
Vol. 09, No. 2, March–April 2010

Automatic Test Data Synthesis using UML
Sequence Diagrams

Ashalatha Nayak and Debasis Samanta
School of Information Technology
Indian Institute of Technology, Kharagpur
Kharagpur, West Bengal, India
{asha nayak1@yahoo.com,debasis.samanta.iitkgp@ gmail.com}

Model based testing techniques are used to generate test scenarios from a behavioral
description of system under tests. For a large and complex system, there are usually
a large number of scenarios and hence a large number of test paths also called test
specifications. To automate test execution, each test specification should be aug-
mented with appropriate test input data. In this paper, we propose an approach of
synthesizing test data from the information embedded in model elements such as class
diagrams, sequence diagrams and OCL constraints. In our approach, we enrich a se-
quence diagram with attribute and constraint information derived from class diagram
and OCL constraints and map it onto a structured composite graph called SCG. The
test specifications are then generated from SCG. For each test specification, we follow
a constraint solving system to generate test data.

1 INTRODUCTION

Software testing is an expensive process in a software development life cycle and
remains the primary activity to achieve confidence and quality in the developed
software. The testing involves running an implementation against input selected
by the test design and evaluating the response [1]. The goal is to reveal faults by
exercising the software on a set of test cases. The test design phase mainly focuses
on test case generation to derive test paths and test data generation to derive test
inputs. Testing techniques can be classified into functional techniques and structural
techniques. The functional technique uses the functional specification of a program
rather than the implementation of the program to derive test cases. On the other
hand, structural techniques derives test cases by exercising different paths in an
implementation.

On the basis of the scope and extent of the implementation being considered,
the above testing techniques can be focused to unit tests, integration tests and
system tests. Testing at the system level is concerned with finding discrepancies
between the actual behavior of the system and the desired behavior described on

Ashalatha Nayak, Debasis Samanta: ”Automatic Test Data Synthesis using UML Sequence
Diagrams”, in Journal of Object Technology, vol. 09, no. 2, March–April 2010, pp. 75–104,
http://www.jot.fm/issues/issue 2010 03/article2/

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

the specifications [2]. System tests differ from unit and integration tests in that
system tests focus on the functionalities of applications as black boxes rather than
methods or objects as white boxes. Unit testing considers an object as a unit to be
tested and its behavior is tested. There exist automated frameworks such as JUnit
[3] for this purpose. To support automation of system tests, several frameworks have
been developed such as JSystem, JWebUnit etc. ([4], [5]) which cater to application
specific testing such as testing of web applications, testing of GUI etc. Analogous
to JUnit, however, there exists no framework for system testing of general purpose
applications.

Typically, the sources of system testing information can be derived from different
system representations those are available at the system level such as features used in
product documentation, help screens etc. In object-oriented systems development,
use cases which represent system scope capabilities [1] are widely considered as rep-
resentations of system requirements. Of late, UML 2.0 has introduced a number
of diagrams to represent systems at different level. Out of which use cases related
diagrams are most suitable diagrams to specify system requirements. Here, each
use case is expressed as a set of scenarios denoting main and alternative scenarios.
Sequence diagrams also called interaction diagrams represent these scenarios as pos-
sible sequences of message exchanges among the objects to specify tasks. UML 2.0
sequence diagrams combines multiple scenarios by means of combined (interaction)
fragments. A combined fragment may contain another combined fragment. This
mechanism enables complex scenarios to be specified in a single sequence diagram.
There are different types of combined fragments in UML 2.x such as repetition
(loop), selection (alt/opt/break) and concurrencies (par) [6]. Execution of a com-
bined fragment is controlled by means of an operator called interaction operator. A
number of operands are there in a fragment which is groups of message sequences. To
facilitate scenario representations and their flow analysis, we transform a sequence
diagram into an intermediate form which unambiguously and in a structured way
shows all the interaction operands and flow of control of these operands. In other
words, this intermediate form resembles with that of conventional control flow graph
[7]. The testable model allows us to trace a scenario corresponding to each message
sequence path. Typically, a scenario in an interaction diagram is considered as a
test path to test a system. Each scenario can thus be considered as an abstract
representation of a test case. The actual test cases must contain specific values for
the parameters to be able to find errors in a scenario execution. The test data gen-
eration phase addresses this translation in which test data is synthesized for each
scenario (an abstract test case).

The approach proposed in this paper addresses mainly two issues: scenario gen-
eration and test data generation. The scenario generation concerns the generation
of scenarios from the testable model of the sequence diagram. The problem of test
scenario generation is to cover all paths with a constraint to limit explosion of paths,
which arise due to loops and concurrencies. On the other hand, the test data gen-
eration identifies input data to execute the scenarios. The problem of test data
synthesis is to identify input data satisfying a given test coverage criterion [8]. The

76 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

2 RELATED WORK

input data for a scenario has to be chosen in such a way that the set of method
invocations and constraints within the scenarios must take appropriate values to
execute. Solving these constraints, it is possible to extract the test data. Hence,
the test data generation method proposed in this paper includes three steps: (1)
deriving constraints for the specified scenario, (2) solving the constraints along the
scenario and (3) generating test data for finding test input to the variables involved
in the scenario.

The contributions of this paper are as follows: First, a precise model known
as Structured Composite Graph is proposed that builds information from sequence
diagram, class diagram and OCL constraints. Second, a scenario oriented test data
generation scheme is developed for generating test specifications and test data. This
paper is structured as follows. An overview of related work is described in Section
2. A brief discussion on basic definitions and concepts used in our methodology is
given in Section 3. Section 4 presents our proposed approach to test data generation.
Section 5 presents an illustration of the approach. Finally Section 6 concludes the
paper.

2 RELATED WORK

Test data synthesis is an essential task while generating test cases from model based
specifications particularly in the context of automatic software testing. However,
works concerned with test data generation from UML models are just beginning to
emerge. This section presents the state of the arts on test data generation from
programs followed by test data generation from model artifacts.

Test Data Synthesis from Programs

Test data generation methods ([9], [10], [11], [12], [13], [8], [14]) have been widely
applied to unit testing and module testing in function oriented programming. The
methods employ structural testing criteria to extract required information from pro-
grams. Depending on whether the control or data flow aspects of an implementation
is chosen, the structural testing criteria can be classified as control flow and data
flow based criteria. The control flow based criteria analyze the control flow such as
statement, branch, loop and concurrent constructs of an implementation ([15], [16],
[17], [18]). For this purpose, the control flow of a program is usually represented by a
control flow graph, where the nodes are either a decision node or a node representing
single entry and single exit sequence of statements known as block node. The edges
represent possible control flows between nodes. On the other hand, the data flow
based testing criteria require the data flow associations between definitions and uses
of variables to be exercised [19]. For a given test criterion, the test data generation
methods find a test input to exercise various test requirements. For example, state-
ment coverage finds a test input for each program statement, branch coverage finds

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 77

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

an input such that the execution traverses a specified edge of the control flow graph
associated to the program and path coverage finds the input causing the execution
of a specified path. Three different approaches have been proposed for automatic
test data generation in this context.

Random test data generation

Random test data synthesis methods generate test input values using a random
number generator. Although it is simple to generate random values, the generated
values may not satisfy specific test requirements. It is therefore difficult to produce
adequate test suites using this method. Hence, the usage is limited to evaluation of
test requirements. For example, the approaches proposed by Korel [9] and Michael
et al. [10] have used random test input generation as a baseline for evaluation of
their test data generation methods.

