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Abstract 
Model composition is a crucial activity in Model Driven Engineering (MDE). It is 
particularly useful when adopting a multi-modeling approach to analyze and design 
software systems. In previous works, we defined a view-based UML profile called 
VUML. In this paper, we describe a composition process and a MDE-based framework, 
which contains a generic composition part, and a specific part dedicated to a given 
modeling domain. To illustrate our approach, we apply it to the composition (merging) of 
two UML class diagrams into one VUML class diagram. The composition operator is 
implemented as a ruled-based transformation in ATL. 

1 INTRODUCTION 

Several approaches adopted by the software engineering community rely on the principle 
of multi-modeling, which allows to separate concerns and to model a system as a set of 
less complex sub-models. This principle has been introduced in several programming 
approaches like subject-oriented programming [Ossher96] or aspect-oriented 
programming [Kiczales97]. At the model level, comparable approaches use concepts 
such as Views/Viewpoints [Finkelstein90], Subject-oriented development [Clarke 02], 
and Aspect-oriented Modeling [Baniassad04] [France04]. With all these approaches, the 
key issue is the composition of (sub-) models. Composition consists of combining one or 
several source models to create one or several target models. In Aspect Oriented Software 
Development, the composition is called weaving [Kiczales97] [France04]. In the field of 
Databases, the composition of views can be seen as an integration of different views of 
the same database or of heterogeneous and possibly distributed database schemas 
[Batini86]. In Requirement Engineering, viewpoints are used to describe system 
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requirements as a collection of modules that are merged to get a global view on the 
system [Sabetzadeh05] [Finkelstein90]. 

Our work in this area [Nassar03] led to the definition of the VUML profile (View 
based Unified Modeling Language). VUML proposes a formalism and a methodology to 
support view-based modeling from analysis to coding. VUML enables to model a 
software system according to each actor’s viewpoint. First, actors of the system are 
identified as in UML. Each actor is associated with a unique viewpoint. Then, for each 
viewpoint, we describe, in an iterative way, use cases and scenarios as well as related 
classes. The result is a set of class diagrams (called also viewpoint models) in the UML 
formalism. Finally, a VUML model is produced by composing the partial models.  

Since the OMG’s MDA initiative [Soley00], Model Driven Engineering (MDE) has 
been taking an increasing place in the software development process. It consists of 
centering activities on the paradigm of model considered as a first class entity 
[Bézivin06]. The main interest of this approach is to describe models at different 
abstraction levels in order to facilitate their reuse during the development process. To 
face the composition issue, MDE appears to be an elegant solution since one can consider 
some steps of the composition process as transformations. For these reasons, we have 
adopted the MDE approach and especially the transformation paradigm to partially 
automate the model composition in VUML (see [Anwar08a] [Anwar08b] for more 
details). More precisely, we define the composition of static UML models as a set of 
transformation rules classified as correspondence, merging and translation rules. These 
rules allow first to establish correspondences between input models, and second to merge 
viewpoint models into a global VUML model shared by all the actors. 

The main contribution of this paper regarding our previous work (cf. [Anwar08b]) is 
the focus on the reusability of the composition process. For this purpose, we propose a 
two level composition approach: a generic level independent from any modeling 
language, and a specific level that depends on a given modeling domain. The generic 
level is defined as a generic composition framework. This framework is independent 
from any specific transformation language and provides means to express the key 
features necessary to compose models automatically. The framework comprises a generic 
relationship metamodel, a generic transformation rules metamodel and a transformation 
strategies metamodel. For a given modeling language (e.g. source models conform to 
UML and target model conform to VUML), we specialize the generic  framework by (i) 
specializing correspondence relationships, (ii) defining transformation strategies (iii) and 
defining transformation rules so as to generate a set of executable composition-oriented 
transformations. 

The rest of this paper is organized as follows: Section 2 presents the context and the 
motivation of our work by introducing the VUML approach and a case study. Section 3 
describes the composition process according to a rule driven approach. Section 4 is 
devoted to the description of the generic composition framework. In section 5 we show 
how the generic framework can be specialized for a given modeling language, and in 
Section 6, we apply this specialization process to compose UML models (class diagrams) 
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to VUML profile. Section 7 describes the main related works. In section 8, we discuss 
some issues raised by our work and we conclude this paper in Section 9. 

2 CONTEXT AND MOTIVATION 

In this section, we first give a brief overview of the VUML profile, and describe our 
view-based modeling approach in the context of MDE. To highlight and motivate our 
approach, we present a case study and show how UML class diagrams can be composed 
into one VUML class diagram. 

VUML profile  

The VUML profile was developed to meet the needs of complex systems analysis and 
design according to various viewpoints. In VUML, a viewpoint represents the perspective 
from which a given actor interacts with the system. In other words, a viewpoint expresses 
an actor’s requirements and rights. A view is the result of the application of a viewpoint 
on a given entity of the system.  The main new concept added by VUML to UML is the 
multiview class which is composed of a base class (shared by all viewpoints), and a set of 
view classes (extensions of the base class), each view class being specific for a given 
viewpoint. VUML’s semantics is described by a metamodel, a set of well-formed rules 
expressed in OCL [OMG03b], and a set of textual descriptions in natural language. On 
the methodological level, a process allows to analyze and design software systems with 
respect to viewpoints. A multi-target code generator was developed to produce object 
code from VUML class diagrams and was tested with Java as target language [Nassar09]. 

