
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 2, March - April 2010

Adil Anwar, Sophie Ebersold, Bernard Coulette, Mahmoud Nassar, Abdelaziz Kriouile: “A Rule-
Driven Approach for composing Viewpoint-oriented Models”, in Journal of Object Technology, vol.
9, no. 2, March - April 2010, pp. 89-114 http://www.jot.fm/issues/issue_2010_03/article1/

A Rule-Driven Approach for composing
Viewpoint-oriented Models

Adil Anwar(1,3), Sophie Ebersold(1), Bernard Coulette(1)

Mahmoud Nassar(2) , Abdelaziz Kriouile(2)

(1) University of Toulouse, IRIT, UT2, 5 allées A. Machado, F-31058 Toulouse,
France
(2) SI2M, ENSIAS, BP 713 Agdal, Rabat, Morocco
(3) UFR ACSYS, Faculty of Sciences, Rabat, Morocco

Abstract
Model composition is a crucial activity in Model Driven Engineering (MDE). It is
particularly useful when adopting a multi-modeling approach to analyze and design
software systems. In previous works, we defined a view-based UML profile called
VUML. In this paper, we describe a composition process and a MDE-based framework,
which contains a generic composition part, and a specific part dedicated to a given
modeling domain. To illustrate our approach, we apply it to the composition (merging) of
two UML class diagrams into one VUML class diagram. The composition operator is
implemented as a ruled-based transformation in ATL.

1 INTRODUCTION

Several approaches adopted by the software engineering community rely on the principle
of multi-modeling, which allows to separate concerns and to model a system as a set of
less complex sub-models. This principle has been introduced in several programming
approaches like subject-oriented programming [Ossher96] or aspect-oriented
programming [Kiczales97]. At the model level, comparable approaches use concepts
such as Views/Viewpoints [Finkelstein90], Subject-oriented development [Clarke 02],
and Aspect-oriented Modeling [Baniassad04] [France04]. With all these approaches, the
key issue is the composition of (sub-) models. Composition consists of combining one or
several source models to create one or several target models. In Aspect Oriented Software
Development, the composition is called weaving [Kiczales97] [France04]. In the field of
Databases, the composition of views can be seen as an integration of different views of
the same database or of heterogeneous and possibly distributed database schemas
[Batini86]. In Requirement Engineering, viewpoints are used to describe system

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

requirements as a collection of modules that are merged to get a global view on the
system [Sabetzadeh05] [Finkelstein90].

Our work in this area [Nassar03] led to the definition of the VUML profile (View
based Unified Modeling Language). VUML proposes a formalism and a methodology to
support view-based modeling from analysis to coding. VUML enables to model a
software system according to each actor’s viewpoint. First, actors of the system are
identified as in UML. Each actor is associated with a unique viewpoint. Then, for each
viewpoint, we describe, in an iterative way, use cases and scenarios as well as related
classes. The result is a set of class diagrams (called also viewpoint models) in the UML
formalism. Finally, a VUML model is produced by composing the partial models.

Since the OMG’s MDA initiative [Soley00], Model Driven Engineering (MDE) has
been taking an increasing place in the software development process. It consists of
centering activities on the paradigm of model considered as a first class entity
[Bézivin06]. The main interest of this approach is to describe models at different
abstraction levels in order to facilitate their reuse during the development process. To
face the composition issue, MDE appears to be an elegant solution since one can consider
some steps of the composition process as transformations. For these reasons, we have
adopted the MDE approach and especially the transformation paradigm to partially
automate the model composition in VUML (see [Anwar08a] [Anwar08b] for more
details). More precisely, we define the composition of static UML models as a set of
transformation rules classified as correspondence, merging and translation rules. These
rules allow first to establish correspondences between input models, and second to merge
viewpoint models into a global VUML model shared by all the actors.

The main contribution of this paper regarding our previous work (cf. [Anwar08b]) is
the focus on the reusability of the composition process. For this purpose, we propose a
two level composition approach: a generic level independent from any modeling
language, and a specific level that depends on a given modeling domain. The generic
level is defined as a generic composition framework. This framework is independent
from any specific transformation language and provides means to express the key
features necessary to compose models automatically. The framework comprises a generic
relationship metamodel, a generic transformation rules metamodel and a transformation
strategies metamodel. For a given modeling language (e.g. source models conform to
UML and target model conform to VUML), we specialize the generic framework by (i)
specializing correspondence relationships, (ii) defining transformation strategies (iii) and
defining transformation rules so as to generate a set of executable composition-oriented
transformations.

The rest of this paper is organized as follows: Section 2 presents the context and the
motivation of our work by introducing the VUML approach and a case study. Section 3
describes the composition process according to a rule driven approach. Section 4 is
devoted to the description of the generic composition framework. In section 5 we show
how the generic framework can be specialized for a given modeling language, and in
Section 6, we apply this specialization process to compose UML models (class diagrams)

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 91

to VUML profile. Section 7 describes the main related works. In section 8, we discuss
some issues raised by our work and we conclude this paper in Section 9.

2 CONTEXT AND MOTIVATION

In this section, we first give a brief overview of the VUML profile, and describe our
view-based modeling approach in the context of MDE. To highlight and motivate our
approach, we present a case study and show how UML class diagrams can be composed
into one VUML class diagram.

VUML profile

The VUML profile was developed to meet the needs of complex systems analysis and
design according to various viewpoints. In VUML, a viewpoint represents the perspective
from which a given actor interacts with the system. In other words, a viewpoint expresses
an actor’s requirements and rights. A view is the result of the application of a viewpoint
on a given entity of the system. The main new concept added by VUML to UML is the
multiview class which is composed of a base class (shared by all viewpoints), and a set of
view classes (extensions of the base class), each view class being specific for a given
viewpoint. VUML’s semantics is described by a metamodel, a set of well-formed rules
expressed in OCL [OMG03b], and a set of textual descriptions in natural language. On
the methodological level, a process allows to analyze and design software systems with
respect to viewpoints. A multi-target code generator was developed to produce object
code from VUML class diagrams and was tested with Java as target language [Nassar09].

