
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 1, January – February 2010

Richard Wiener: “Darwin’s World Simulation in C#: An Interpreter”, vol. 9, no. 1, January - February
2010, pp 57-63 http://www.jot.fm/issues/issue_2010_01/column6/

EDUCATOR’S CORNER

Darwin’s World Simulation in C#: An
Interpreter

Richard Wiener

1 INTRODUCTION

Nick Parlante, a Lecturer at Stanford University, invented a pedagogical game entitled
“Darwin’s World”. The original specification (for Pascal) was published and presented at
SIGCSE in 1999. Many variations have been published more recently.

http://nifty.stanford.edu/darwin/

http://users.dickinson.edu/~braught/NSFIntegrating/course/labs/darwin/handout.html

In Darwin’s world the user creates robot-like graphical creatures with behavior defined by a
simple programming language. These creatures migrate around a small two-dimensional grid,
each according to its simple program created by the user. The GUI application that controls
and displays the location of these creatures must interpret the program instructions supplied
in a simple text file for each creature type in real-time and display the movement and
behavior of these creatures. Since some creatures may “infect” another creature in an
adjacent grid location, converting the infected creature into the same type as the creature
administering the infection, the population of the various creature types changes over time
although the total number of creatures remains constant. The application tracks and displays
the population dynamics as the simulation evolves. New creature types may be created by
supplying a text file that contains the “program” that the application interprets. This
necessitates changes to the GUI that displays the dynamics of the simulation.

This application has become popular among computer science educators because the
application is fun to observe, fun for many students to create and provides a rich assortment
of concepts that are useful in computer science and software development.

This application is being presented in a more advanced programming course that
features the effective use of the C# programming language and the .NET framework.

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

66 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

As a quick example of how to “program” a creature (we call this creature Trap and its
file is “Trap.txt”) consider the instructions given below:

ifenemy 3
left
go 0
infect
go 0
.
Trap

What does this user supplied program mean?
The first line of code is line 0. Each creature has a defined direction of movement that is

either north, east, south or west. An “enemy” is any creature whose type is different than the
given creature’s type. The first instruction (on line 0) stipulates that if the Trap creature is
facing an enemy in the cell location one away from it in the direction that the Trap creature is
pointing then transfer control to the instruction in line 3, the “infect” instruction. This
“infect” instruction causes the enemy creature to become a Trap creature. Its color, and
symbol change (for display purposes) but most importantly it acquires the program given in
the “Trap.txt” file so that its future behavior is that of a Trap creature. If the instruction on
line 0 is false (the adjacent cell is empty, a boundary or another Trap creature), then line 1 is
executed. This line causes the Trap creature to rotate left by 90 degrees (e.g. if it was
originally pointed north it is now pointed west). The last line of “code” in this simple
program is denoted by a dot. So, the “program” for the Trap creature causes the Trap creature
to remain in its initial grid location either rotating to the left with each move or infecting an
adjacent creature if it is an enemy.

A more complex creature, the Rover, is governed by the following program:

ifenemy 10
ifwall 5
ifsame 5
hop
go 0
ifrandom 8
left
go 0
right
go 0
infect
go 0
.
Rover

The ifwall statement (on line 1) directs program execution to line 5 which contains the
instruction ifrandom. This instruction directs control to line 8 with 50 percent probability (if
it returns true) or the next line (line 6 containing the left instruction). So with equal chance

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 67

the rover rotates either left or right if it encounters either a wall or another Rover creature in
the adjacent cell that it is pointing to. If the adjacent cell is empty it performs the hop
command (it vacates its current position and moves to the adjacent cell position). Like the
Trap, the Rover is capable of infecting an enemy. But because it is mobile (always moves in
the same direction until it encounters a wall or another Rover), its infection range extends
potentially over the entire world (the entire grid).

The simplest creature type is Food. Its program is given as:

left
go 0
.
Food

Food creatures cannot move or infect other creatures. They are essential fixed targets that
rotate to the left and can be infected by other creatures.

A more complex, created by the author, is Android. Its program is:

ifrandom 3
left
go 4
right
ifenemy 11
ifwall 9
ifsame 9
hop
go 0
ifrandom 3
go 1
infect
go 0
.
Android

It starts by rotating either to the left or right by 90 degrees. Then its behavior is similar to
Rover. So instead of moving in a straight line like the Rover creature, its motion is jagged.
Like the Rover and Trap creatures, it too can infect enemy creatures in adjacent grid
locations.