MDA-based design process 

In spite of the large amount of research works published [Bézivin06], there is no 
consensus related to the composition of models.  To deal with model composition issues, 
MDE has appeared as a promising solution since one can consider some steps of the 
composition as special cases of model transformations. For this reason, we decided to use 
MDE techniques and particularly the transformation concept to formalize and implement 
the composition of several viewpoints models into one VUML model. More precisely, 
our composition can be regarded as an exogenous transformation of the same level of 
abstraction (horizontal transformation) (PIM UML to PIM VUML) because it takes in the 
input a set of PIM models expressed in UML and generates in the output another PIM 
model which is conform to the VUML profile.  

VUML aims to reduce the design complexity of software systems trough 
decomposition according to the needs and access rights of the system actors. This 
horizontal separation of concerns completes the vertical approach of MDA by proposing 
a methodology that permits to develop models at each level of abstraction. However, to 
fully integrate a model driven approach, it is important to define and automate the 
transformations between the involved models. Figure 1 illustrates the VUML process 
with respect to MDA.  
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Identify actor's requirements (Viewpoints)

Define common domain glossary

Design system according to viewpoint 1 Design system according to viewpoint n

Compose design models

Transform VUML model to Object model

Generate object code

Requirements models in UML:

Design models in UML (viewpoint 1):
Design models in UML (viewpoint n):

VUML model:
Object implementation pattern:

Object model:

Object code:

 

Figure 1. MDA-based general VUML process 

The first phase of the design process with VUML is the identification of actors’ needs. 
The main goal is to create a requirements model (UML use case diagram). In addition, to 
reduce the possible inconsistencies of models carried out during the design phase, the 
requirements model is enriched with a glossary that specifies the basic concepts of the 
domain and serves as a reference for the designers of the system. 

The second phase of the process, decentralized, consists of developing separate PIM 
models, each one representing a viewpoint. The result of this phase is a set of UML 
models (class diagrams, state machines, sequence diagrams, etc.). These models are 
produced according to an iterative process like RUP [Kruchten99]. In this paper, we 
focus our study on structural models (class diagrams).  

The third phase of the process is composed of three steps. The first is a pre-
composition step that reveals and fixes the different conflicts on these models (names, 
structural, etc.). So far, this step is done manually by a designer (cf. discussion in Section 
8). The second step, automatic, aims at composing PIM models. This composition is an 
exogenous transformation because it takes as input n PIM models defined in UML and 
generates as output one model conform to the VUML profile. Once the model is 
generated, the third step consists of refining it. This refinement operation is represented 
(Figure 1) by a reflexive relation on the VUML model. During this step, possible 
dependencies between the view classes of a given multiview class must be identified and 
described in order to ensure the consistency of the system model. These dependencies are 
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modeled in VUML by dependency relationships which are stereotyped by 
“viewDependency”, and annotated by constraints expressed in OCL language. 

The last phase of the design process considers an execution platform. It operates to 
transform the VUML model into an implementation model according to the platform. 
This phase is carried out by applying an object code generation pattern as described in 
[Nassar09]. The technique applied combines the use of model transformation and design 
patterns (as described in [Jouault05]), and gives place the development of a model-to-
model transformer in ATL (VUML2JAVA). 

Case study  

To illustrate our approach, we consider a Shared Medical File Management System 
(SMFMS). To simplify, we limit our study to the following actors and activities: 
• Patients follow the treatments prescribed by doctors and undergo analysis in 

laboratories. They can also consult their medical files. 
• Doctors carry out diagnoses and consultations, write prescriptions, prescribe drugs, 

and consult medical reports. 
 

a) Requirements modeling of SMFMS 
The analysis phase of the system consists of capturing its functional requirements. This 
phase, centered on the actors, gives place to one use case diagram per viewpoint.  Figure 
2 below illustrates a subset of the use cases identified for the doctor’s viewpoint.   

 

Figure 2. Excerpt from the Use case Diagram (Doctor’s viewpoint) 

b) Viewpoint Modeling of SMFMS 
During this phase the system is modeled according to given viewpoints. Let us consider 
the doctor’s viewpoint and, for instance, the scenario “Record a treatment” of the use 
case "Prescribe treatment”. The purpose of this scenario, started by the doctor after a 
consultation, is to create a “ConsultationForm” which is used to record all the clinical 
acts concerning a given patient and the decisions taken by the doctor during the 
consultation. While proceeding in an incremental way with all use cases, the identified 
objects, as well as the methods associated appearing in the sequences diagrams, allow to 
build a class diagram related to the doctor’s viewpoint (Figure 3). We can notice that the 

<<include>> 

Prescribe surgical operation 

Prescribe Analysis 

Prescribe medicines 

Prescribe Treatment 

<<include>> 

Authenticate Consult doctor medical file Consult Nurse medical file 

Consult medical file 

Doctor 
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doctor has access to information on the analysis carried out in laboratories, as well as to 
the reports created by other health professionals (doctors, nurses, etc). 

