convincing proof of concept, it should be

integrated in the compiler for an actual programming language, together with the
implementation of the translation into E2.

• The modular application of the calculus calls for special attention.
• On the theoretical side, full descriptions should be published for the formal model and

soundness proofs sketched in 4.12 and 6.3.
• The application to the frame problem must be clarified (in a companion article).
• Application to large programs requires both experimentation and theoretical analysis of the

algorithms’ complexity.

10 ACKNOWLEGDMENTS
This article has benefited from discussions with Scott West, Stephan van Staden, Carlo Furia,
Cristiano Calcagno, Yi Wei and Alexander Kogtenkov. I am particularly grateful for comments on
the draft to Peter O’Hearn, Reinhard Wilhelm and Tony Hoare, and for comments on the
corresponding talk to Daniel Kröning (who gave me some advice towards ensuring modularity),
Greg Nelson and Rick Hehner (who challenged me to show that no forward rule was possible, and
found a problem with the initial definition of the target operator ←).

11 REFERENCES
This work was made possible by the literature on software verification, particularly axiomatic
semantics, separation logic, shape analysis, ownership, dynamic frames and static analysis. Two
further references provide complementary background:
[1] Bedřich Smetana: Prodaná Nevěsta (The Bartered Bride), starring Gabriela Beňačková and
Peter Dvorský, Supraphon, 1981, released as a DVD in 2006.
[2] Jacques Offenbach (libretto by Meilhac and Halévy): La Belle Hélène, starring Felicity Lott,
Michel Sénéchal, Laurent Naouri and Yann Beuron, conducted by Marc Minkowsky, 2000
(Théâtre du Châtelet), released as a DVD by Kultur Video in 2004.
37 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

§11 REFERENCES
About the authors

Bertrand Meyer is professor of software engineering at ETH Zurich
and chief architect at Eiffel Software. His latest book, an
introductory programming textbook based on seven years of
teaching the introductory course at ETH, is Touch of Class: An
Introduction to Programming Well, Using Objects and Contracts,
Springer Verlag, 2009. He can be reached by e-mail at

bertrand.meyer@inf.ethz.ch
VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 37

	Towards a theory and calculus of aliasing
	Abstract
	1 Dynamic aliasing

	Towards a theory and calculus of aliasing
	Abstract
	1 Dynamic aliasing
	2 General observations
	2.1 Adding the alias calculus to an axiomatic framework
	2.2 Handling imprecision
	2.3 Scope of the theory
	The aliasing question

	3 Alias relations
	3.1 Definition
	Definition: alias relation
	3.2 Canonical form and alias diagrams
	Canonical form of an alias relation
	3.3 The semantics of an alias relation
	3.4 Characterizing the effect of programs on aliasing
	Alias calculus soundness rule
	Forward alias rule theorem

	4 The basic calculus
	4.1 Skip
	4.2 Forget
	4.3 Creation
	4.4 Cut
	4.5 Assignment
	4.6 Compound
	4.7 Conditional
	4.8 Repetition
	4.9 Loop
	4.10 Monotonicity and the loop aliasing theorem
	Loop aliasing theorem
	4.11 A more intricate example
	4.12 Formalizing E0 and soundness
	4.13 Instruction targets

	5 Introducing procedures
	6 The object-oriented calculus
	6.1 New language concepts
	6.2 Object-oriented alias diagrams
	6.3 Formal model
	6.4 Dot expression properties
	Dot completeness
	6.5 Dot expressions as sources of assignments
	6.6 Qualified call
	6.7 Aliasing among list structures

	7 Prototype implementation
	8 Application to a programming language
	9 Open problems
	10 Acknowlegdments
	11 References