MDA-based design process

In spite of the large amount of research works published [Bézivin06], there is no
consensus related to the composition of models. To deal with model composition issues,
MDE has appeared as a promising solution since one can consider some steps of the
composition as special cases of model transformations. For this reason, we decided to use
MDE techniques and particularly the transformation concept to formalize and implement
the composition of several viewpoints models into one VUML model. More precisely,
our composition can be regarded as an exogenous transformation of the same level of
abstraction (horizontal transformation) (PIM UML to PIM VUML) because it takes in the
input a set of PIM models expressed in UML and generates in the output another PIM
model which is conform to the VUML profile.

VUML aims to reduce the design complexity of software systems trough
decomposition according to the needs and access rights of the system actors. This
horizontal separation of concerns completes the vertical approach of MDA by proposing
a methodology that permits to develop models at each level of abstraction. However, to
fully integrate a model driven approach, it is important to define and automate the
transformations between the involved models. Figure 1 illustrates the VUML process
with respect to MDA.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

Identify actor's requirements (Viewpoints)

Define common domain glossary

Design system according to viewpoint 1 Design system according to viewpoint n

Compose design models

Transform VUML model to Object model

Generate object code

Requirements models in UML:

Design models in UML (viewpoint 1):
Design models in UML (viewpoint n):

VUML model:
Object implementation pattern:

Object model:

Object code:

Figure 1. MDA-based general VUML process

The first phase of the design process with VUML is the identification of actors’ needs.
The main goal is to create a requirements model (UML use case diagram). In addition, to
reduce the possible inconsistencies of models carried out during the design phase, the
requirements model is enriched with a glossary that specifies the basic concepts of the
domain and serves as a reference for the designers of the system.

The second phase of the process, decentralized, consists of developing separate PIM
models, each one representing a viewpoint. The result of this phase is a set of UML
models (class diagrams, state machines, sequence diagrams, etc.). These models are
produced according to an iterative process like RUP [Kruchten99]. In this paper, we
focus our study on structural models (class diagrams).

The third phase of the process is composed of three steps. The first is a pre-
composition step that reveals and fixes the different conflicts on these models (names,
structural, etc.). So far, this step is done manually by a designer (cf. discussion in Section
8). The second step, automatic, aims at composing PIM models. This composition is an
exogenous transformation because it takes as input n PIM models defined in UML and
generates as output one model conform to the VUML profile. Once the model is
generated, the third step consists of refining it. This refinement operation is represented
(Figure 1) by a reflexive relation on the VUML model. During this step, possible
dependencies between the view classes of a given multiview class must be identified and
described in order to ensure the consistency of the system model. These dependencies are

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 93

modeled in VUML by dependency relationships which are stereotyped by
“viewDependency”, and annotated by constraints expressed in OCL language.

The last phase of the design process considers an execution platform. It operates to
transform the VUML model into an implementation model according to the platform.
This phase is carried out by applying an object code generation pattern as described in
[Nassar09]. The technique applied combines the use of model transformation and design
patterns (as described in [Jouault05]), and gives place the development of a model-to-
model transformer in ATL (VUML2JAVA).

Case study

To illustrate our approach, we consider a Shared Medical File Management System
(SMFMS). To simplify, we limit our study to the following actors and activities:
• Patients follow the treatments prescribed by doctors and undergo analysis in

laboratories. They can also consult their medical files.
• Doctors carry out diagnoses and consultations, write prescriptions, prescribe drugs,

and consult medical reports.

a) Requirements modeling of SMFMS
The analysis phase of the system consists of capturing its functional requirements. This
phase, centered on the actors, gives place to one use case diagram per viewpoint. Figure
2 below illustrates a subset of the use cases identified for the doctor’s viewpoint.

Figure 2. Excerpt from the Use case Diagram (Doctor’s viewpoint)

b) Viewpoint Modeling of SMFMS
During this phase the system is modeled according to given viewpoints. Let us consider
the doctor’s viewpoint and, for instance, the scenario “Record a treatment” of the use
case "Prescribe treatment”. The purpose of this scenario, started by the doctor after a
consultation, is to create a “ConsultationForm” which is used to record all the clinical
acts concerning a given patient and the decisions taken by the doctor during the
consultation. While proceeding in an incremental way with all use cases, the identified
objects, as well as the methods associated appearing in the sequences diagrams, allow to
build a class diagram related to the doctor’s viewpoint (Figure 3). We can notice that the

<<include>>

Prescribe surgical operation

Prescribe Analysis

Prescribe medicines

Prescribe Treatment

<<include>>

Authenticate Consult doctor medical file Consult Nurse medical file

Consult medical file

Doctor

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

doctor has access to information on the analysis carried out in laboratories, as well as to
the reports created by other health professionals (doctors, nurses, etc).

Figure 3. Doctor’s viewpoint class diagram

For the patient’s viewpoint, a similar process is performed and produces the class
diagram of Figure 4. It shows that the patient has access to doctors’ prescriptions that
concern him, and to the list of payment forms associated to his treatments, but he has
direct access neither to the reports of analysis laboratories, nor to the reports written by
nurses (that are reserved to doctors).

Figure 4. Patient’s viewpoint Model

c) VUML Modeling of SMFMS
In this phase, viewpoint models are composed to produce a VUML model. Figure 5
depicts the VUML model resulting from the composition of the two viewpoint models
shown above (Figure 3 and Figure 4). Classes appearing in two viewpoint models, with
the same name and with different properties (attributes, operations, associations, etc), are
merged as a multiview class. Figure 5 shows two multiview classes: MedicalForm and
Prescription. Properties of the class MedicalForm that are shared by the two considered

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 95

viewpoints have been put into the class stereotyped by “base”; properties that are specific
of one viewpoint have been put into classes stereotyped by “view”. For reasons of
readability, certain multiview classes are displayed in the iconified mode (stereotype
“multiViewsClass”). To name the classes stereotyped by “view”, we have adopted the
notation recommended by VUML (actor’s name + base class name). This strategy makes
it possible to ensure traceability between elements of the viewpoint models and the
VUML model. The class Medecine is not a multiview class because it is exactly the same
(name and content) in the two viewpoint models.