 

Figure 3. Doctor’s viewpoint class diagram 

For the patient’s viewpoint, a similar process is performed and produces the class 
diagram of Figure 4. It shows that the patient has access to doctors’ prescriptions that 
concern him, and to the list of payment forms associated to his treatments, but he has 
direct access neither to the reports of analysis laboratories, nor to the reports written by 
nurses (that are reserved to doctors). 

 

Figure 4. Patient’s viewpoint Model 

c) VUML Modeling of SMFMS  
In this phase, viewpoint models are composed to produce a VUML model. Figure 5 
depicts the VUML model resulting from the composition of the two viewpoint models 
shown above (Figure 3 and Figure 4). Classes appearing in two viewpoint models, with 
the same name and with different properties (attributes, operations, associations, etc), are 
merged as a multiview class. Figure 5 shows two multiview classes: MedicalForm and 
Prescription. Properties of the class MedicalForm that are shared by the two considered 
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viewpoints have been put into the class stereotyped by “base”; properties that are specific 
of one viewpoint have been put into classes stereotyped by “view”. For reasons of 
readability, certain multiview classes are displayed in the iconified mode (stereotype 
“multiViewsClass”). To name the classes stereotyped by “view”, we have adopted the 
notation recommended by VUML (actor’s name + base class name). This strategy makes 
it possible to ensure traceability between elements of the viewpoint models and the 
VUML model. The class Medecine is not a multiview class because it is exactly the same 
(name and content) in the two viewpoint models. 
  

 

Figure 5. VUML model of SMFMS 

3 MODEL COMPOSITION PROCESS 

In this section we detail the methodological aspect of our approach trough a model 
composition process structured into three phases: a pre-composition phase, a composition 
phase, and a post-composition phase which is semi-automatic (guided by the user). The 
composition process is represented by an activity flow depicted by Figure 6. 
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Figure 6. Composition Process in VUML  

Pre-Composition phase 

The main objective of this phase is to harmonize the partial models in order to eliminate 
possible conflicts (naming, structural, etc) resulting from separate modeling. This is done 
amongst other things by the resolution of conflicts by determining the inconsistencies and 
the similarities between the elements of viewpoint design models. This phase copes with 
conflicts such as polysemy (same name and different meanings), synonymy (same 
meaning and different names), and structural inconsistencies (in particular generalization 
versus association relationships). In the latter case, it is necessary to apply heuristics that 
may be based on patterns, or to require the intervention of the designer who controls the 
composition process. Besides some of the conflicts identified here may be also due to the 
fact that the various actors of the system may have contradictory objectives. This 
particular problem, frequently encountered in requirement engineering, is out of the scope 
of this paper. 

Composition phase  

We agree with authors [Fleurey07] [Kleinner07] [Kolovos06] who argue that automating 
model composition includes two different tasks that should be carried out trough two 
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distinguished operators: a correspondence operator and a merging operator. This 
separation facilitates the maintainability of the composition process since the 
correspondence operation is more stable than the merging operation that may obey to 
modifiable strategies. Therefore we propose a composition operation which is made of 
two steps: Correspondence step and Merging step (Figure 7). 

The Correspondence step consists of identifying links between models to be 
composed (to make things easy we consider only two source models here). It is governed 
by correspondence rules that implement comparison strategies between model elements. 
Comparison of elements is based on internal properties defined at the metamodel level. 
For example, a subset of internal properties of an UML class may be represented by 
{name, isAbstract, ownedAttribute, ownedOperation} which are properties of the 
metaclass Class in the UML metamodel [OMG03a]. A correspondence rule, applied to 
two elements describing the same concept in different source models, creates a 
correspondence relationship between those elements. This relationship is then stored in a 
correspondence model.  

The Merging step depends on the target metamodel. In our application context, this 
merging step aims to produce a VUML model whose elements are stereotyped according 
to the VUML profile. In fact, VUML elements are created by applying both merging and 
translation rules. The merging strategy mainly depends on link type. Merging rules are 
applied to elements that are related to each other through correspondence relationships. 
Elements which have no correspondent in the opposite model are simply translated 
(copied) into the VUML model with respect to translation rules. 
 

 

Figure 7. Transformation chain of VUML composition 

Post-Composition phase 

After the composition phase, an analysis step is performed (see Figure 6) in order to 
discover possible composition errors. The composed VUML model is checked against 
desired properties or by verifying its compliance with well-formed rules. When a rule is 
violated, an error is detected and a problem element is created and stored into a problem 
model which conforms to a problem metamodel [Bézivin05]. The problem model can be 
analyzed and then imported into a model refactoring tool dedicated to the resolution of 
such problems. Well-formed rules defined at the metamodel level to express the static 
semantics of VUML — in particular those relating to the constructions of the language — 
are used to develop a property-based proof technique as described in [Cousot90]. OMG 
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recommends the use of OCL language [OMG03b] to express such rules. They enable to 
add structural properties that could not be captured during the definition of the 
metamodel. For example one can use the following OCL constraint to impose the fact 
that a direct descendant of a view class must be a concrete or an abstract view. 

context view inv : 
 self.specialization->forAll(g:Generalization| 
 g.child.isStereotyped("view") or 
 g.child.isStereotyped("abstractView")) 

 

Figure 8 describes the principle of the transformation used to check the composed VUML 
model. It produces a diagnosis model giving details on the identified errors.  