Another complex creature, created by the author is the Hopper. Its program is:

ifenemy 9
ifenemyleft 10
ifenemyright 12
ifwall 14
ifsame 14
hop
go 0

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

68 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

ifrandom 2
go 4
infect
left
go 0
right
go 0
if random 17
left
go 0
right
go 0
.
Hopper

It is somewhat of a hybrid between an Android and a Rover with some capability shared by
neither. The Hopper creature, like the Rover, first determines whether it can infect an enemy
in the direction that it is facing. If not, it rotates either to the left or to the right if an enemy is
to the left or right. Then it hops in the direction it is facing.

The final creature, also created by the author, is the ChangeDirectionRover. Its
program is:

ifenemy 17
ifwall 12
ifsame 12
hop
ifenemy 17
ifwall 12
ifsame 12
hop
ifenemy 18
ifwall 12
ifsame 12
hop
ifrandom 15
left
go 0
right
go 0
infect
go 0
.
ChangeDirectionRover

See whether you can figure out by reverse engineering the program what the behavior of the
ChangeDirectionRover does (if the name of this creature does not already explain its
behavior.

The specifications for the GUI simulation that we are to construct are given below.

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 69

2 SPECIFICATIONS

• The GUI specifies the initial number of each creature type that must be placed at
random locations in the grid with each creature pointing in a randomly assigned
direction.

• Each of the programs for the various creature types must be loaded from simple text
files (Android.txt, Rover.text, Food.txt, Trap.txt, Hopper.txt and ChangeRover.txt). If
other creature types are created, the GUI class as well as other class modifications
must be made. These text files must be in the same sub-directory as the executable.

• The user supplied programs that control each creature type must be interpreted in real
time by the GUI application that displays the movement and behavior of each
creature as well as the population dynamics.

• A move for a creature terminates if it is instructed to go left, go right, hop or infect.
• The next line of code (the next instruction) for the creature must be saved so that

when the creature is told to move again it knows what line of code to use.
• A move cycle is completed when all the creatures inhabiting the grid have moved

exactly once.
• The sequence of moves must be shuffled after each move cycle (a new random

sequence of moves must be applied to the existing collection of creatures).
• The population dynamics must be shown on the GUI over time (move-cycles).

A screen shot of a game that has just been initialized is shown next.
A screen shot of this game in progress after 16 move cycles is shown below (each game

displays different emergent population dynamics – that makes the game fun to observe):

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

70 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 71

It is noted that for this run of the simulation, after only 16 move cycles, the population of
Hopper creatures is indicated as one.There is no Hopper creature shown when this screen
snapshot was taken. That is because population updates are done only at the end of a move
cycle but creature updates are done as soon as a creature moves. So upon the completion of
move cycle 16, the population of Hopper creatures will be zero.

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

72 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

3 DESIGN AND IMPLEMENTATION
Three enum types, OpCode, Direction and CreatureType, are defined to support the
implementation. These are presented below. (Using statements are omitted throughout to
save space but are included in the actual implementation).

namespace DarwinsWorld {
 public enum OpCode {Hop, Left, Right, Infect, IfEmpty,
 fWall, IfSame, IfEnemy,
IfRandom, Go}
}

namespace DarwinsWorld {
 public enum Direction {North, East, South, West}
}

namespace DarwinsWorld {
 public enum CreatureType {Android, ChangeDirectionRover,
 Food, Hop, Hopper, Rover, Trap}
}

Next a class Instruction that encapsulates each line of the user’s program code is presented.
An instruction object encapsulates an op code and line number.

namespace DarwinsWorld {

 public class Instruction {
 // Fields
 private OpCode code;
 private int lineNumber;

 public Instruction(OpCode code, int lineNumber) {
 this.code = code;
 this.lineNumber = lineNumber;
 }

 // Properties
 public OpCode Code {
 get {
 return code;
 }
 }

 public int LineNumber {
 get {
 return lineNumber;
 }
 }
 }
}

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 73

The next design decision concerns the use of a few global entities that are acessible
throughout the application domain. These are defined in class Global.

namespace DarwinsWorld {

 public class Global {
 // Global fields
 public static int ROWS = 15;
 public static int COLS = 15;
 public static Dictionary<OpCode, TakeAction> actions =
 new Dictionary<OpCode, TakeAction>();
 public static Creature[,] creatures =
 new Creature[Global.ROWS, Global.COLS];

 public static void SetTable(OpCode code, TakeAction action) {
 actions[code] = action;
 }

 }
}

A Dictionary, actions, that asssociates each OpCode with some action, defined as a delegate
type TakeAction, is defined. So the “data” that is associated with each OpCode key is in fact
a method that represents an instance of the TakeAction delegate type. In other words we are
associating concrete actions with each OpCode key in the dictionary.