Figure 5. VUML model of SMFMS

3 MODEL COMPOSITION PROCESS

In this section we detail the methodological aspect of our approach trough a model
composition process structured into three phases: a pre-composition phase, a composition
phase, and a post-composition phase which is semi-automatic (guided by the user). The
composition process is represented by an activity flow depicted by Figure 6.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

Figure 6. Composition Process in VUML

Pre-Composition phase

The main objective of this phase is to harmonize the partial models in order to eliminate
possible conflicts (naming, structural, etc) resulting from separate modeling. This is done
amongst other things by the resolution of conflicts by determining the inconsistencies and
the similarities between the elements of viewpoint design models. This phase copes with
conflicts such as polysemy (same name and different meanings), synonymy (same
meaning and different names), and structural inconsistencies (in particular generalization
versus association relationships). In the latter case, it is necessary to apply heuristics that
may be based on patterns, or to require the intervention of the designer who controls the
composition process. Besides some of the conflicts identified here may be also due to the
fact that the various actors of the system may have contradictory objectives. This
particular problem, frequently encountered in requirement engineering, is out of the scope
of this paper.

Composition phase

We agree with authors [Fleurey07] [Kleinner07] [Kolovos06] who argue that automating
model composition includes two different tasks that should be carried out trough two

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 97

distinguished operators: a correspondence operator and a merging operator. This
separation facilitates the maintainability of the composition process since the
correspondence operation is more stable than the merging operation that may obey to
modifiable strategies. Therefore we propose a composition operation which is made of
two steps: Correspondence step and Merging step (Figure 7).

The Correspondence step consists of identifying links between models to be
composed (to make things easy we consider only two source models here). It is governed
by correspondence rules that implement comparison strategies between model elements.
Comparison of elements is based on internal properties defined at the metamodel level.
For example, a subset of internal properties of an UML class may be represented by
{name, isAbstract, ownedAttribute, ownedOperation} which are properties of the
metaclass Class in the UML metamodel [OMG03a]. A correspondence rule, applied to
two elements describing the same concept in different source models, creates a
correspondence relationship between those elements. This relationship is then stored in a
correspondence model.

The Merging step depends on the target metamodel. In our application context, this
merging step aims to produce a VUML model whose elements are stereotyped according
to the VUML profile. In fact, VUML elements are created by applying both merging and
translation rules. The merging strategy mainly depends on link type. Merging rules are
applied to elements that are related to each other through correspondence relationships.
Elements which have no correspondent in the opposite model are simply translated
(copied) into the VUML model with respect to translation rules.

Figure 7. Transformation chain of VUML composition

Post-Composition phase

After the composition phase, an analysis step is performed (see Figure 6) in order to
discover possible composition errors. The composed VUML model is checked against
desired properties or by verifying its compliance with well-formed rules. When a rule is
violated, an error is detected and a problem element is created and stored into a problem
model which conforms to a problem metamodel [Bézivin05]. The problem model can be
analyzed and then imported into a model refactoring tool dedicated to the resolution of
such problems. Well-formed rules defined at the metamodel level to express the static
semantics of VUML — in particular those relating to the constructions of the language —
are used to develop a property-based proof technique as described in [Cousot90]. OMG

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

recommends the use of OCL language [OMG03b] to express such rules. They enable to
add structural properties that could not be captured during the definition of the
metamodel. For example one can use the following OCL constraint to impose the fact
that a direct descendant of a view class must be a concrete or an abstract view.

context view inv :
 self.specialization->forAll(g:Generalization|
 g.child.isStereotyped("view") or
 g.child.isStereotyped("abstractView"))

Figure 8 describes the principle of the transformation used to check the composed VUML
model. It produces a diagnosis model giving details on the identified errors.

Figure 8. Check of a VUML model with an ATL transformation

This technique is based on an extension of OCL allowing to produce detailed information
in an output model instead of a simple Boolean. It is based on ATL to implement the
checking rules. An ATL rule is defined for each constraint to check. The context of the
OCL constraint defines the type of the pattern source of the rule, while the guard
condition is the negation of the boolean expression associated to the constraint. Finally,
the type of the target pattern characterizes an error (Problem). This type, defined in the
diagnosis metamodel [Bézivin05], gives precise details on the error (severity,
localization, description, etc).

4 A GENERIC FRAMEWORK FOR MODEL COMPOSITION

A model composition framework should provide means to support common features for
building a composition operator. The survey presented in [Bézivin06] summarizes a core
set of minimal requirements for such a framework. We propose to define a generic
composition operator through three components: relationships, transformations and
strategies. The relationships component allows to define and to capture relationships
between model elements. The transformations component provides means to carry out
transformations between involved models. The strategies component provides means to
define transformation strategies. Strategies specify the semantics of transformation rules.
To describe these three types of component, we have defined three metamodels: the
correspondence metamodel, the transformation rules metamodel and the transformation
strategies metamodel.

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 99

Generic correspondence metamodel

The correspondence metamodel defines the different kinds of relationships between
model elements independently from any given application domain (Figure 9). We have
extended the core weaving metamodel proposed in [Del Fabro05] to support composition
requirements and to handle new types of relationship. In what follows, we present the key
elements of the correspondence metamodel.
• CorrespondenceRelationship: this metaclass defines the relationship between

elements of the source models. The definition of a new relationship is made through a
specialization of this metaclass; this allows the semantic definition of each
relationship.(e.g. equality, equivalence, dependency, etc)

• CorrespondenceRelationshipEnd: this metaclass represents the extremity of a
correspondence relationship.

• CorrespondingElementRef: this metaclass models the concepts of reference. It
contains an attribute name that represents the name of the referenced element, and an
attribute ref which acts as a persistent model-element identifier.

• ReferencePackage: this metaclass is a container for reference elements. An instance
of this metaclass contains all references of linked elements.

CorrespondenceElement

CorrespondenceModel

CorrespondenceRelationshipCorrespondencePackage

ReferencePackage

CorrespondenceRelationshipEnd

CorrespondenceElementRef

TotalCorrespondenceR PartialCorrespondenceR

+ownedRelation

+references

+ownedRef

1

*

1
correspondingElementType : string

+specific

+getElementByRef(In ref:string):Element

1

name : string

*

+child
*

+relations
*

+parent

ref : string
*

+element 1

1..*

+ends

+general

0..1

*

Figure 9. Generic correspondence metamodel.