 

Figure 8. Check of a VUML model with an ATL transformation 

This technique is based on an extension of OCL allowing to produce detailed information 
in an output model instead of a simple Boolean. It is based on ATL to implement the 
checking rules. An ATL rule is defined for each constraint to check. The context of the 
OCL constraint defines the type of the pattern source of the rule, while the guard 
condition is the negation of the boolean expression associated to the constraint. Finally, 
the type of the target pattern characterizes an error (Problem). This type, defined in the 
diagnosis metamodel [Bézivin05], gives precise details on the error (severity, 
localization, description, etc).  

4 A GENERIC FRAMEWORK FOR MODEL COMPOSITION 

A model composition framework should provide means to support common features for 
building a composition operator. The survey presented in [Bézivin06] summarizes a core 
set of minimal requirements for such a framework. We propose to define a generic 
composition operator through three components: relationships, transformations and 
strategies. The relationships component allows to define and to capture relationships 
between model elements. The transformations component provides means to carry out 
transformations between involved models. The strategies component provides means to 
define transformation strategies. Strategies specify the semantics of transformation rules. 
To describe these three types of component, we have defined three metamodels: the 
correspondence metamodel, the transformation rules metamodel and the transformation 
strategies metamodel. 



 
 
 
 
 
 

VOL. 9, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 99 

Generic correspondence metamodel 

The correspondence metamodel defines the different kinds of relationships between 
model elements independently from any given application domain (Figure 9). We have 
extended the core weaving metamodel proposed in [Del Fabro05] to support composition 
requirements and to handle new types of relationship. In what follows, we present the key 
elements of the correspondence metamodel. 
• CorrespondenceRelationship: this metaclass defines the relationship between 

elements of the source models. The definition of a new relationship is made through a 
specialization of this metaclass; this allows the semantic definition of each 
relationship.(e.g. equality, equivalence, dependency, etc)  

• CorrespondenceRelationshipEnd: this metaclass represents the extremity of a 
correspondence relationship.  

• CorrespondingElementRef: this metaclass models the concepts of reference. It 
contains an attribute name that represents the name of the referenced element, and an 
attribute ref which acts as a persistent model-element identifier. 

• ReferencePackage: this metaclass is a container for reference elements. An instance 
of this metaclass contains all references of linked elements.    

   

CorrespondenceElement

CorrespondenceModel

CorrespondenceRelationshipCorrespondencePackage

ReferencePackage

CorrespondenceRelationshipEnd

CorrespondenceElementRef

TotalCorrespondenceR PartialCorrespondenceR

+ownedRelation

+references

+ownedRef

1

*

1
correspondingElementType : string

+specific

+getElementByRef(In ref:string):Element

1

name : string

*

+child
*

+relations
*

+parent

ref : string
*

+element 1

1..*

+ends

+general

0..1

*

 

Figure 9. Generic correspondence metamodel. 

The CorrespondenceRelationship metaclass must be specialized to create various types of 
relations. It is a practical solution to establish a given semantics for each correspondence 
relationship.  For example, the PartialCorrespondenceR metaclass indicates that the 
elements related by an instance of this relationship are two views which represent the 
same concept, but differ by certain properties (for example: two classes with the same 
name but having different attributes or operations). The TotalCorrespondenceR metaclass 
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defines a particular type of relation between elements which represent consistent views of 
the same concept (i.e equality in the sens that two elements appear in the same way in 
several models). 

Transformation rules metamodel 

The composition process is driven by transformation rules structured in three categories: 
correspondence, merging and translation. This enables first to establish correspondences 
between input models, second to merge these models into a global model. Elements that 
have no corresponding element in the opposite model are transformed according to 
translation rules. As transformation strategies depend on each specific domain, we do not 
consider them in the generic part of the metamodel. The transformation rules metamodel 
is a general description of transformation rules (Figure 10). 

CompositionModule

TransformationRule

CorrespondenceRule MergingRule TranslationRule

Pattern

TransformationStrategy type : MetamodelElement
kind : DirectionKind

name : string
isAbstract : boolean
guard : OCLExpression

name : string

1

1..*

1 0..1
+extends

*

0..1
+calls

*

+pattern

+context

+ownedRule

+strategy 1 2..*

 

Figure 10. Transformation rules metamodel 

Each transformation rule is composed of at least two patterns used to detect elements in 
source and target models. Pattern types come from the elements of the metamodels 
involved in the transformation. If we consider a correspondence rule for example, the 
type of the input pattern comes from the source metamodel, whereas the type of the 
output pattern comes from the correspondence metamodel.  
In Section 5 below we will show how this metamodel allows to define (when 
instantiated) specific transformation rules to compose models in a particular domain.  