Path oriented test data generation

The path oriented test data generation methods identify a set of paths and then
generate input to execute the selected paths. For these methods, test generation is
based on symbolic execution ([11], [12], [13]) or dynamic execution [8]. The symbolic
execution methods ([11], [12], [13]) assign symbolic values to variables. For example,
an input variable x is assigned a symbolic value such as x = x0. After a few
executions down the path, the value of the variable becomes a complex expression.
On each branch predicate along the path, the predicate is expressed in terms of
input variables of the program. The result is a constraint on the input variables to
be satisfied by the test input. This kind of symbolic execution is repeated for all
branch predicates along the selected path and a system of constraints is derived.
Finally, the set of constraints are solved using constraint solving techniques which
finds values for each input variable such that all the constraints hold. If values
cannot be found satisfying the constraints then the path is declared infeasible and
the next path is selected. Although many programming constructs such as loops,
arrays, pointers etc. have been found very difficult to execute symbolically, the
symbolic execution has been found to detect path infeasibility while solving the
constraints.

The dynamic execution method, on the other hand, is based on actual execution
of a program under test and test data is developed using actual values of input
variables. In the beginning, all input variables are set to take some initial values.
When the program is executed with this data, the flow is monitored which helps in
determining whether the test requirements are satisfied or not. For example, for the
branch predicate (x > 10), the goal of achieving a TRUE branch is to observe the
value of variable when the execution reaches this condition. If the intended path is
not taken, then the flow is altered by changing the values of input variables until
the path is taken into account.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

2 RELATED WORK

In the approach proposed by Korel [8], dynamic test generation is realized as
a function minimization problem and the solution is obtained by minimization of
values for input variables. In their approach, for a given program path, if the initial
input is the solution then the main goal is achieved. If the initial input is not the
solution, then the problem is expressed in terms of solving subgoals repeatedly until
the main goal is reached or one of the subgoal cannot be solved. Two types of search
strategies are employed for minimization - exploratory search to achieve the smaller
moves and a pattern search to take the larger moves. The basic search procedure is
to select one variable at a time and alter its value until the solution is found. The
selected variable is altered by exploratory search and if the direction to proceed is
correct, then the larger move on the desired direction is taken. In addition, dynamic
data flow analysis is used to speed up the search process by determining the input
variables that have a direct influence over the evaluation of the branch function.
If the selected path is infeasible, then the efforts may go vain in performing the
minimization.

Goal oriented test data generation

The goal oriented test data generation procedure is employed to overcome the diffi-
culty of path execution methods in deciding path feasibility. For the selected node
in a program known as goal node g, the procedure finds program input so that the
node g will be executed irrespective of the path taken. Thus the path selection
procedure is eliminated, instead a goal node is selected. To guide the search process
in reaching the goal node, a heuristic approach is employed in chaining approach
[14]. The chaining approach makes use of data flow analysis to identify a chain of
nodes which are required to be executed before reaching goal node. If an undesirable
execution flow is observed at a certain branch in the program, then the function min-
imization procedure is used to alter the execution flow at this branch. Although the
approach succeeds in handling all types of programming constructs such as arrays
and pointers, it may require a large number of executions of the program.

Test Data Synthesis from UML Models

Pilskalns et al. [20] present an approach for testing UML design models merging
information from sequence diagrams and UML structural views. The test gener-
ation, execution and validation is addressed in their approach. They develop an
aggregate model deriving information from the sequence diagram and combining
with class information to build an instance of the class. The test adequacy criteria
for both class diagram and sequence diagram is applied to their model. The test
data generation uses Binder’s domain analysis approach [1] for identifying the set of
variables occurring in conditional expressions. Based on these variables, they create
partitions for variables and select test values. The test cases are separately not
formed and arise as a result of domain testing. The effectiveness of domain testing,

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 79

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

however, is shown to be limited since it lacks a path selection criterion [21]. As a
result, paths with faults may be skipped from domain testing. Another approach for
testing UML design models is proposed by Dinh-Trong et al. [22]. The technique
uses a Variable Assignment graph (VAG) by deriving information from a sequence
diagram and its corresponding class diagram. The test input is generated based
on the sequence diagram which is consisting of a start configuration and a set of
parameter values. The design under test is brought to an initial state by the start
configuration which is described as a set of objects and their attribute values. Two
types of nodes are employed in VAG. A message node is for every message in the
sequence diagram whereas control node denote branching, merging, looping and ter-
mination of execution. The post condition of the operation from the class diagram
is used for specifying the changes in variables after the execution of an operation
call. This information is maintained in the message node of a VAG. The symbolic
execution technique is used for solving path constraint to generate test inputs. The
major problem with their approach is the limited set of fragments. More specif-
ically, multiple fragments and their nested combinations results in complex path
constraints. The development of symbolic values and solving of path constraints
using these variables are complicated using symbolic execution method.

Samuel et al. [23] propose a technique for generating test cases from UML com-
munication diagrams. From the tree representation of the communication diagram,
test cases (message paths) are selected as a post-order traversal of the tree in their
approach. The test data is then solved by employing Korel’s function minimization
technique [8] on predicates selected from the messsage paths. Only behavioral infor-
mation can be extracted from the communication diagram and therefore information
concerning data type, attribute constraints, domain of variables etc. is not available
for test data generation in their approach. Consequently, test data for different data
types is not addressed and integer data type is considered as a default data type.
Due to this limitation, the generated test cases may not be precise and need to be
augmented with additional information before applying to test a target system.

Weileder et al. [24] develop an approach to deal with model based test generation
using state machines, class diagrams and OCL expressions. A test tree is developed
by connecting state machines and class diagrams from referencing transitions to
operation calls. For this, each event in the state machine is interpreted as call event.
In their approach, classification of the variables in OCL expressions is provided by
recognizing the variables that can alter the value of attributes from those variables
that cannot alter the value of attributes. The test generation process identifies
variables and then creates partitions of the value ranges for all input variables. A test
path is created as a test input sequence from the root to one of the leaves of the tree.
A test case is then created by selecting representative value for each parameterized
event of the path. In contrast to state machines, our approach uses sequence diagram
to model the message exchanges among the objects involved in the interaction.
The state machines denote behavioral properties of a class and requires integration
of state machines corresponding to several objects. Consequently, extending their
approach to a large case study is a complex process.

80 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

3 BACKGROUND

Automated test data generation for the Test and Testing Control Notation ver-
sion 3 (TTCN-3) is discussed in Dai et al. [25] approach using classification tree
method. In their approach, input data for abstract test cases of TTCN-3 are gener-
ated by partitioning of the data domain. They discuss three different ways to create
partition for equivalence classes for choosing one representative from each class.
However, they rely on the user to provide classification and test data selection.

Hartmann et al. [26] address the problem of test data generation and execution
of system tests from UML activity diagrams. The category partition method is
considered as the underlying test data generation technique for their approach. A
category is defined for all the variables in the diagram. Accordingly, they discuss
annotations to describe variables, partitions for variable ranges, coverage require-
ments etc. Based on these test requirements, equivalence classes in the system under
test are identified. The test cases are created from the activity diagram by mapping
its activities and transitions to partitions and choices such that all different paths
of choices are covered. They provide evaluation of their experiments in comparison
to the existing manual approach. However, the major concern with their approach
is that the complex control structures such as concurrency, loops and their nested
combinations are not addressed. In addition, simple predicates are evaluated as the
branch predicates. In this respect, applying category partition to evaluate complex
expressions is not explored.

Existing work consider test data generation for a given test path. However, none
of these approaches define a precise model for the generation of test paths and then
test data. Different types of faults may exist in different combinations of program
statements. To reveal faults in all such combinations is a hard problem as number
of statements and faults increase as the size of program grows. A testing strategy
is needed to overcome this combinatorial problem. In this regard, we have defined
an effective program testing strategy from the relevant model specifications. In
addition, our approach can be used to expose all path oriented faults.

3 BACKGROUND

In this section, we begin with a discussion on UML 2.0 sequence diagrams, class
diagrams and OCL constraints. Following this, we define structured composite graph,
a directed representation of sequence diagram that combines information from the
class diagram and OCL constraints. Next, we give few definitions, notations and
assumptions referred in our subsequent discussions. Finally, we discuss the coverage
criteria considered in our work.