The CorrespondenceRelationship metaclass must be specialized to create various types of
relations. It is a practical solution to establish a given semantics for each correspondence
relationship. For example, the PartialCorrespondenceR metaclass indicates that the
elements related by an instance of this relationship are two views which represent the
same concept, but differ by certain properties (for example: two classes with the same
name but having different attributes or operations). The TotalCorrespondenceR metaclass

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

defines a particular type of relation between elements which represent consistent views of
the same concept (i.e equality in the sens that two elements appear in the same way in
several models).

Transformation rules metamodel

The composition process is driven by transformation rules structured in three categories:
correspondence, merging and translation. This enables first to establish correspondences
between input models, second to merge these models into a global model. Elements that
have no corresponding element in the opposite model are transformed according to
translation rules. As transformation strategies depend on each specific domain, we do not
consider them in the generic part of the metamodel. The transformation rules metamodel
is a general description of transformation rules (Figure 10).

CompositionModule

TransformationRule

CorrespondenceRule MergingRule TranslationRule

Pattern

TransformationStrategy type : MetamodelElement
kind : DirectionKind

name : string
isAbstract : boolean
guard : OCLExpression

name : string

1

1..*

1 0..1
+extends

*

0..1
+calls

*

+pattern

+context

+ownedRule

+strategy 1 2..*

Figure 10. Transformation rules metamodel

Each transformation rule is composed of at least two patterns used to detect elements in
source and target models. Pattern types come from the elements of the metamodels
involved in the transformation. If we consider a correspondence rule for example, the
type of the input pattern comes from the source metamodel, whereas the type of the
output pattern comes from the correspondence metamodel.
In Section 5 below we will show how this metamodel allows to define (when
instantiated) specific transformation rules to compose models in a particular domain.

Transformation strategies metamodel

So far, we have introduced the structural aspects of our composition operator. However,
these structural aspects are not sufficient to provide a comprehensive definition of this
operator, as one must describe its behavior as well. We use transformation strategies to
specify the behavioral aspect of each transformation rule (Figure 11). Strategies are

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 101

defined by Kolovos et al. [Kolovos06] as pluggable algorithms that can be attached to
transformation rules to implement a recursive and reusable functionality, they may be
inferred from the metamodel structure. Using strategies has the advantage of minimizing
the manual intervention of the developer.

Correspondence strategies define comparison logic between model elements. We
distinguish three types of correspondence strategies. The first type is based on signatures
as described in [Reddy06]. The signature of an element is described by a set of internal
properties (name, type, cardinality, etc) defined in the metamodel. For elements of type
Class, the strategy depends on values of the meta-properties of the metaclass. For
example, if one considers the couple (name, isAbstract), then comparing two classes
defined in two different models is reduced to compare the values of these two properties.
Correspondence strategies may be also based on structural relationships between
elements such as inheritance or containment; in this case, the correspondence strategy
depends on information about the neighbors of each element in the models.

Unlike correspondence strategies, merging strategies depend on the type and
semantics associated with correspondence relationships that link source elements, and on
the structure and semantics of the elements to create in the target metamodel.
UnionMergingStrategy is used when different source models contain classes with the
same name but with different properties. A simple union of the initial properties gives the
properties of the resulting class. TotalMergingStrategy is used for merging two classes,
which are in conformity. PartialMergingStrategy is used to create two or more elements
in the target model.

TransformationStrategy

CorrespondenceStrategy MergingStrategy TranslationStrategy

SignatureTypeStrategy

InheritanceStrategyContainmentStrategy

NameCorrespondenceStrategy

InternalProperty

UnionStrategy

TotalMergingStrategy

PartialMergingStrategy

OverrideStrategy

ConformeStrategy

MetaModelElement

RelationshipTypeStrategy

+properties

name : string
type : Type

1

1..*

+definedfor

* 1..*

Figure 11 Transformation strategies metamodel

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

5 SPECIALIZATION PROCESS OF THE GENERIC FRAMEWORK

This section describes how the generic composition framework can be specialized to
create a particular composition operator for a specific modeling language. This
specialization can be divided into four steps (Figure 12): (1) Specialization of the
Correspondence metamodel, (2) Definition of a strategy model, (3) Definition of a
transformation rules model, (4) Generation of composition-oriented transformations.

Specialize correspondence metamodel

Define strategies model

Define rules model

Generate transformations model

Generic Composition Framework:

Specific correspondence metamodel:

Strategies model:

Source metamodels:

Target metamodel:

Transformation rules model:

Transformations-oriented composition:

Figure 12. Specialization process of the generic framework

Correspondence metamodel specialization

The first step of the specialization process consists of extending the generic
correspondence metamodel for a specific application domain (Figure 13). It is necessary
to establish different kinds of relationships between metamodel elements according to
their semantics, this task is not trivial, because it requires a depth knowledge of the
underlying application domain [DelFabro 06]. For example, if we consider UML2 as a
source language, to express the similarity between class elements, we define a new type
of relationship called ClassSimilarityRelationship. The set of specific correspondence
relationships constitutes the specific correspondence metamodel.

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 103

Figure 13. Specialization of the generic correspondence metamodel

Strategies model definition

In this step, the goal is to define specific strategies for the composition of elements.
Correspondence strategies specify comparison semantics between model elements; they
specify the semantics of specific correspondence rules. Correspondence strategies are
designed by a model conform to the transformation strategies metamodel (Figure 11). As
for correspondence rules, specific merging and translation rules must be augmented with
suitable transformation strategies. Merging strategies define how elements being related
by a specific correspondence relationship are merged to create elements of the target
metamodel. Translation strategies specify how elements, which have no corresponding
elements in the opposite model, are transformed into the target model. By default, such
elements are deeply copied into the target model. This default translation strategy may be
overridden in order to cover specific cases.