Transformation strategies metamodel 

So far, we have introduced the structural aspects of our composition operator. However, 
these structural aspects are not sufficient to provide a comprehensive definition of this 
operator, as one must describe its behavior as well. We use transformation strategies to 
specify the behavioral aspect of each transformation rule (Figure 11). Strategies are 
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defined by Kolovos et al. [Kolovos06] as pluggable algorithms that can be attached to 
transformation rules to implement a recursive and reusable functionality, they may be 
inferred from the metamodel structure. Using strategies has the advantage of minimizing 
the manual intervention of the developer. 

Correspondence strategies define comparison logic between model elements. We 
distinguish three types of correspondence strategies. The first type is based on signatures 
as described in [Reddy06]. The signature of an element is described by a set of internal 
properties (name, type, cardinality, etc) defined in the metamodel. For elements of type 
Class, the strategy depends on values of the meta-properties of the metaclass. For 
example, if one considers the couple (name, isAbstract), then comparing two classes 
defined in two different models is reduced to compare the values of these two properties. 
Correspondence strategies may be also based on structural relationships between 
elements such as inheritance or containment; in this case, the correspondence strategy 
depends on information about the neighbors of each element in the models. 

Unlike correspondence strategies, merging strategies depend on the type and 
semantics associated with correspondence relationships that link source elements, and on 
the structure and semantics of the elements to create in the target metamodel. 
UnionMergingStrategy is used when different source models contain classes with the 
same name but with different properties. A simple union of the initial properties gives the  
properties of the resulting class. TotalMergingStrategy is used for merging two classes, 
which are in conformity. PartialMergingStrategy is used to create two or more elements 
in the target model.  

TransformationStrategy

CorrespondenceStrategy MergingStrategy TranslationStrategy

SignatureTypeStrategy

InheritanceStrategyContainmentStrategy

NameCorrespondenceStrategy

InternalProperty

UnionStrategy

TotalMergingStrategy

PartialMergingStrategy

OverrideStrategy

ConformeStrategy

MetaModelElement

RelationshipTypeStrategy

+properties

name : string
type : Type

1

1..*

+definedfor

* 1..*

 

Figure 11 Transformation strategies metamodel 
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5 SPECIALIZATION PROCESS OF THE GENERIC FRAMEWORK 

This section describes how the generic composition framework can be specialized to 
create a particular composition operator for a specific modeling language. This 
specialization can be divided into four steps (Figure 12): (1) Specialization of the 
Correspondence metamodel, (2) Definition of a strategy model, (3) Definition of a 
transformation rules model, (4) Generation of composition-oriented transformations. 

Specialize correspondence metamodel

Define strategies model

Define rules model

Generate transformations model

Generic Composition Framework:

Specific correspondence metamodel:

Strategies model:

Source metamodels:

Target metamodel:

Transformation rules model:

Transformations-oriented composition:

 

Figure 12. Specialization process of the generic framework 

Correspondence metamodel specialization 

The first step of the specialization process consists of extending the generic 
correspondence metamodel for a specific application domain (Figure 13). It is necessary 
to establish different kinds of relationships between metamodel elements according to 
their semantics, this task is not trivial, because it requires a depth knowledge of the 
underlying application domain [DelFabro 06]. For example, if we consider UML2 as a 
source language, to express the similarity between class elements, we define a new type 
of relationship called ClassSimilarityRelationship. The set of specific correspondence 
relationships constitutes the specific correspondence metamodel.  
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Figure 13.  Specialization of the generic correspondence metamodel  

 

Strategies model definition  

In this step, the goal is to define specific strategies for the composition of elements.  
Correspondence strategies specify comparison semantics between model elements; they 
specify the semantics of specific correspondence rules. Correspondence strategies are 
designed by a model conform to the transformation strategies metamodel (Figure 11). As 
for correspondence rules, specific merging and translation rules must be augmented with 
suitable transformation strategies. Merging strategies define how elements being related 
by a specific correspondence relationship are merged to create elements of the target 
metamodel. Translation strategies specify how elements, which have no corresponding 
elements in the opposite model, are transformed into the target model. By default, such 
elements are deeply copied into the target model. This default translation strategy may be 
overridden in order to cover specific cases.  

Transformation rules model definition 

This step aims to define a specific transformation rules model conform to the 
transformation rules metamodel (Figure 10). First, the CorrespondenceRule metaclass is 
instantiated. This instance has a name, it can be specified as concrete or abstract, and it is 
specified by a set of source and target patterns. The source patterns types are instantiated 
by elements of the source metamodels, and the target pattern type is instantiated by a 
specific correspondence relationship. Then we complete the specification of this rule by 
specifying an appropriate correspondence strategy. After, we specify a set of merging and 
translation rules according to the target metamodel. The MergingRule metaclass defined 
in the transformation rules metamodel is instantiated by specifying its source and target 
patterns. In this case, the source pattern has as type a specific correspondence 
relationship. Finally, for the metaclass TranslationRule, one has to define elements of 
source and target metamodels associated to the patterns.  