UML 2.0 Sequence Diagrams

A sequence diagram precisely specifies the set of objects and the sequences of mes-
sage exchanges that are involved in various scenarios. UML 2.x sequence diagram

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 81

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

provides a mechanism known as combined fragments also known as interaction frag-
ments. A combined fragment encloses one or more processing sequences in a frame
which are executed under specific named circumstance called fragment operators.
There is a facility for providing 12 different types of fragment operators. We briefly
discuss only those interaction operators which are used in this work.

Combined fragment loop: A loop fragment indicates that the messages within the
operand are to be repeated a number of times. The interaction constraint of a loop
operand may include a lower and an upper limit specifying iterations of the loop as
well as a Boolean expression. The loop fragment describes the test to be performed
before the first execution of the messages in the loop operand indicating a pre-test
form of loop. Since it is impractical to include all message paths of a loop fragment,
we consider a pre-test form of loop criterion (defined in Section 3) to generate a
test set based on selection of similar paths [16].

Combined fragment alt, opt and break : The fragments alt, opt and break denote
a choice of behavior which is controlled by an interaction constraint. We denote this
choice of behavior as selection and associate a selection criterion to include scenarios
corresponding to each operand. The chosen operand has a constraint evaluated to
true.

Combined fragment par : Typically, the inteaction fragment par denotes the par-
allel merge among the messages in the operands of a par fragment. The messages in
a par fragment can be interleaved as long as the ordering imposed by each operand
is maintained [6]. In this respect, we consider a valid interleaving sequence as the
one which maintains ordering of message sequences within an operand.

UML Class Diagrams

For every class in the sequence diagram, the class diagram declares all the method
signatures and class attributes. For a method m from a sender class C1 to a receiver
class C2 in the sequence diagram, the class diagam defines the method signature m
in class C2. The method signature includes the name of the method, paramter type
and return type whereas class attributes includes information about the instance
variables such as their names and types. In addition, there may also be OCL con-
straints (Object Constraint Language) [27] which are used to express as invariants
on the class attributes. These invariants specifies attribute constraints that are true
for all instances of the class. This static information constrains the values of the
attributes and hence included in the underlying class diagram as given below.

A class diagram is defined as CD =< CL,AN > where CL is the finite set of
classes present in the diagram and AN =< C1, AName,C2 > is the set of association
between classes in the diagram where C1, C2 ∈ CL and AName is the type of
association. Each class Ci ∈ CL is a tuple Ci =< Attr,M > where Attr is a set

82 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

3 BACKGROUND

of class attributes {< attri : typei, ci >}. Each attri is the name of the attribute
with typei as the corresponding type of the attribute and ci is the constraint over
attri specified as the Boolean expression. M is a set of method signatures M = {<
mi(p1 : type1, · · · , pn : typen), Rtypei >} where mi is the name of the method with
parameters p1, · · · , pn, associated types type1, · · · , typen and return type Rtypei.

Structured Composite Graph (SCG)

In order to systematically investigate the comprehensive flow of control from a se-
quence diagram, the information contained in the sequence diagram is extracted
and stored in a graph known as structured composite graph. The following nodes are
considered while mapping a sequence diagram to a structured composite graph.

• An initial node represents the beginning of a structured composite graph.

• A block node represents a sequence of messages such as messages within
operands of a fragment.

• A decision node represents a conditional expression such as Boolean expression
that need to be satisfied for selection among operands of a fragment.

• A merge node represents an exit from the selection behavior such as an exit
from an alt or an opt fragment.

• A fork node represents an entry into a par fragment.

• A join node represents an exit from a par fragment.

• A final node represents an exit of a scenario graph.

A Structured Composite Graph (SCG) is a directed representation of a sequence
diagram. An SCG is defined as below.

A SCG G =< A, E, in, F >. Here, in denotes the initial node such that there is
a path from in to all other nodes and F denotes a set of all final nodes representing
terminal nodes of the graph. A is a set of nodes consisting of (BN ∪CN) where BN
is a set of block nodes, and CN = (DN ∪MN ∪FN ∪JN) is a set of control nodes
such that DN is a set of decision nodes, MN is a set of merge nodes, FN is a set of
fork nodes and JN is a set of join nodes. Edges from decision nodes are labelled with
a condition. E denotes a set of control edges such that E = {(x, y)|x, y ∈ A ∪ F}.
The structure of each node Ai ∈ A is defined as given below.
< nodeId, nodeType, nodeDetails, outEdge > where

• nodeId is a unique label attached to each node.

• nodeType = {decision,merge, fork, join} for each Ci ∈ CN and
nodeType = {block, initial, final} for all other nodes.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 83

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

• nodeDetails = {m1, · · · ,mq|q is a number of messages in Bi ∈ BN }. Each
mi ∈ nodeDetails is defined as a triple < m, s, r > with each message
specifying its sender s, receiver r and name of the message m for all block
nodes Bi ∈ BN . The sender and receiver denote classes and are in the
form < objectName, className >. Each message mi combines type in-
formation of the receiver class r from the class diagram and is structured
as < m, paramList, rV alue >. The type information is attached to both
parameters paramList = {p1, · · · , pn} and return value rV alue. Further, a
parameter pi of a method mi in the sequence diagram may be a class at-
tribute involved with constraint. A parameter or a return value derives both
type and constraint information from the class diagram and is structured as
< name, type, value, constraint > where name denotes the name of the pa-
rameter or the attribute with type as their corresponding data type and value
is an instance of the value assigned. The constraint refers to OCL expressions
that are defined for the class attributes involved as method parameters.
nodeDetails = {alt, loop, break, opt, par} associates an interaction operator to
a control node, Ci ∈ CN .

• outEdge = {OE1, · · · , OEq | q is number of outgoing edges }. Each OEi ∈
outEdge is defined as < outNode, predicate > where outNode specifies the
nodeId corresponding to the successor node and predicate specifies the Boolean
expression attached to an operand of a fragment.

For the automatic generation of test data, it is required to find test cases comprising
sequences of method calls and test data. For this purpose, an aggregate model
is to be defined combining behavioral and structural information. The structural
information is needed to associate relevant range of values for each parameter and
return value of the method calls appearing in the sequence diagram. In addition, it
must also take into account, any attribute constraints which may limit the possible
choices of data for each attribute. Hence, it is required to capture static information
and augment with the information retrieved from a sequence diagram. SCG is an
aggregate model combining information from class diagram and OCL constraints
for facilitating test scenario generation and test data generation.

Terminologies

Variable: The term variable refers to parameters of method calls, return value of a
method call or variables present in the interaction constraint of a sequence diagram.
We distinguish two types of variables - basic types such as integer, float, boolean,
character and composite types such as strings, object type which is collection of one
or more basic types.
Domain of variables : The domain Dx of a variable x is a set of all values that
the variable x may take. The domain is limited by the range of values allowed
for a given variable in the computer. We denote the domain of variable x by

84 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

3 BACKGROUND

Dx = (min(x), max(x)) where min(x) denote the lower bound and max(x) denote
the upperbound of admissible values for the variable x. We denote X = {x1, · · · , xn}
as the set of all variables of a sequence diagram. The domain of the structured com-
posite graph G is the product D = Dx1 ×Dx2 × · · · ×Dxn where Dxi is the domain
for variable xi. Note that a variable xi may be of composite type in which case xi

contains individual elements {e1, · · · , ep} where ei is of basic type. A single point x
in the n-dimensional input space D is referred to as an input or test input [8].
Test case: A test case is a set of test inputs, preconditions, if any, for inputting the
test data and expected output for a single execution of the program. A test suite is
a collection of one or more test cases.
Scenario: A sequence S =< n0, n1, ..., nq > is a scenario or an abstract test case
in a structured composite graph, if n0 = in, nq ∈ F and (ni, nj) ∈ E, for all
i, j, 0 ≤ i, j < q, where E denotes a set of edges and F denotes a set of final nodes
in a scenario graph.
Feasible Scenario: A scenario is feasible (or executable) if there exists an input X
in the n-dimensional input space X ∈ D for which the path is traversed during the
program execution; otherwise, the path is infeasible (or unexecutable).
Constraint and Predicates: A constraint is a pair of algebraic expressions related
by one of the relational operators {>,≥, <,≤, =, 6=}. An algebraic expression is com-
posed of variables, parentheses, constants and arithmetic opeators such as {+,−, ∗, /}.
A clause is a list of constraints connected by the logical operators {AND, OR }. A
predicate is a list of clauses associated to a decision node. The predicates on the
scenario arise from the guard expression of fragments such as opt,loop, alt and break
and appear on the branches emerging from decision nodes. Note that a path can be
represented by a list of predicates with one predicate for each decision node.