Transformation rules model definition

This step aims to define a specific transformation rules model conform to the
transformation rules metamodel (Figure 10). First, the CorrespondenceRule metaclass is
instantiated. This instance has a name, it can be specified as concrete or abstract, and it is
specified by a set of source and target patterns. The source patterns types are instantiated
by elements of the source metamodels, and the target pattern type is instantiated by a
specific correspondence relationship. Then we complete the specification of this rule by
specifying an appropriate correspondence strategy. After, we specify a set of merging and
translation rules according to the target metamodel. The MergingRule metaclass defined
in the transformation rules metamodel is instantiated by specifying its source and target
patterns. In this case, the source pattern has as type a specific correspondence
relationship. Finally, for the metaclass TranslationRule, one has to define elements of
source and target metamodels associated to the patterns.

The specific transformation model is then enriched with the composition strategies
model defined in the previous step. This allows the integration of the composition
capabilities specified by these strategies. The result is a specific transformation rules

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

model. This model can be seen as a high-level specification of transformations rules, and
can be used to automatically generate executable transformations for composition.

Generation of composition-oriented transformations

The last step of the specialization process consists of producing executable
transformations implementing the composition operation. These executable
transformations are obtained by transforming the specific transformation rules model.
This task is carried out by a particular type of transformation called Higher-Order
Transformation (HOT) [Del Fabro06] because it generates a transformation. A HOT
transformation takes as input a transformation model and produces as output a
transformation model which is conform to a transformation language metamodel (Figure
14). More precisely, elements of the composition model are transformed into specific
composition code patterns. For example, if a merging rule uses the
TotalMergingStrategy, the code pattern produced must implement the functionality of
combining source elements into a single output element.

Figure 14. Generation of executable transformations

6 EXAMPLE

To illustrate our approach, we describe in this section how the generic composition
framework can be applied to compose models that conform to the UML metamodel. Let
us consider the SMFMS example presented in the case study (section 2). In this example,
we merge two class diagrams developed independently according to two viewpoints. The
result of the composition is a VUML model conform to the VUML profile (Figure 15).

Figure 15. Composition scenario for the SMFMS application

Specific

transformation rules
 model (STRM)

Executable

Transformations-
oriented composition

STRM2ATL
 (high-order

transformation)

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 105

Correspondence relationships specification

To define specific correspondence relationships for UML class diagram elements, we
have specialized the generic correspondence metamodel according to the process
discussed above. For example, for elements Class we have identified two correspondence
relationships : ClassConformityRelationship and ClassSimilarityRelationship. We have
also defined correspondence relationships for other elements such as attributes,
operations, etc.

Transformation strategies specification

To define the composition of UML models producing a VUML model, it is firstly
necessary to define correspondence strategies. These strategies specify the semantics of
correspondences rules. A default correspondence strategy applied on elements whose
metaclass is defined as a sub-class of NamedElement is based on the property name. This
operation is strongly dependent on the modeling language. To this aim, for each
application scenario, a specific correspondence strategies must be defined.

In our application, we have defined two correspondence strategies between elements
Class : conformity and similarity. Conformity holds when two classes appear in two
viewpoint models with the same name and the same properties (attributes, operations,
associations) ; they are semantically equivalent (represent two views of the same concept
in VUML terminology). Similarity holds when two classes appear with the same name
but are not conform.

In the same way, merging strategies define the semantics of merging elements
according to the correspondence relationship which relate them. For example, we define
the TotalMergingStrategy as a merging strategy of two classes related by a
ClassConformityRelationship. It describes how to merge source classes in order to create
one target class. Whereas the merging strategy of similar classes specifies the creation of
a multiview class (base and views).

Transformation rules specification

We have defined a set of transformation rules to compose UML class diagrams into a
VUML class model. The transformation rules are reused from the generic framework.
According to the specialization process detailed previously, we distinguish the
correspondence rules that apply to elements of the source models and create specific
relationships, from rules for merging corresponding elements or translating elements.
Indeed, all the rules from the first category are derived according to UML metamodel
elements. Transformation rules of the second category are derived from both source and
target metamodels ; they specialize the generic framework to define a specific merging
operator for structural UML models. Figure 16 shows a hierarchy of correspondence rules
defined for this example. Some rules are defined as sub-rules of the
ModelElementCorrespondenceRule. This permits to factorize a part of the common code,
providing more reusability and flexibility for the correspondence operator.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

Figure 16. Correspondence rules for UML class diagram elements

Implementation in ATL

To implement and validate our approach, we needed a rule-based transformation
language. We wanted to focus on declarative approaches allowing defining
transformations at a high level of abstraction without worrying about the final execution
and the rules enforcement. Management of rules enforcement may be delegated to a rules
engine, but it is often necessary to help this engine by introducing imperative code
depending on the complexity of the transformation. For this aim, we chose ATL
[Jouault05] which is a hybrid transformation language allowing to combine both
declarative and imperative approaches. ATL is considered as a standard component of
Eclipse for model transformation and is now integrated into the M2M project [Eclipse07].
Figure 17 illustrates an example in ATL of transformation rules used for the VUML
composition. Note that composition has been implemented with two transformation
modules (Lines 1-2) and (Lines 10-12) : the first module implements correspondence
rules and generates a correspondence model, whereas the second implements both
merging and translation rules and produces the VUML target model. Due to space
constraints, only a subset of rules is discussed below.

1 module UML2Corresp;
2 create MC : MMC from MPV1 : UML2, MPV2 : UML2;
3rule Class2PartialCorrespondence extends
4 ModelElementCorrespondenceRule{
5 from e1 : UML2!Class, e2 : UML2!Class(e1.name = e2.name)
6 to r : MMC! PartialCorrespondenceR (
7 correspondingElementType <-'Class'
8)
9 }

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 107

10 module CorrespUML2VUML;
11 create VUML : UML2 from MPV1 : UML2, MPV2 : UML2, PRO :
12 UML2, MC : MMC;
13rule PartialCorrespondence2Base{-- specefic to VUML
14 from r : MMC! PartialCorrespondenceR
15 to c : UML2!Class(
16 name <- thisModule.getRefElement(r).name,
17 visibility<-
18 thisModule.getRefElement(r).getElement.visibility,
19 isAbstract<-
20 thisModule.getRefElement(r).getElement.isAbstract
21)
22 do{
23 thisModule.VUMLModel.packagedElement<-c;
24 c.applyStereotype(thisModule.base);
25 for (iterator in r.getListeAttrEquality){
26 c.ownedAttribute <-
27 thisModule.AttributeEquality2Attribute(iterator);
28 }
29 for (iterator in r.getListeOpEquivalence){
30 c.ownedOperation <-
31 thisModule.OperationEquivalence2Operation(iterator);
32 }
33 if (not r.general.oclIsUndefined()){
34 c.generalization<-
35 thisModule.resolveTemp(r.general,'g');
36 }
37 }}
38 rule Class2Class{
39 from c1: UML2!Class(c1.isNotMultiviewClass)
40 to c2: UML2!Class(
41 name <- c1.name,
42 isAbstract <- c1.isAbstract,
43 visibility <- c1.visibility,
44 ownedAttribute<-c1.ownedAttribute,
45 ownedOperation<-c1.ownedOperation
46)}

Figure 17. UML2VUML transformation in ATL.