The specific transformation model is then enriched with the composition strategies 
model defined in the previous step. This allows the integration of the composition 
capabilities specified by these strategies. The result is a specific transformation rules 
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model. This model can be seen as a high-level specification of transformations rules, and 
can be used to automatically generate executable transformations for composition. 

Generation of composition-oriented transformations  

The last step of the specialization process consists of producing executable 
transformations implementing the composition operation. These executable 
transformations are obtained by transforming the specific transformation rules model. 
This task is carried out by a particular type of transformation called Higher-Order 
Transformation (HOT) [Del Fabro06] because it generates a transformation. A HOT 
transformation takes as input a transformation model and produces as output a 
transformation model which is conform to a transformation language metamodel (Figure 
14). More precisely, elements of the composition model are transformed into specific 
composition code patterns. For example, if a merging rule uses the 
TotalMergingStrategy, the code pattern produced must implement the functionality of 
combining source elements into a single output element. 

 

Figure 14. Generation of executable transformations  

6 EXAMPLE 

To illustrate our approach, we describe in this section how the generic composition 
framework can be applied to compose models that conform to the UML metamodel. Let 
us consider the SMFMS example presented in the case study (section 2). In this example, 
we merge two class diagrams developed independently according to two viewpoints. The 
result of the composition is a VUML model conform to the VUML profile (Figure 15).  
 

 

Figure 15. Composition scenario for the SMFMS application 
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Correspondence relationships specification 

To define specific correspondence relationships for UML class diagram elements, we 
have specialized the generic correspondence metamodel according to the process 
discussed above. For example, for elements Class we have identified two correspondence 
relationships : ClassConformityRelationship and ClassSimilarityRelationship. We have 
also defined correspondence relationships for other elements such as attributes, 
operations, etc. 

Transformation strategies specification 

To define the composition of UML models producing a VUML model, it is firstly 
necessary to define correspondence strategies. These strategies specify the semantics of 
correspondences rules. A default correspondence strategy applied on elements whose 
metaclass is defined as a sub-class of NamedElement is based on the property name. This 
operation is strongly dependent on the modeling language. To this aim, for each 
application scenario, a specific correspondence strategies must be defined. 

In our application, we have defined two correspondence strategies between elements 
Class : conformity and similarity. Conformity holds when two classes appear in two 
viewpoint models with the same name and the same properties (attributes, operations, 
associations) ; they are semantically equivalent (represent two views of the same concept 
in VUML terminology). Similarity holds when two classes appear with the same name 
but are not conform. 

In the same way, merging strategies define the semantics of merging elements 
according to the correspondence relationship which relate them. For example, we define 
the TotalMergingStrategy as a merging strategy of two classes related by a 
ClassConformityRelationship. It describes how to merge source classes in order to create 
one target class. Whereas the merging strategy of similar classes specifies the creation of 
a multiview class (base and views). 

Transformation rules specification 

We have defined a set of transformation rules to compose UML class diagrams into a 
VUML class model.  The transformation rules are reused from the generic framework. 
According to the specialization process detailed previously, we distinguish the 
correspondence rules that apply to elements of the source models and create specific 
relationships, from rules for merging corresponding elements or translating elements. 
Indeed, all the rules from the first category are derived according to UML metamodel 
elements. Transformation rules of the second category are derived from both source and 
target metamodels ; they specialize the generic framework to define a specific merging 
operator for structural UML models. Figure 16 shows a hierarchy of correspondence rules 
defined for this example. Some rules are defined as sub-rules of the 
ModelElementCorrespondenceRule. This permits to factorize a part of the common code, 
providing more reusability and flexibility for the correspondence operator. 
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Figure 16. Correspondence rules for UML class diagram elements 

Implementation in ATL  

To implement and validate our approach, we needed a rule-based transformation 
language. We wanted to focus on declarative approaches allowing defining 
transformations at a high level of abstraction without worrying about the final execution 
and the rules enforcement. Management of rules enforcement may be delegated to a rules 
engine, but it is often necessary to help this engine by introducing imperative code 
depending on the complexity of the transformation. For this aim, we chose ATL 
[Jouault05] which is a hybrid transformation language allowing to combine both 
declarative and imperative approaches. ATL is considered as a standard component of 
Eclipse for model transformation and is now integrated into the M2M project [Eclipse07]. 
Figure 17 illustrates an example in ATL of transformation rules used for the VUML 
composition. Note that composition has been implemented with two transformation 
modules (Lines 1-2) and (Lines 10-12) : the first module implements correspondence 
rules and generates a correspondence model, whereas the second implements both 
merging and translation rules and produces the VUML target model. Due to space 
constraints, only a subset of rules is discussed below. 