Coverage Criteria

In this subsection, we list the coverage criteria that are used in this work. Let T be
a set of test cases for a sequence diagram. T satisfies the coverage criterion if the
following condition holds good.

C1: All message path criterion

• For each sequence diagram in the model, T must include test cases to execute
all message sequence paths of the sequence diagram [28].

C2: Loop adequacy criterion
For each loop fragment,

• T must include at least one scenario in which control reaches the loop and
then the body of the loop is not executed (”zero iteration” path).

• T must include at least one scenario in which control reaches the loop and

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 85

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

then the body of the loop is executed at least once before control leaves the
loop (”more than zero iteration” path).

C3 : Selection coverage criterion

• For each selection fragment, T must include one scenario corresponding to
each evaluation of the constraint.

C4: Concurrent coverage criterion

• For each concurrent node in SCG, T must include one scenario corresponding
to every valid interleaving of message sequences.

4 PROPOSED METHODOLOGY

Scenarios derived from the sequence diagrams describe the functionality of a system
under development in terms of its behavioral descriptions. In the context of system
testing, scenarios representing an abstract level of test cases need to be augmented
with test data. In this section, we present our approach for generating test cases
from a sequence diagram.

Building SCG

In this sub section, we discuss our approach of building a SCG for test case gen-
eration. As defined in Section 3, a SCG is a directed graph which is obtained by
integrating the necessary information from a class diagram, OCL constraints and a
sequence diagram.

The sequence diagram models the interaction among a set of objects using se-
quences of messages and interaction fragments. An important task in the test case
generation therefore, is to extract the flow of control among the fragments and their
nested occurrences. The idea of SCG is to express the underlying control flow in-
formation involved in a sequence diagram as a directed graph. Two types of nodes
are considered in SCG. Similar to the notion of block of program instructions [7], a
block node in SCG is a node corresponding to a set of messages from the sequence
diagram. Since a fragment is expected to alter the flow of control, a control node
is used to mark the entering and leaving of a fragment. Depending on the type of
interaction operator, four types of control nodes are used. An interaction operator
of type alt, loop, break and opt denote conditions that enable the selection of inter-
action operands. Accordingly, a decision node is used for displaying the selection
behavior. An edge from the decision node is associated with a conditional expres-
sion that enable the selection of an interaction operand. A merge node is used for
displaying exit from the selection behavior. A set of fork and join node is used as
an entry and exit from a par fragment.

86 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

4 PROPOSED METHODOLOGY

The parameters of a method call in the sequence diagram lacks the constraint and
type information. This additional information is derived from the class diagram and
is appended to each message. Hence the structure of each variable v in the block node
is (name, type, value, constraint). Here, type and constraint refer to the data type
and the attribute constraints associated to a variable v.name. The type information
is used to map each variable v.name to a range of values (min,max). This ensures
that each variable on a path from the initial node to a final node is mapped to a
range of values. Furthermore, the constraint information is used to appropriately
set the boundary values min and max. For example, the type information such
as int to a variable x sets (minx, maxx) = (minInt, maxInt) where minInt and
maxInt are the boundary values. Let us consider x ≥ 5 as the constraint associated
to x. In that case, (minx,maxx) will be set to (5,maxInt) which will be recognized
as the initial domain.

Approach to build the SCG from a given sequence diagram is stated in the algo-
rithm CreateSCG. It is defined in terms of a function exitNode = ProcessCompos-
iteInfo(fragmentId, classDiagramId, entryNode) to extract the control flow within
nested fragments. Initially, the main frame that hosts the sequence diagram of a use
case is supplied as a fragmentId. Depending on the contained elements within this
main frame, the function is recursively called with the fragmentId of the element to
be transformed. When the element derived from the sequence diagram is, say mes-
sage m, then the receiver class of the message is consulted. The method signature
corresponding to the method call is then derived using the function ReturnMes-
sageStructure. For the OCL constraints, we assume that, attribute constraints, if
any, are available in the attribute structure as mentioned in Section 3 (B). Both
constraint and type are then appended to the message m. The code to perform this
is stated in the function call AttachTypeInfo() and AttachConstraintInfo(). In ad-
dition, with each element of the sequence diagram, we distinguish two nodes- entry
node and exit node. The entry node is the current node which is connected to the
outside by incoming edges and therefore supplied as input to the function. The exit
node is the node which is connected to the outside by outgoing edges and hence
returned as output of the function. The fragments are processed until the termina-
tion condition is reached. When the termination condition for the main fragment
is reached, the scenario graph is returned with initial node in as the entry node
and the final node fn as the exit node. In this way, SCG is built from a sequence
diagram with any nested combination of fragments.

The structure of SCG corresponding to each of the interaction fragment is shown
in Figure 1. The corresponding class diagram is consulted in each case to append
static information. In SCG, block nodes are shown in ovals and only node-id is
mentioned for each of the nodes, for brevity. The guard associated to a fragment is
shown as an edge descriptor. For denoting fork and join nodes thick line segments
are considered whereas for denoting decision and merge nodes diamond symbols are
used. A filled circle notation is used for denoting initial node and a small circle

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 87

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

Procedure 1 Function CreateSCG
Input: D: Sequence diagram in XMI form // D is the main fragment

CD: Class diagram in XMI form
Output: G: SCG in the form < A, E, in, F >
1: Create initial node in ;
2: x = ProcessCompositeInfo(D,CD, in) ; // Process the sequence diagram D
3: if x 6= finalNode then
4: Create final node fn ∈ F ;
5: Connect edge from x to fn ;
6: end if
7: return G with entry node in ∈ A and exit node fn ∈ F ;
8: stop
Algorithm - The SCG building algorithm

enclosing an ’X’ is shown for denoting final nodes. Further, node label Bi is used for
denoting block nodes. FNi and JNi labels refer to fork and join nodes, respectively.
For denoting decision and merge nodes Di and Mi are used as node labels.

Generating Scenarios

Input to the scenario generation procedure is SCG. The output from the scenario
generation procedure is a finite set of scenarios which are complete paths starting
from the initial node to a final node.

Each scenario is built starting with the initial node of the SCG. The sequence
diagram based coverage criteria (defined in Section 3) are used to generate a set of
scenarios which are to be covered during testing. These scenarios ensure that the
elements modeled in the sequence diagram are traversed at least once.

All variables in the block node are associated with (type, constraint) information
which is used to set initial domain. One representative value for each variable on the
path is to be selected. Hence, messages in block nodes along a path correspond to
a parameterized operation call. Each outgoing edge from a decision node contains
one predicate. A test case must satisfy all predicates along its path. Traversing
nodes and edges of SCG to find test paths therefore correspond to depth first search
traversal. The main algorithm is shown in GenerateTestScenario. It uses depth first
search technique on the SCG to find a test scenario.