The rule Class2PartialCorrespondence (Lines 3-9) states that two class elements will be
linked by a PartialCorrespondenceRelationship if they are defined in two different
models with the same name. This rule is declared as a specialization (keyword extend) of
ModelElementCorrespondenceRule which is defined as an abstract rule. The inheritance
mechanism allows to factorize common code among several transformation rules.

The rule PartialCorrespondence2Base (Lines 13-37) specifies that for each defined
PartialCorrespondenceRelationship wich relates two classes, an UML2 element Class is
created in the composed model. This rule implements the TotalMergingStrategy. Finally,
the rule Class2Class (Lines 38-46) implements the default translation strategy which

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

expresses that a class having no corresponding class in the opposite is translated (copied)
as it is in the target model.

7 RELATED WORK

Many researchers have developed model composition approaches in different application
domains: requirements engineering [Nuseibeh03] [Chitchyan07], design by aspects
[Baniassad04] [France04], development by subjects [Clarke02] [Ossher96], software
merging [Mens02], composition of concerns in software architectures [Barais05]. We
focus in this section on works that are close to ours, including two important approaches
in the field of model composition: EML [Kolovos06] and AMW [Del Fabro05].

In VUML, the first phase of requirements analysis produces a system model
according to several actors’ viewpoint. Our view-based approach is very close to that of
requirements engineering. One of the most fundamental contributions of viewpoints in
requirements engineering is the possibility to take several (possibly contradictory)
concerns into account. Finkelstein [Fienkelstein90], Nuseibeh, [Nuseibeh03], Easterbrook
[Easterbrook95] or Jakson [Jackson01] consider that viewpoints can be expressed in
different formalisms and then be linked together in order to obtain a global coherent
system. For our part, we adopted the principle that UML can be a unifying formalism to
model the various viewpoints; we propose a UML profile to describe a shared composed
model rather than connected models. VUML is a fine-grained modeling language that
allows to integrate viewpoints at the very core of the system model (class diagram level).

The Atlas Model Weaver [Del Fabro05] is a model composition framework that uses
model weaving and transformation to define and execute the composition operation. The
tool support is available as an Eclipse plug-in. The composition operation is divided into
two phases. The first phase builds a weaving model that captures links between input
models according to a weaving metamodel. The second phase uses the weaving model to
generate a transformation to produce the composed model. This technique is generic and
flexible thanks to the extension mechanism of the weaving metamodel; however, manual
definition of links between model elements is a tedious work.

The Epsilon Merging Language (EML) proposed by [Kolovos06] is a rule based
language for merging models. EML belongs to the Epsilon platform which is a model
driven framework for developing integrated languages for model management tasks such
as comparison, transformation, validation, etc. Close to our work, this approach proposes
to merge models trough three categories of rules: MatchRule, MergeRule and
TransformRule. Our correspondence rules produce a set of links between model
elements, whereas in the EML approach this information is stored at run time in a
temporary memory called ‘MatchTrace’. We consider that it is more convenient to
separate the comparison and the merging steps in an objective of reuse. So we generate a
correspondence model based on comparisons which is exploited during the merging step.
This correspondence model may be used for other aims such as management of
dependencies between views in order to ensure the system consistency.

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 109

The composition of design models in aspect oriented approaches has also been much
studied. In [Reddy06], the proposed technique allows to manage the composition of a
primary model with transversal aspects (persistency, security, etc.). This approach uses an
algorithm of composition and a set of elementary actions called directives. These
directives are applied either on the elements of the models — for instance
creation/deletion, modification — or on aspect models by specifying for example the
order in which two aspect models must be composed. A metamodel of composition
extends that of UML by adding a specification of the composition’s behavior and
includes meta-operations implementing a signature-based comparison between elements.
The use of these directives is a way to solve the conflicts, which may appear during the
composition phase. It allows to partially automate an activity which was often manually
done by the designer. However, this approach is not compatible with a system based on
declarative rules such as ours.

The work presented in [Baudry05] discusses some similarities between model
composition and model transformation. Comparison criteria between approaches are
based on the degree of generality, ease of use and ease of implementation. The authors
explore the possibility of composing a set of models based on crosscutting concerns
(aspects), with a primary base model. By varying the level of knowledge about aspect
models, signatures and bindings, a number of composition-oriented transformations have
been identified. In the continuity of this work, the model composition approach presented
in [Fleurey07] offers a generic framework that is independent from any modeling
language. The authors propose a metamodel describing structural and behavioral feature
of a composition operator. This metamodel supports the composition directives concept
introduced in [Reddy06]. These directives are specified in a domain-independent
language and implemented in Kermeta [Muller05]. This approach can be said imperative
because it describes the operation of composition in an algorithmic way. So it is not
easily compatible with our approach which is mainly based on declarative rules that
specify what should be transformed rather than how it should be done.

8 DISCUSSION

The work presented in this paper has naturally some limits and raises certain questions
that are discussed below.

Inconsistencies and conflicts Resolution. In our view-based system analysis,
conflicts among viewpoint models may appear due to separate designs. We have
identified such inconsistencies that may be syntactic (e.g. homonymy conflicts, structural
conflicts) or semantic (e.g. synonymy conflicts). Management of these conflicts is not
easy at the composition stage and hence is out of the scope of this paper. As future work,
an interesting track search would consist in using ontologies (see
[Dhamanka04][Aumueller05]) to build a shared repository and thus to solve some
semantic conflicts according to reconciling policies.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

Taking into account semantic aspects in source models. So far, source model
elements comparison is based on syntactic properties defined of the source metamodel.
For example, two operations having the same signature (name, parameters and return
type) are considered as equivalent that is obviously not always the case. To solve this
problem one may either perform a semi-automatic reconciliation step among designers,
or reinforce the semantics (especially behavioral aspects) associated to the source
metamodel so as to elaborate finer comparison strategies. We are working on both tracks.