1 module UML2Corresp;  
2 create MC : MMC  from MPV1 : UML2, MPV2 : UML2; 
3rule Class2PartialCorrespondence extends    
4  ModelElementCorrespondenceRule{ 
5 from e1 : UML2!Class, e2 : UML2!Class(e1.name = e2.name) 
6 to   r : MMC! PartialCorrespondenceR ( 
7      correspondingElementType <-'Class' 
8  ) 
9 }
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10 module CorrespUML2VUML; 
11 create VUML : UML2 from  MPV1 : UML2, MPV2 : UML2, PRO : 
12 UML2, MC : MMC; 
13rule PartialCorrespondence2Base{-- specefic to VUML 
14 from r : MMC! PartialCorrespondenceR 
15 to c : UML2!Class( 
16  name <- thisModule.getRefElement(r).name,   
17  visibility<-       
18  thisModule.getRefElement(r).getElement.visibility, 
19  isAbstract<-    
20  thisModule.getRefElement(r).getElement.isAbstract 
21   ) 
22 do{ 
23  thisModule.VUMLModel.packagedElement<-c; 
24  c.applyStereotype(thisModule.base); 
25   for (iterator in r.getListeAttrEquality){ 
26   c.ownedAttribute <-     
27  thisModule.AttributeEquality2Attribute(iterator); 
28   } 
29   for (iterator in r.getListeOpEquivalence){ 
30    c.ownedOperation <- 
31  thisModule.OperationEquivalence2Operation(iterator); 
32   } 
33  if (not r.general.oclIsUndefined()){ 
34   c.generalization<- 
35       thisModule.resolveTemp(r.general,'g'); 
36  } 
37 }} 
38 rule Class2Class{ 
39  from c1: UML2!Class(c1.isNotMultiviewClass) 
40  to c2: UML2!Class( 
41 name <- c1.name, 
42 isAbstract <- c1.isAbstract, 
43 visibility <- c1.visibility, 
44 ownedAttribute<-c1.ownedAttribute, 
45 ownedOperation<-c1.ownedOperation 
46 )} 

Figure 17.  UML2VUML transformation in ATL. 

The rule Class2PartialCorrespondence (Lines 3-9) states that two class elements will be 
linked by a PartialCorrespondenceRelationship if they are defined in two different 
models with the same name. This rule is declared as a specialization (keyword extend) of 
ModelElementCorrespondenceRule which is defined as an abstract rule. The inheritance 
mechanism allows to factorize common code among several transformation rules. 

The rule PartialCorrespondence2Base (Lines 13-37) specifies that for each defined 
PartialCorrespondenceRelationship wich relates two classes, an UML2 element Class is 
created in the composed model. This rule implements the TotalMergingStrategy. Finally, 
the rule Class2Class (Lines 38-46) implements the default translation strategy which 
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expresses that a class having no corresponding class in the opposite is translated (copied) 
as it is in the target model.  

7 RELATED WORK 

Many researchers have developed model composition approaches in different application 
domains: requirements engineering [Nuseibeh03] [Chitchyan07], design by aspects 
[Baniassad04] [France04], development by subjects [Clarke02] [Ossher96], software 
merging [Mens02], composition of concerns in software architectures [Barais05]. We 
focus in this section on works that are close to ours, including two important approaches 
in the field of model composition: EML [Kolovos06] and AMW [Del Fabro05].  

In VUML, the first phase of requirements analysis produces a system model 
according to several actors’ viewpoint.  Our view-based approach is very close to that of 
requirements engineering. One of the most fundamental contributions of viewpoints in 
requirements engineering is the possibility to take several (possibly contradictory) 
concerns into account. Finkelstein [Fienkelstein90], Nuseibeh, [Nuseibeh03], Easterbrook 
[Easterbrook95] or Jakson [Jackson01] consider that viewpoints can be expressed in 
different formalisms and then be linked together in order to obtain a global coherent 
system. For our part, we adopted the principle that UML can be a unifying formalism to 
model the various viewpoints; we propose a UML profile to describe a shared composed 
model rather than connected models. VUML is a fine-grained modeling language that 
allows to integrate viewpoints at the very core of the system model (class diagram level). 

The Atlas Model Weaver [Del Fabro05] is a model composition framework that uses 
model weaving and transformation to define and execute the composition operation. The 
tool support is available as an Eclipse plug-in. The composition operation is divided into 
two phases. The first phase builds a weaving model that captures links between input 
models according to a weaving metamodel. The second phase uses the weaving model to 
generate a transformation to produce the composed model. This technique is generic and 
flexible thanks to the extension mechanism of the weaving metamodel; however, manual 
definition of links between model elements is a tedious work. 