Synthesizing Test Data

The test scenarios obtained as discussed in the previous section denote abstract test
cases which represent possible traces of executions. Consequently, the sequence of
messages comprising a scenario is a feasible sequence of messages. To generate test
data for a scenario is to find test input that satisfies all the constraints along the

88 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

4 PROPOSED METHODOLOGY

Procedure 2 Function ProcessCompositeInfo

Function ProcessCompositeInfo(Fragment : fragmentId, CD : class Diagram Id, A :
curNode)

Input: fragmentId: Fragment, a tag indicating the type of fragment
classDiagramId : Id indicating the name of the class diagram
curNode ∈ A

Output: exitNode ∈ A
1: while ! EndOfFragment do // end of current fragment
2: x = GetNextElement() ; // Read the next element in the fragment
3: if x =′ EOF ′ then // Termination condition
4: exitNode = curNode ;
5: else if x =′ message′ then
6: begin
7: BN = CreateBlockNode() // Create BN with a set of messages ;
8: for each message m ∈ B
9: begin

10: Get the receiver class in r.className
11: Msg = ReturnMessageStructure(CD, r.className, m) // Retrieve method

12: Attr = ReturnAttributeStructure(CD, r.className) // Return attribute
13: for all variables in m
14: begin
15: AttachTypeInfo(Msg,m) // Construct message structure
16: AttachAttributeInfo(Attr,m) // Attach constraint c[i] to Msg.p[i]
17: endfor
18: endfor
19: ConnectEdge(curNode, BN) // Edge from curNode to the next node

20: exitNode = BN ;
21: end if
22: return exitNode
23: end while
Function ProcessCompositeInfo(D, CD, A)

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 89

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

[!c1]

(i) Transforming an alt fragment

l1 l2 l3

m1

m2
m3

m5

alt

Bi

B1

B2[c2]

[c1]

Bk

m4

m6

D1

M1

[c1] [c2]

Bi

Bk

B1 B2

l1 l2 l3

m1

opt

Bi

B1
[c1]

Bk
m3 m4

m2

(ii) Transforming an opt fragment

[c1] D1

M1

Bk

B1

Bi

(iii) Transforming a loop fragment

l1 l2 l3

m1

m2

m3

loop

Bi

B1
[c1]

m4 Bk

D1

[c1]

[!c1]

B1

Bi

Bk

l1 l2 l3

m1

m2

m3

break

Bi

B1
[c1]

Bkm4

(iv) Transforming a break fragment

f1

Bk B1

D1[c1] [!c1]

Bi

(v) Transforming a par fragment

l1 l2 l3

m1

m2

m4

par

Bi

B1

B2

m3

Bkm5

FN1

JN1

Bi

Bk

B1 B2

Figure 1: General structure of SCG

Procedure 3 Function GenerateTestScenario
Input: SCG, a graph with initial node in .
Output: T , a collection of test cases forming the test suite.
Data: current: The next node being visited
1: current = in
2: while current 6= NULL do
3: begin
4: push(current)
5: if current = finalNode then
6: updatePath(T)
7: end if
8: end while
Algorithm - Test scenario generation from SCG

90 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

4 PROPOSED METHODOLOGY

path.

We consider a domain based test data derivation for generating test input. Our
aim is to derive a feasible domain for each variable of the sequence diagram such
that a value from the domain can cause the execution of the scenario. Let IDxi =
(minxi, maxxi) be the initial domain (ID) assigned to a variable xi. It is required
to find a feasible domain FDxi = (botxi, topxi) which satisfies all the constraints
along the path where, botxi ≥ minxi , topxi ≤ maxxi and botxi ≤ topxi. If such a
domain cannot be found, then the path remains infeasible. Note that, for test data
generation, it is not required to find all possible data values. Therefore, our aim is
to find any sub domain of the feasible domain so that the current scenario can be
executed. In this context, we state our test data synthesis problem as given below.

For a test scenario ti denoted as a sequence of nodes < ni1, ni2, · · · , niq > where
ni1 denotes the initial node and niq denotes the final node, we need to find a test
input satisfying all the constraints along the path such that the path reaches the
final node niq.The synthesis procedure includes the following steps:

Scenario Interpretation

In the path based test data generation approaches, each of the variable appear-
ing in the predicate is expressed in terms of input variables. The symbolic values
are assigned in symbolic execution approaches whereas actual execution values are
assigned in case of dynamic test data generation approaches. Unlike program test-
ing approaches, the values of variables cannot be traced while generating system
test cases from model based specifications. The variable on the predicates must be
appeared either as a parameter or a return variable in a method call. This interpre-
tation associates every variable involved in the predicate to its domain. For example,
a variable in the predicate defined as integer in the class diagram is allowed to take
only integer values. A test scenario is well defined if the variables in the predicates
are declared in the class diagram. Hence, to facilitate predicate interpretation, the
sequence diagram is assumed to be well defined which is a pre-requisite for test data
generation procedure.

The scenario interpretation is carried out from the initial node to a final node of
the selected scenario. The given scenario is analyzed looking for method calls and
predicates which in turn, are handled as explained in the following two steps:

Step 1: Deriving Initial Domains
For each method call of a block node, the initial domain is associated to its param-
eters and return variables. The initial domain is associated with a variable in one
of the following ways.
1) The initial domain can be assigned by type information which is attached to SCG
with every method call. For example, a type information such as integer associated
to a variable x, assigns a domain (MINx,MAXx) where MINx and MAXx denote
the allowable lower bound and upper bound of values for an integer variable.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 91

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

2) For each variable, the initial domain which is the domain of possible values is
constrained by attribute constraints. These constraints extracted from OCL con-
straints are attached to SCG with parameters of the method call. For example,
a variable x with OCL constraint x > 100 constrains the initial domain of vari-
able x as (1,MAXx) where lower bound value min = 1 and upper bound value
max = MAXx.

A data structure known as symbol table is built to record domain information.
The symbol table stores the names and types of the variables and their associated
domains corresponding to every test case. Since all the variables are entered into
the symbol table, the symbol table is an important data structure. There exists an
entry in the symbol table for every variable encountered in the predicate. In other
words, the symbol table ensures that a scenario is well defined before solving the
predicates.

Table 1 shows the structure of a symbol table. The name of the variable is
the parameter name associated with a method call on the sequence diagram. Each
variable is given a data type containing one of the following types - basic type such
as integer, float, boolean, character or composite type such as strings, objects. The
initial domain is determined according to the data type of the variable. After solving
all the predicates along the path, the final domain is generated.

Table 1: Symbol Table Structure
Variable Data Type Initial Domain Final Domain
x int (minInt, maxInt) (100, maxInt)
y string ”SET, OPEN, CLOSE” ”OPEN, CLOSE”
...

Step 2: Constructing Expression Trees
Each predicate of a decision node is represented internally as an expression tree. The
structure of expression tree is similar to those used in compilers [29] while parsing
expressions. The terminal nodes (leaves) of an expression tree are the variables or
constants in the expression. The non-terminal nodes of an expression tree are the
operators such as arithmetic operators (+, -, *, /), relational operators, boolean op-
erators or logical operators. Each predicate along the path is separately represented
as an expression tree. Considering the hierarchy of operators in the constraint, the
tree structure is built to utilize this hierarchical order. We consider predicates with
following forms:

92 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

4 PROPOSED METHODOLOGY

Predicate ::= Clause1 Bop Clause2 Bop · · · Bop Clausen

Clause ::= LeftConstraint Rop RightConstraint
LeftConstraint ::= Expr
RightConstraint ::= Expr | Const
Expr ::= Expr Aop Expr | Expr Aop V ar | Expr Aop const | V ar
Aop ::= + | − | ∗ | /
Rop ::=> | ≥ | < | ≤ | = | 6=
Bop ::= AND|OR

Let us consider an example to see how expression trees can be constructed.
Consider a scenario described using the predicate x ≥ 100 AND y 6= set. After
entering the variables into the symbol table, the expression tree for the predicate
constructed is shown in Figure 2. However, a test case needs to satisfy all predicates
along its path. If the evaluation of the next predicate on the path is inconsistent
with the existing set of test values (or their domain), then the path is infeasible.
This requires that every predicate be checked to determine whether it satisfies the
previous solution. In the proposed expression tree, the variables appear as leaves
and for each evaluation, the variables receive a new domain. This value is then
subsequently propagated till it reaches the root for evaluation (constraint solving is
explained in the next sub section). The tree structure helps in propagating values
while simplifying expressions, which in turn, helps in simplifying path evaluation.