Rules implementation language. To validate our work, we have chosen ATL so as
to gain advantage of a semi-declarative approach. This choice seems accurate for a case
study but may present some scalability limits with large models and many rules. Our goal
is to experiment imperative transformation-based languages such as Kermeta.

Exploitation of the composed VUML model. The VUML model resulting from the
composition process may be used in several ways. A classical way consists in producing
object code via a code generator. We have developed a generic code generator and a first
instance of this generator targeting Java [Nassar09]. Other languages such as C++ or
Eiffel could be supported. Besides, if one needs to extend a given design in VUML so as
to integrate a new viewpoint, the VUML model may be composed in turn with a new
viewpoint model produced separately. To do that, one may apply our approach by
replacing the source UML metamodel by the VUML metamodel. Our MDE-based
approach is well adapted to such evolution but we have now to implement it.

9 CONCLUSION AND FUTURE WORKS

In this paper, we have presented a Model Driven based approach for model composition.
This approach combines the use of metamodeling and model transformation techniques.
The originality of this paper is to propose a composition process made of two sub-
processes: a generic process for the definition of a model composition operator, and a
specialization process to apply this generic operator to specific modeling domains.

The core composition operator is generic since it allows to design composition
requirements at a high level of abstraction. We have defined a core metamodel that is
composed of three separate metamodels: (1) a relationship metamodel that contains
abstract constructs defining the correspondences between model elements, (2) a rules
metamodel that contains generic transformation rules used for the implementation of the
composition operator, and (3) a strategy metamodel that defines common transformation
strategies. To validate our approach, we have implemented transformation rules in ATL
and we are working on the development of a model composition environment
implemented as an Eclipse plug-in.

Some of our future work is already discussed in Section 8 above. We also intend to
automate the weaving activity of the specialization process. To do that, we will apply the
HOT technique to generate the executable transformation rules in a specific
transformation language. Therefore, the manual programming step of transformation will
be dramatically reduced. Another interesting issue is to compose behavioral diagrams of

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 111

UML (mainly state charts or sequence diagrams). This work is the subject of a PHD
thesis in progress in our team. First results on this topic are described in [Ober08]

ACKNOWLEDGMENTS

This work was supported by the COMPUS Project MA/06/152, VOLUBILIS 2006.

REFERENCES

[Nassar09] Nassar M., Anwar, A., Ebersold, S., El Asri, B., Coulette, B., Kriouile, A.
Code Generation in VUML profile: a Model Driven Approach. IEEE/ACS
AICCSA 2009. Rabat, May 10-13, 2009. IEEE Computer Society Press.

[Anwar08a] Anwar, A., Nassar, M., Ebersold, S., Coulette, B., Kriouile, A. A QVT-
Based Approach For Model Composition: Application to the VUML Profile.
ICEIS 2008, pp 360-367. Spain, Juin 2008.

[Anwar08b] Anwar, A.., Ebersold, S., Nassar, M., Coulette, B., Kriouile, A.. Towards a
generic approach for model composition. ICSEA 2008, IEEE Computer
Society press, pp 83-90. Malte, 2008.

[Aumueller05] Aumueller, D., Do, H H, Massmann, S, Rahm, E. Schema and ontology
matching with COMA++. SIGMOD 2005. pp 906-908.

[Baniassad04] Baniassad, E., Clarke, S. Theme: An approach for aspect-oriented analysis
and design. ICSE’04. (2004), pp 158 -167.

[Batini86] Batini, C., Lenzerini, M. and Navathe, S. B. A Comparative Analysis of
Methodologies for Database schema Integration. ACM Computing Surveys,
Vol. 18, No. 4, Dec. 1986.

[Baudry05] Baudry, B., Fleurey, F., France, R., Reddy, R., Exploring Relationship
between Model Composition and Model transformation. Aspect Oriented
Modeling Workshop. MODELS'05. Montego Bay, Jamaica, October 2005

[Bézivin06] Bézivin J., Bouzitouna S., Del Fabro M.D., Gervais M., Jouault F., Kolovos
D., Kurtev I., Paige R. A Canonical Scheme for Model Composition.
ECMDA-FA, LNCS 4066, Springer-Verlag, 2006, p. 346-360

[Bézivin05] Bézivin J., Jouault F. Using ATL for Checking Models. Intl Workshop on
Graph and Model Transformation (GraMoT), Tallinn, Estonia. 2005.

[Chitchyan07] Chitchyan R., Rashid A., Rayson P., Waters R. Semantics-based
Composition for Aspect-Oriented Requirements Engineering. AOSD 07, pp
36- 48. March 12-16, 2007, Vancouver Canada.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

[Clarke02] Clarke, S.: Extending Standard UML with Model Composition Semantics.
Science of Computer Programming, 44 (2002) 71.100

[Cousot90] Cousot P. Methods and Logics for Proving Programs. Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics
(B), p. 841-994, 1990.

[Dhamanka04] Dhamanka, R, Lee Y, Doan, A, Halevy, A, Domingos P. iMAP:
Discovering Complex Semantic Matches between Database Schemas.
SIGMOD 2004, pp 383-394.

[Del Fabro05] Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G. AMW:
a generic model weaver. IDM’05. Paris, France, juin 2005, p. 105-114.

[Del Fabro06] Didonet Del Fabro, M, Bézivin, J, and Valduriez, P : Model-driven Tool
Interoperability: an Application in Bug Tracking. In: ODBASE'06 (OTM
Federated Conferences). Montpellier, France. 2006.

[Easterbrook95] Easterbrook, S. M., Nuseibeh, B. Managing inconsistencies in an
evolving specification. International symposium on Requirements
Engineering, pp 48-55, York, England. IEEE Computer Society, March 1995.