The Epsilon Merging Language (EML) proposed by [Kolovos06] is a rule based 
language for merging models. EML belongs to the Epsilon platform which is a model 
driven framework for developing integrated languages for model management tasks such 
as comparison, transformation, validation, etc. Close to our work, this approach proposes 
to merge models trough three categories of rules: MatchRule, MergeRule and 
TransformRule. Our correspondence rules produce a set of links between model 
elements, whereas in the EML approach this information is stored at run time in a 
temporary memory called ‘MatchTrace’. We consider that it is more convenient to 
separate the comparison and the merging steps in an objective of reuse. So we generate a 
correspondence model based on comparisons which is exploited during the merging step. 
This correspondence model may be used for other aims such as management of 
dependencies between views in order to ensure the system consistency. 
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The composition of design models in aspect oriented approaches has also been much 
studied. In [Reddy06], the proposed technique allows to manage the composition of a 
primary model with transversal aspects (persistency, security, etc.). This approach uses an 
algorithm of composition and a set of elementary actions called directives. These 
directives are applied either on the elements of the models — for instance 
creation/deletion, modification — or on aspect models by specifying for example the 
order in which two aspect models must be composed. A metamodel of composition 
extends that of UML by adding a specification of the composition’s behavior and 
includes meta-operations implementing a signature-based comparison between elements. 
The use of these directives is a way to solve the conflicts, which may appear during the 
composition phase. It allows to partially automate an activity which was often manually 
done by the designer. However, this approach is not compatible with a system based on 
declarative rules such as ours.  

The work presented in [Baudry05] discusses some similarities between model 
composition and model transformation. Comparison criteria between approaches are 
based on the degree of generality, ease of use and ease of implementation. The authors 
explore the possibility of composing a set of models based on crosscutting concerns 
(aspects), with a primary base model. By varying the level of knowledge about aspect 
models, signatures and bindings, a number of composition-oriented transformations have 
been identified. In the continuity of this work, the model composition approach presented 
in [Fleurey07] offers a generic framework that is independent from any modeling 
language. The authors propose a metamodel describing structural and behavioral feature 
of a composition operator. This metamodel supports the composition directives concept 
introduced in [Reddy06]. These directives are specified in a domain-independent 
language and implemented in Kermeta [Muller05]. This approach can be said imperative 
because it describes the operation of composition in an algorithmic way. So it is not 
easily compatible with our approach which is mainly based on declarative rules that 
specify what should be transformed rather than how it should be done. 

8 DISCUSSION  

The work presented in this paper has naturally some limits and raises certain questions 
that are discussed below.  

Inconsistencies and conflicts Resolution. In our view-based system analysis, 
conflicts among viewpoint models may appear due to separate designs. We have 
identified such inconsistencies that may be syntactic (e.g. homonymy conflicts, structural 
conflicts) or semantic (e.g. synonymy conflicts). Management of these conflicts is not 
easy at the composition stage and hence is out of the scope of this paper. As future work, 
an interesting track search would consist in using ontologies (see 
[Dhamanka04][Aumueller05]) to build a shared repository and thus to solve some 
semantic conflicts according to reconciling policies.   
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Taking into account semantic aspects in source models. So far, source model 
elements comparison is based on syntactic properties defined of the source metamodel. 
For example, two operations having the same signature (name, parameters and return 
type) are considered as equivalent that is obviously not always the case. To solve this 
problem one may either perform a semi-automatic reconciliation step among designers, 
or reinforce the semantics (especially behavioral aspects) associated to the source 
metamodel so as to elaborate finer comparison strategies. We are working on both tracks. 

Rules implementation language. To validate our work, we have chosen ATL so as 
to gain advantage of a semi-declarative approach. This choice seems accurate for a case 
study but may present some scalability limits with large models and many rules. Our goal 
is to experiment imperative transformation-based languages such as Kermeta.  

Exploitation of the composed VUML model. The VUML model resulting from the 
composition process may be used in several ways. A classical way consists in producing 
object code via a code generator. We have developed a generic code generator and a first 
instance of this generator targeting Java [Nassar09]. Other languages such as C++ or 
Eiffel could be supported.  Besides, if one needs to extend a given design in VUML so as 
to integrate a new viewpoint, the VUML model may be composed in turn with a new 
viewpoint model produced separately.  To do that, one may apply our approach by 
replacing the source UML metamodel by the VUML metamodel. Our MDE-based 
approach is well adapted to such evolution but we have now to implement it. 

9 CONCLUSION AND FUTURE WORKS 

In this paper, we have presented a Model Driven based approach for model composition. 
This approach combines the use of metamodeling and model transformation techniques. 
The originality of this paper is to propose a composition process made of two sub-
processes: a generic process for the definition of a model composition operator, and a 
specialization process to apply this generic operator to specific modeling domains.  

The core composition operator is generic since it allows to design composition 
requirements at a high level of abstraction. We have defined a core metamodel that is 
composed of three separate metamodels: (1) a relationship metamodel that contains 
abstract constructs defining the correspondences between model elements, (2) a rules 
metamodel that contains generic transformation rules used for the implementation of the 
composition operator, and (3) a strategy metamodel that defines common transformation 
strategies. To validate our approach, we have implemented transformation rules in ATL 
and we are working on the development of a model composition environment 
implemented as an Eclipse plug-in.  

Some of our future work is already discussed in Section 8 above. We also intend to 
automate the weaving activity of the specialization process. To do that, we will apply the 
HOT technique to generate the executable transformation rules in a specific 
transformation language. Therefore, the manual programming step of transformation will 
be dramatically reduced. Another interesting issue is to compose behavioral diagrams of 
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UML (mainly state charts or sequence diagrams). This work is the subject of a PHD 
thesis in progress in our team. First results on this topic are described in [Ober08] 
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