x 100 y “SET”

>= !=

AND

Figure 2: Structure of an Expression tree

Constraint Solving

In this step, we find a feasible domain for each variable in the sequence diagram
using dynamic domain reduction procedure [30]. The domain reduction procedure
tries to satisfy each predicate along the scenario by reducing the initial domains
for the variables involved in the predicate. The reduced domain at the end of the
procedure denotes the final (feasible) domain, any value from this domain will cause
the execution of the path.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 93

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

Given the initial domains of two variables known as left and right variables that
are combined by a relational expression, if the initial domains are non-intersecting,
then the clause may be either satisfied or is infeasible. On the other hand, if the
domains are intersecting, then the reduction procedure is carried out to split the
domains such that the clause is satisfied for all values from the two domains. Let
us assume that the initial domains of left variable be (left.bot, left.top) and right
variable be (right.bot, right.top). The split point is found based on top and bottom
values of left and right domains. There are four cases to consider.

(a) (left.bot ≥ right.bot) and (left.top ≤ right.top)
split = (left.top− left.bot) ∗ pt + left.bot

(b) (left.bot ≤ right.bot) and (left.top ≥ right.top)
split = (right.top− right.bot) ∗ pt + right.bot

(c) (left.bot ≥ right.bot) and (left.top ≥ right.top)
split = (left.top− right.bot) ∗ pt + right.bot

(d) (left.bot ≤ right.bot) and (left.top ≤ right.top)
split = (right.top− left.bot) ∗ pt + left.bot

Once a split point is returned, the domains of left and right variables are adjusted.
Table 2 shows the reduced domains of left and right variables. In this table, offset is
the constant value and is included to hold the smallest possible difference between
two values of a given data type. For integer and floating point values offsets are
taken as 1 and 0.00001, respectively. Based on the precision and accuracy to be
maintained, any other suitable offset for floating point values can be chosen. Thus
offset helps in setting domains based on the type definition of a variable. The
value split is the split-point computed as explained above. For relational operator,
”=”, the domain of left and right variable has to be chosen in such a way that the
value chosen should be the same for both left and right variables. This is indicated
in Table 2 by choosing the reduced domains as (split, split) for both left and right
variables.

The value of pt is initially set to 1/2 to get the new domains. The leaves of the
expression tree are inspected for computing domains. If the leaves denote variables,
then the symbol table is consulted to get an initial domain. Substituting variables
with their initial domains and choosing split point pt = 1/2, the new domains are
computed. If the new domains satisfy the predicate then the procedure continues
with the next node of the scenario until the final node is reached. If the new domains
do not satisfy the clause then the value of pt is changed to 1/4 and a different split
is found for the same decision node. The value of pt is chosen sequentially from the
set (1/2, 1/4, 3/4, 1/8, · · ·). The procedure of splitting domains to get new domains
is repeated for a fixed number of iterations, each time by choosing a next search

94 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

5 ILLUSTRATION OF THE PROPOSED APPROACH

point pt from the above set. If the iterations fail to satisfy the predicate, then the
procedure is repeated from the previous decision node. If the procedure again fails
with the previous node and if there are no more decision nodes to consider, then the
test data generation fails and a new scenario is taken. The reduced domain at the
end of the procedure denotes a feasible domain of values for a test case.

Table 2: Determining reduced domain based on the type of relational operator

Relational
operator

Domain of left variable Domain of right variable

≥ (split, left.top) (right.bot, split)
> (split + offset, left.top) (right.bot, split)
≤ (left.bot, split) (split, right.top)
< (left.bot, split− offset) (split, right.top)
= (split, split) (split, split)
6= (left.bot, split) (split+offset, right.top)

A clause of a predicate may get reduced in one of two ways.
(a) When a clause is of the form V ar Rop const, it reduces the domain of values for
V ar. Let us consider a clause x ≥ 100 with IDx = (1, 200). After domain reduction
procedure, the domain of x will be FDx = (100, 200).
(b) When a clause is of the form V ar1 Rop V ar2 then the domain of values for both
V ar1 and V ar2 are reduced. Let us consider a clause x ≥ y, which reduces the
domain of x and y. Let the initial domain of x and y be IDx = (1, 20) and IDy

= (1, 30). In that case, the feasible domain for x and y after domain reduction
procedure will be FDx = (11, 20) and FDy = (1, 10). In this computation, the split
point 10 is obtained whereas offset 1 is chosen considering integer domain. Thus,
final domain of x is assigned as (11, 20) as per relational operator ” > ” of Table 2.

5 ILLUSTRATION OF THE PROPOSED APPROACH

In this section, we illustrate our test data synthesis approach using an example
called Trading House Automation (THA) system. We consider a sequence diagram
for orderItem use case of THA system as shown in Figure 3(a). The sequence dia-
gram depicts the sequence of operations when the user, namely inventoryManager
places order for the required products. The sequence diagram shows the interaction
between actor with four system objects which are :Controller, :CategoryManager,
:ProductInfo and :OrderHandler. The messages in the sequence diagram focus on
synchronous communication between objects. For each object used in the sequence
diagram, the class diagram shown in Figure 4 gives the classes and their relation-
ships. For the sake of brevity, the class diagram shows only the specific classes that
are involved in orderItem use case where the remaining classes and their relation-
ships are not shown.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 95

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

Table 3: Test Scenarios
Scenario Id Test Scenario
T1 in, B1, D1, B2, D2, B3,M1,M3, B8, fn
T2 in, B1, D1, B2, D2, B4,M1,M3, B8, fn
T3 in, B1, D1, B5, D3, B6,M2,M3, B8, fn
T4 in, B1, D1, B5, D3, B7,M2,M3, B8, fn

SCG Construction

As part of SCG construction algorithm, the messages are enclosed in block nodes.
Initially, the messages m1 and m2 are enclosed in a block node, which is named
as B1. In the block node, the information pertaining to the method data type and
constraints from the class diagram are recorded as part of message structure stated in
Section 3. The next element retrieved from the sequence diagram is the alt fragment.
A decision node named D1 is created with two outgoing edges corresponding to two
operands of the alt fragment. Each interaction operand contains an inner fragment,
corresponding to which fragments are processed accordingly by creating control
nodes as discussed in Section 4. The block nodes after processing the sequence
diagram are marked sequentially on the right side of Figure 3(a). The structured
composite graph (SCG) is shown in Figure 3(b).

Scenario Generation

To generate scenarios, the SCG model is traversed in a depth first order manner. The
control nodes that detect beginning and ending of a fragment are identified during
traversal. For the set of nodes lying within a fragment, the paths are then generated
to satisfy the respective coverage criterion. For example, for a loop fragment, two
representative paths are formed from the loop entry node to the loop exit node to
cover the loop adequacy criterion. In our example sequence diagram shown in Figure
3(a), the scenarios have to be generated from a nested alt structure. With respect
to each decision node, the sub paths are therefore generated to cover all outgoing
edges. As a result, four scenarios are generated from the SCG shown in Figure 3(b).
The test specifications are listed in Table 3.