The TakeAction delegate type is defined as:

public delegate bool TakeAction(Point oldPos, Point newPos,
 String
programFileName);

The game model is defined as a two-dimensional array of type Creature, yet to be defined.
The class Creature is implemented next. It is tempting to create a hierarchy of concrete

classes that are descendents of an abstract Creature class. This design defines only one
concrete Creature class that contains a list of instructions that defines its behavior. The basis
of this decision is that creatures differ in their cosmetic representation (their symbol, color
and most importantly instruction set). These attributes can best be modeled using a whole-
part relationship rather than an inheritance relationship.

Class Creature is given next.

namespace DarwinsWorld {

 public class Creature {

 // Fields
 private Point position;
 private Direction direction;

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

74 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

 private int nextInstruction;
 private List<Instruction> instructions;
 private String programFileName;
 private Color color;
 private CreatureType type;

 // Constructors
 public Creature(String programFileName,
 Point position, Direction direction,
 Color c, CreatureType type)
{
 this.programFileName = programFileName;
 this.position = position;
 this.direction = direction;
 color = c;
 this.type = type;
 BuildInstructions();
 }

 // Properties
 public CreatureType CreatureType {
 get {
 return type;
 }
 set {
 type = value;
 }
 }

 public String ProgramFileName {
 get {
 return programFileName;
 }
 set {
 programFileName = value;
 }
 }

 public Point Position {
 get {
 return position;
 }
 set {
 position = value;
 }
 }

 public Color Color {
 get {
 return color;
 }

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 75

 }

 public Direction Direction {
 get {
 return direction;
 }
 }

 // Commands
 public void Move(World world) {
 Instruction instruction = instructions[nextInstruction];
 Instruction oldInstruction = null;
 do {
 TakeAction action = Global.actions[instruction.Code];
 Point newPosition = position;
 if (instruction.Code == OpCode.Infect ||
 instruction.Code == OpCode.Hop ||
 instruction.Code == OpCode.IfEnemy ||
 instruction.Code == OpCode.IfSame) {
 newPosition = NewPosition();
 } else if (instruction.Code == OpCode.IfEnemyLeft) {
 newPosition = PositionLeft();
 } else if (instruction.Code == OpCode.IfEnemyRight) {
 newPosition = PositionRight();
 }
 if (newPosition.Y < 0 ||
 newPosition.Y > Global.ROWS - 1 ||
 newPosition.X < 0 ||
 newPosition.X > Global.COLS
- 1) {
 newPosition = position;
 }
 Point oldPosition = position;
 bool result = action(oldPosition, newPosition,

programFileName);
 if (instruction.Code == OpCode.Infect ||
 instruction.Code == OpCode.Hop ||
 instruction.Code == OpCode.Left ||
 instruction.Code == OpCode.Right) {
 world.FireDisplay(
 instruction.Code ==
OpCode.Infect,
 oldPosition, newPosition,

 programFileName[0].ToString(),
 color, direction);

 // Update world.List
 if (instruction.Code == OpCode.Infect) {
 // Find the infected creature
 List<Creature> list = world.List;

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

76 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

 int index = 0;
 foreach (Creature creature in list) {
 if (creature.Position.Equals(

 newPosition)) {
 break;
 }
 index++;
 }
 Creature infectedCreature = list[index];
 infectedCreature.color = this.Color;
 infectedCreature.direction = this.Direction;
 infectedCreature.CreatureType =
 this.CreatureType;
 }

 }
 if (result == true) {
 nextInstruction = instruction.LineNumber;
 } else {
 nextInstruction++;
 }
 oldInstruction = instruction;
 instruction = instructions[nextInstruction];
 } while (oldInstruction.Code != OpCode.Left &&
 oldInstruction.Code !=
OpCode.Right &&
 oldInstruction.Code != OpCode.Infect &&
 oldInstruction.Code !=
OpCode.Hop);
 }

 public void BuildInstructions() {
 instructions = new List<Instruction>();
 nextInstruction = 0;
 // Read program file for creature
 TextReader reader = new StreamReader(programFileName);
 String line = reader.ReadLine();
 while (!line.Equals(".")) {
 if (line.Contains("hop")) {
 instructions.Add(new Instruction(OpCode.Hop, 0));
 } else if (line.Contains("ifenemyleft")) {
 int operand =

 Convert.ToInt32(line.Substring(11).Trim());
 instructions.Add(new

 Instruction(OpCode.IfEnemyLeft, operand));
 } else if (line.Contains("ifenemyright")) {
 int operand =

 Convert.ToInt32(line.Substring(12).Trim());

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 77

 instructions.Add(new

 Instruction(OpCode.IfEnemyRight, operand));
 } else if (line.Contains("go")) {
 int operand =