[Eclipse07] Eclipse/M2M Project Web Page. http://www.eclipse.org/m2m/, 2007.

[Finkelstein90] Finkelstein, A., Kramer, J., Goedicke, M. Viewpoint Oriented Software
Development. ICSSEA. Toulouse, France, pages 337-351, 1990.

[Fleurey07] Fleurey F., Baudrey B., France R., Ghosh S. A Generic Approach for
Automatic Model Composition. Aspect Oriented Modeling Workshop,
MODELS 2007, Nashville USA 2007.

[France04] France, R.B., Ray, I., Georg, G., Ghosh, S. An aspect-oriented approach to
design modeling. IEE Proceedings - Software, Special Issue on Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design
151 (2004) 173.185.

[Jackson01] Jackson, M. Problem Frames. Addison-Wesley, 2001.

[Jouault05] Jouault F., Kurtev I. Transforming Models with ATL. Model
Transformations in Practice Workshop, MODELS 2005, Montego Bay,
Jamaica 2005.

[Kiczales97] Kiczales, G., Lampng, J., Mendhekar, A., Maeda, C., Videira, L.C. Aspect-
Oriented Programming. ECOOP’97. Springer-Verlag LNCS 1241. Finland,
1997.

[Kleinner07] Kleinner S. F. Oliveira and Toacy Cavalcante de Oliveira. A Guidance for
Model Composition. ICSEA 2007. Cap Esterel, France. 2007.

[Kolovos06] Kolovos, DS., Paige, RF., Polack, FAC. Merging Models with the Epsilon
Merging Language (EML). MODELS 2006, Genova, Italy, October, 2006.

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 113

[Kruchten99] Kruchten Philippe, Rational Unified Process - An Introduction, Addison-
Wesley, 1999.

[Mens02] Mens, T. A state-of-the-art survey on software merging. Transactions on
Software Engineering, vol. 28, no 5, May 2002.

[Muller05] Muller P.-A, Fleurey, F. and Jézéquel, J.M. Weaving executability into
object-oriented meta-languages. MODELS'05, p. 264 - 278. Montego Bay,
Jamaica, October 2005.

[Nassar03] Nassar, M., Coulette, B., Crégut, X., Ebersold, S and Kriouile., A. Towards a
View based Unified Modeling Language. ICEIS’03, Angers, France, 2003.

[Nuseibeh03] Nuseibeh, B., Finkelstein A., and Kramer, J. ViewPoints: meaningful
relationships are difficult. ICSE 2003, Portland, Oregon, 2003.

[Ober08] Ober, I., Coulette, B., Lakhrissi, Y. Behavioral Modelling and Composition of
Object Slices Using Event Observation. MODELS 2008, Toulouse,
28/09/2008-03/10/2008, Springer, LNCS 5301, p. 219-233, september 2008.

[OMG02] OMG 2002, OMG/MOF Meta Object Facility (MOF) 1.4. Final Adopted
Specification Document. Formal/02-04-03, 2002.

[OMG03a] OMG 2003, UML 2.0 Superstructure Final Adopted specification, Document-
ptc/03-08-02.

[OMG03b] OMG 2003, UML 2 OCL Final Adopted Specification, 2003.
http://www.omg.org/docs/ptc/03-10-14.pdf.

[Ossher96] Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V. Specifying
subject-oriented composition. Theory and Practice of Object Systems, Wiley
& Sons 2 (1996).

[Reddy06] Reddy Y. R., Ghosh S., France R. B., Straw G., Bieman J. M., McEachen N.,
Song E., Georg G. Directives for Composing Aspect-Oriented Design Class
Models. Transactions of Aspect-Oriented Software Development, Vol.1, No.
1, LNCS 3880, p75-105, 2006, Springer.

[Sabetzadeh05] Sabetzadeh M and S. Easterbrook. An Algebraic Framework for Merging
Incomplete and Inconsistent Views. 13th IEEE International Requirements
Engineering Conference, September 2005.

[Soley00] Soley et al. MDA Model Driven Architecture. Richard Soley and the OMG
Staff Strategy Group, Object Management Group White Paper, Draft 3.2 –
Nov. 2000.

A RULE-DRIVEN APPROACH FOR COMPOSING VIEWPOINT-ORIENTED MODELS

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 2

About the authors
Adil Anwar works as a contractual teacher in computer science at the
University of Toulouse, and as a member of the MACAO team of IRIT
laboratory. In 2009, he received a Ph.D degree in Computer Science at
the University of Toulouse. He works on model-driven engineering,
mainly exploring the relationship between model composition and
model transformation. He can be reached at anwar@univ-tlse2.fr

Sophie Ebersold works as a lecturer at the University of Toulouse, and
as a member of the MACAO team of IRIT laboratory. Her research
fields of interest are mainly integration of viewpoints in Object-
Oriented Analysis/Design and more generally MDE. She has directed
one PHD thesis in the context of an international collaboration with
Morocco, and several master thesis. She can be reached at

ebersold@univ-tlse2.fr

Bernard Coulette works as a full professor at the University of
Toulouse, and as a member of the MACAO team of IRIT laboratory.
His research fields of interest are mainly integration of viewpoints in
Object-Oriented Analysis/Design (VUML profile), modeling and
enactment of Model Driven Processes. He has directed several PHD
thesis in the context of international collaborations (Vietnam, Morocco).

He can be reached at coulette@univ-tlse2.fr

Mahmoud Nassar is Professor and Head of the Software Engineering
Department of ENSIAS Engineering school of Rabat, and member of
SI2M laboratory. He received his Ph.D in Computer Science in 2005
from the INPT Institute of Toulouse. His research interests are
integration of viewpoints in Object-Oriented Analysis/Design (VUML
profile), Service-Oriented Computing, Model-Driven Engineering. He

can be reached at nassar@ensias.ma

Abdelaziz Kriouile works as a full Professor in the Software
Engineering Department of ENSIAS Engineering school of Rabat, and
member of SI2M laboratory. His research interests include integration
of viewpoints in Object-Oriented Analysis/Design, Service-Oriented
Computing, and speech recognition. He has directed several Ph.D thesis
in the context of French-Moroccan collaborations. He can be reached at

kriouile@ensias.ma