Test Data Synthesis

Deriving Initial Domain

Consider the scenario described by T1 =< in, B1, D1, B2, D2, B3,M1,M3, B8, fn >.
In the first step, all variables receive their initial domain of values. The symbol ta-
ble built during scenario interpretation step maintains this information. Starting
from the initial node, each of the variable along the scenario is entered into the

96 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

5 ILLUSTRATION OF THE PROPOSED APPROACH

alt [itemExists =TRUE]

B3

B4

alt

m3:pricePerItem = readProductPriceTag(itemId)

[Quantity >= 1000 AND pricePerItem * quantity >= 50,000]

[Quantity < 1000 OR pricePerItem * quantity < 50,000]

m4: ordernNo = issueBulkOrder(itemId)

m5: ordernNo = issueRetailOrder(itemId)

[else]

m6: shippingPeriod = requestShelfOrder(itemId, quantity)

:CategoryManager :ProductInfo:Controller

m2: itemExists=itemAvailability(itemId)

:inventoryManager

m1: orderItem(itemId, quantity)

B1

B2

m11: displayDetails()

B5

B6

B7

:OrderHandler

B3

B4

alt [shippingPeriod >= 15 AND shippingPeriod <= 31]

m7: ordernNo = renewOrder(itemId)

m8: ordernNo = updateOrder(itemId)

[shippingPeriod >= 1 AND shippingPeriod <= 15]

m9: updateOrderRequest()

m10: notifyDetails()

B3

B4

B8

(a) The sequence diagram for orderItem use case of Trading House Automation (THA)
system

in

fn

B1

B8

D1

M3

[itemExists =TRUE] [else]

[Quantity >= 1000 AND

pricePerItem * quantity >=

50,000]

[Quantity < 1000 OR

pricePerItem * quantity < 50,000]

[shippingPeriod >= 15 AND

shippingPeriod <= 31]

[shippingPeriod >= 1 AND

shippingPeriod <= 15]

B2

B3 B4

D2

M1

B5

B6 B7

D3

M2

(b) The SCG of the sequence diagram

Figure 3: Illustrating SCG creation algorithm

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 97

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

OrderHandler

int issueBulkOrder(int itemId)

int issueRetailOrder(int itemId)

int requestShelfOrder(int itemId, int

quantity)

renewOrer(int itemId)

updateOrder(int itemId)

HandleTaxdetails()

Date dateShipped(int orderNo)

Date dateReceived(int orderNo)

CategoryManager

Boolean itemAvailability(int itemID)

updateOrderRequest()

InventoryManager

1

1 *

Controller

int itemId

int quantity

categorymanager: CategoryManager

orderItem(int itemId, int quantity)

notifyDetails()

displayDetails()

Boolean itemExists

String catalogId

int itemID

int year

productinfo:ProductInfo

orderhandler: OrderHandler

ProductInfo

Float readProductPriceTag(int itemId)

String readProductDescription()

1

1

*

*

int itemId

int quantity

string size

color string

int pricePerItem

float specialPrice

int orderNo

Date shippingDate

Date receivingDate

int shippingPeriod

OCL attribute constraints

1. context ProductInfo inv:

self. pricePerItem >= 10

2. context OrderHandler inv:

self. shippingPeriod <= 31

Figure 4: UML class diagram of Trading House Automation (THA) system

98 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

5 ILLUSTRATION OF THE PROPOSED APPROACH

symbol table (Table 4). The variables itemId and quantity of class Controller
are set with integer domain. Next, itemExists variable of message m2 is entered
into the symbol table. The next node on the path is decision node D1 from which
the constraint itemexists = TRUE is derived. At this time, the symbol table is
checked to see that all variables in this predicate have an entry into the symbol
table. Since the variable itemexists is already in the table (see Table 4), the next
node is retrieved as part of scenario interpretation step. If at any time, a variable
involved in the predicate is not found in the symbol table, then the interpreta-
tion of the current scenario is terminated and the next scenario from the abstract
test suite is chosen. Following the scenario, the next node in T1 is block node
B2 with a single message m3. Connected to message m3, there exists a variable
pricePerItem with a constraint pricePerItem ≥ 10. This constraint sets the ini-
tial domain of variable pricePerItem as (10, maxInt) in the symbol table. The
decision node D2 is now encountered giving rise to the constraint quantity ≥ 1000
AND pricePerItem ∗ quantity ≥ 50000. Again, the variables in the predicate are
checked in the symbol table to find an entry for each. The block node B3 is now in-
spected and the variables are entered in the similar manner as explained above. The
node B3 is followed consecutively by two control nodes M1 and M3. These control
nodes mark the begin and end of a fragment and are used only while generating
paths corresponding to a coverage criterion. For the test data synthesis phase, these
nodes are ignored and the node B8 is now investigated. The messages m9,m10
and m11 are examined. As there are no parameters, the scenario interpretation is
terminated on encountering the final node fn as the next node.

Constraint Solving

The scenario interpretation step ensures that the variables are defined in the sym-
bol table, which in turn ensures that the scenario is well defined. The collected
constraints at the end of interpretation step is solved for finding test inputs. There
are two constraints in scenario T1: itemExists = TRUE and quantity ≥ 1000
AND pricePerItem ∗ quantity ≥ 50000. In order to solve these constraints,
the predicates are expressed in terms of expression trees. The domain reduc-
tion procedure is illustrated with each of these predicates. The first predicate
itemExists = TRUE is in the form V ar Rop const. For this expression, the left
variable itemexists is related to the right variable using relational operator =. Since
the right variable is a constant expression, the value after solving the constant is
assigned to (left.bot, left.top) as the domain of left variable. Hence the final domain
of variable itemexists is set to (TRUE, TRUE).

The expression tree for the second predicate is shown Figure 5. The constraint
solving for this expression begins evaluation using the initial domains of variables.
The left variable is a constraint quantity ≥ 1000. Hence, the expression is in turn
decomposed recursively into the left variable quantity and the right variable 1000.
For the constraint in the form V ar Rop const, the final domain of quantity is set to
(1000,maxInt). Now the expression pricePerItem ∗ quantity ≥ 50000 is assigned

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 99

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

as the right variable and the constraint solving is continued.

quantity 1000 pricePerItem quantity

>= *

AND

>=

50,000

Figure 5: Expression tree for the predicate quantity ≥ 1000 AND pricePerItem ∗
quantity ≥ 50000

For an expression pricePerItem ∗ quantity, and a value 50000, it is required
to set domains for individual variables pricePerItem and quantity such that the
expression has the required value. The expression evaluation is done in two phases.
In the first phase, the domain of the expression is computed based on the do-
mains of individual variables. In the second phase, based on the right hand side
of the expression, the domain of individual variables are re-adjusted by propa-
gating changes down the leaves. This necessitates forward traversal of expression
tree which is from the leaves to the root followed by back ward traversal which
is from the root to the leaves. To do forward traversal, the initial domain is re-
trieved from the symbol table which is pricePerItem : (10,maxInt) and quantity :
(1000,maxInt). In order to evaluate expression, a suitable bottom value is chosen
and the domain is readjusted accordingly. Let the new domains be pricePerItem :
(10, 100) and quantity : (1000, 1500). Based on these domains, the domain of
the expression pricePerItem ∗ quantity is computed as top = max((left.bot ∗
right.bot), (left.bot, right.top), (left.top∗right.bot), (left.top∗right.top) and bottom =
min((left.bot∗right.bot), (left.bot, right.top), (left.top∗right.bot), (left.top∗right.top).
This leads to (10, 000, 1, 50, 000) as the domain of expression. The expression is
now in the form V ar Rop const with (10, 000, 1, 50, 000) as the domain of V ar.
Based on the const value, which is 50,000, the domain of expression is now read-
justed as (50, 000,maxInt). After choosing a suitable bottom value, the domain
of expression becomes (50, 000, 55, 000). The changes are to be propagated to the
leaves by backward traversal. The adjusting of domain is done by taking an inverse
operation [30]. For the arithmetic operator ∗, the inverse operation is computed
as left, right : (SQRT (bot), SQRT (top)) which is pricePerItem : (224, 234) and
quantity : (1000, 1500). The symbol table for T1 is shown in Table 4. Similarly,
scenario T2 is computed by taking initial domain for pricePerItem as (10, 100) and
quantity as (1, 1000). The symbol table with the initial and final domain is shown in
Table 4 for all four scenarios. The variables which are not involved in the constraints
are unchanged and are not shown in this table.