 Convert.ToInt32(line.Substring(2).Trim());
 instructions.Add(new Instruction(OpCode.Go,

 operand));
 } else if (line.Contains("left")) {
 instructions.Add(new Instruction(OpCode.Left, 0));
 } else if (line.Contains("right")) {
 instructions.Add(new Instruction(OpCode.Right, 0));
 } else if (line.Contains("infect")) {
 instructions.Add(new
 Instruction(OpCode.Infect,
0));
 } else if (line.Contains("ifenemy")) {
 int operand =

 Convert.ToInt32(line.Substring(7).Trim());
 instructions.Add(new
 Instruction(OpCode.IfEnemy,
operand));
 } else if (line.Contains("ifwall")) {
 int operand =

 Convert.ToInt32(line.Substring(6).Trim());
 instructions.Add(
 new
Instruction(OpCode.IfWall, operand));
 } else if (line.Contains("ifsame")) {
 int operand =

 Convert.ToInt32(line.Substring(6).Trim());
 instructions.Add(new Instruction(OpCode.IfSame,

 operand));
 } else if (line.Contains("ifrandom")) {
 int operand =

 Convert.ToInt32(line.Substring(8).Trim());
 instructions.Add(
 new
Instruction(OpCode.IfRandom, operand));
 }
 line = reader.ReadLine();
 }
 }

 public void RightDirection() {
 if (direction == Direction.North) {
 direction = Direction.East;

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

78 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

 } else if (direction == Direction.East) {
 direction = Direction.South;
 } else if (direction == Direction.South) {
 direction = Direction.West;
 } else if (direction == Direction.West) {
 direction = Direction.North;
 }
 }

 public void LeftDirection() {
 if (direction == Direction.North) {
 direction = Direction.West;
 } else if (direction == Direction.West) {
 direction = Direction.South;
 } else if (direction == Direction.South) {
 direction = Direction.East;
 } else if (direction == Direction.East) {
 direction = Direction.North;
 }
 }

 // Queries
 public Point NewPosition() {
 switch (direction) {
 case Direction.North:
 return new Point(position.X, position.Y - 1);
 case Direction.East:
 return new Point(position.X + 1, position.Y);
 case Direction.South:
 return new Point(position.X, position.Y + 1);
 case Direction.West:
 return new Point(position.X - 1, position.Y);
 }
 return new Point(0, 0);
 }

 public Point PositionLeft() {
 switch (direction) {
 case Direction.North:
 return new Point(position.X - 1, position.Y);
 case Direction.East:
 return new Point(position.X, position.Y - 1);
 case Direction.South:
 return new Point(position.X + 1, position.Y);
 case Direction.West:
 return new Point(position.X, position.Y + 1);
 }
 return new Point(0, 0);
 }

 public Point PositionRight() {

VOL. 9, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 79

 switch (direction) {
 case Direction.North:
 return new Point(position.X + 1, position.Y);
 case Direction.East:
 return new Point(position.X, position.Y + 1);
 case Direction.South:
 return new Point(position.X - 1, position.Y);
 case Direction.West:
 return new Point(position.X, position.Y - 1);
 }
 return new Point(0, 0);
 }
 }
}

Each creature is modeled as containing a List containing base-type Instruction. The
BuildInstructions method parses each line of the file supplied by the user and constructs this
list.

The Move command takes the game model class World (yet to be defined) as a
parameter. A variable action is obtained from the global Dictionary called actions. The
action is invoked using:

bool result = action(oldPosition, newPosition, programFileName);

The concrete method that is executed is defined in the World class and stored in the globally
available actions.

The command FireDisplay is invoked on the world object passed to the creature from
the World model class. This is how each creature object notifes the GUI (yet to be defined)
about its movement.

The Move command in class Creature is our interpreter. It moves from one instruction to
another and associates each instruction with a stored action command in the global dictionary
table.

In the sequel article, “Darwin’s World Simulation in C#: The Model/View Classes”,
to be published in the March/April, 2010 issue of JOT, the details of event handling and link
the World class to the WorldUI class will be presented and discussed.

DARWIN’S WORLD SIMULATION IN C#: AN INTERPRETER

80 JOURNAL OF OBJECT TECHNOLOGY VOL.9, NO. 1.

About the author
Richard Wiener is Chair of Computer Science at the University of
Colorado at Colorado Springs. He is also the Editor-in-Chief of JOT and
former Editor-in-Chief of the Journal of Object Oriented Programming. In
addition to University work, Dr. Wiener has authored or co-authored 22
books and works actively as a consultant and software contractor whenever
the possibility arises. His latest book, published by Thomson, Course

Technology in April 2006, is entitled Modern Software Development Using C#/.NET.