100 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

6 CONCLUSIONS

Table 4: Symbol Table for orderItem use case

ScenarioId Variable Data Type Initial Domain Final Domain
T1 itemExists Boolean (FALSE, TRUE) (TRUE,TRUE)

quantity integer (minInt, maxInt) (1000, 1500)
pricePerItem integer (10, maxInt) (224, 234)

T2 itemExists Boolean (FALSE, TRUE) (TRUE,TRUE)
quantity integer (minInt, maxInt) (3, 223)
pricePerItem integer (10, maxInt) (10, 223)

T3 itemExists Boolean (FALSE, TRUE) (FALSE,FALSE)
shippingPeriod integer (minInt, 31) (15, 31)

T4 itemExists Boolean (FALSE, TRUE) (FALSE,FALSE)
shippingPeriod integer (minInt, 31) (1, 15)

6 CONCLUSIONS

In this paper, an automatic approach to test data synthesis is presented. The test
effectiveness of the system depends on the selection of test cases. In this regard,
selecting test data and identifying test data boundary is an important task. The
OCL expressions of system models are considered in this approach for constraining
the boundaries of variables and for assigning initial domain to the variables involved
in the scenario. Since this is done automatically from the OCL expressions, the
approach derives effective test data for all the variables of a sequence diagram. The
result of test data synthesis denotes a feasible domain which is a sub-domain of the
initial domain for the selected scenario.

A challenging problem with path-oriented test data generation is the determi-
nation of infeasible paths which means that there is no input data for them to be
executed. Existing model based test data generation approaches ([20], [22], [23],
[24], [25], [26]) including the proposed approach assume that initially all test paths
are feasible. If a path cannot be exercised by any set of input data, then the path
becomes infeasible. An infeasible path exists because contradictory constraints are
required to be satisfied to execute the path. A significant effort which is wasted in
trying to satisfy inconsistent constraints can be saved by detecting the infeasible sce-
narios. It is required to extend the approach for detecting contradictory constraints
based on domain information.

REFERENCES

[1] Robert V. Binder. Testing Object Oriented Systems: Models, Patterns and
Tools. The Addison-Wesley Object Technology Series, 1999.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 101

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

[2] L. Briand and Y. Labiche. A UML- based approach to system testing. Journal
of Software and Systems Modeling, pages 10–42, 2002.

[3] Junit home page. http://www.junit.org/.

[4] Jsystem home page. http://www.jsystemtest.org/.

[5] Jwebunit home page. http://jwebunit.sourceforge.net/.

[6] UML. UML 2.0 Superstructure - Final Adopted Specification. Object Manage-
ment Group, 2003. http://www.omg.org/docs/ad/03-08-02.pdf.

[7] Frances E. Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, July
1970.

[8] Bogdan Korel. Automated software test data generation. IEEE Transactions
on Software Engineering, 16(8):870–879, August 1990.

[9] B. Korel. Automated test data generation for programs with procedures. In Pro-
ceedings of International Symposium on Software Testing and Analysis, pages
209–215, 1996.

[10] Christoph C. Michael, Gary McGraw, and Michael A. Schatz. Generating
software test data by evolution. IEEE Transactions on Software Engineering,
27(12):1085 – 1110, December 2001.

[11] Lori A. Clarke. A system to generate test data and symbolically execute pro-
grams. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

[12] W. E. Howden. Symbolic testing and the dissect symbolic evaluation system.
IEEE Transactions on Software Engineering, SE-3(4):266–278, 1977.

[13] J. Offutt. An integrated automatic test data generation system. Journal of
Systems Integration, 1:391–409, 1991.

[14] R. Ferguson and B. Korel. The chaining approach for software test data genera-
tion. ACM Transactions on Software Engineering and Methodology, 5(1):63–86,
1996.

[15] Boris Beizer. Software Testing Techniques. International Thomson Computer
Press, New York: Van Nostrand Reinhold, 2 edition, 1990.

[16] William E. Howden. Methodology for the generation of program test data.
IEEE Transactions on Computers, c-24(5):92–96, 1975.

[17] Simeon Ntafos. A comparison of some structural testing strategies. IEEE
Transactions on Software Engineering, 14(6):868–874, June 1988.

[18] Richard N. Taylor. Complexity of analyzing the synchronization structure of
concurrent programs. Acta Informatica, 19(1):57–84, April 1983.

102 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

6 CONCLUSIONS

[19] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data
flow information. IEEE Transactions on Software Engineering, 11(4):367–375,
April 1985.

[20] Orest Pilskalns, Anneliese Andrews, Andrew Knight, Sudipto Ghosh, and
Robert France. Testing UML designs. Information and Software Technology,
49(8):892912, August 2007.

[21] Bingchiang Jeng. Toward an integration of data flow and domain testing. Jour-
nal of Systems and Software, 45(1):19–30, 1999.

[22] T. Dinh-Trong, S. Ghosh, and R. B. France. A systematic approach to generate
inputs to test uml design models. In Proceedings of 17th IEEE International
Symposium on Software Reliability Engineering (ISSRE), Raleigh, North Car-
olina, USA, November 2006.

[23] Philip Samuel, Rajib Mall, and Pratyush Kanth. Automatic test case genera-
tion from uml communication diagrams. Information and Software Technology,
49(2):158–171, February 2007.

[24] Stephan Weileder and Bernd-Holger Schlingloff. Deriving input partitions from
uml models for automatic test generation. In Proceedings of Model-Driven
Engineering, Verification and Validation, pages 151–163. Springer-Verlag, 2008.

[25] Z. Dai. Model-driven testing with UML 2.0. In Proceedings of the 2nd European
Workshop on Model Driven Architecture, 2004.

[26] Jean Hartmann, Marlon Viera, Herbert Foster, and Axel Ruder. A UML based
approach to system testing. Journal, Innovations in Systems and Software
Engineering, pages 12–24, 2005. Springer London.

[27] UML 2.0 Object Constraint Language OCL Specification. OMG document.
Technical report, formal/06-05-01, 2006.

[28] Anneliese Amschler Andrews, Robert B. France, Sudipto Ghosh, and Gerald
Craig. Test adequacy criteria for UML design models. Software Testing, Veri-
fication and Reliability, 13(2):95–127, 2003.

[29] A. Aho, R. Sethi, and J. Ullman. Compilers - Principles, Techniques and Tools.
Addison Wesley, 1986.

[30] Zhenyi Jini A. Jefferson Offutt and Jie Pan. The dynamic domain reduction pro-
cedure for test data generation. Software-Practice and Experience, 29(2):167–
193, 1999.

VOL 09, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 103

AUTOMATIC TEST DATA SYNTHESIS USING UML SEQUENCE DIAGRAMS

ABOUT THE AUTHORS

Ashalatha Nayak is an Assistant
Professor in Department of Com-
puter Science and Engineering at Ma-
nipal Institute of Technology, Ma-
nipal, India. She is pursuing her
Ph.D. in the School of Information
Technology, IIT Kharagpur in the
area of Model Based Testing. Her
research interests include program

analysis and software testing. She obtained her B.Tech. and M.Tech. in Com-
puter Science and Engineering from Mangalore University, Karnataka state, India.
She can be reached at asha nayak1@yahoo.com.

Debasis Samanta received his
B. Tech. in Computer Science and
Engineering from Calcutta Univer-
sity, M. Tech. in Computer Science
and Engineering from Jadavpur Uni-
versity, Ph.D. in Computer Science
and Engineering from Indian Insti-
tute of Technology, Kharagpur. He
is currently an Assistant Professor in

the School of Information Technology at the Indian Institute of Technology, Kharag-
pur. His research interests include biometric system, low power VLSI systems design,
human computer interaction, and information system design. He can be reached at
debasis.samanta.iitkgp@gmail.com.

104 JOURNAL OF OBJECT TECHNOLOGY VOL 09, NO. 2

