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Abstract 
This paper extends the idea of co-types (described in a companion paper) to include the 
concept of adjustment hierarchies. An adjustment hierarchy provides a parallel hierarchy to 
a subtyping hierarchy of a type being expanded by the co-type. This has a number of 
advantages including the predefinition of co-types for subtypes of an expanded type, and 
allowing automatic covariant adjustment of parameters for makers, binary methods and 
instance methods, without creating problems for static type safety. 

1 INTRODUCTION 

In a companion paper we described the basic concept of co-types and their integration into 
the Timor programming language [11]. In contrast with most conventional OO languages a 
Timor type definition consists only of a set of instance methods. It has no constructors, no 
binary methods and no class (static) methods. It can have several implementations, each of 
which may implement the type in a different way. An implementation consists of a definition 
of the instance data, code to implement the instance methods and a single constructor, which 
can have implementation-oriented parameters. These can vary both in number and type 
according to the needs of different implementations of the same type. 

A co-type expands some other type by providing, as instance methods: 
• makers, which can have application-oriented parameters relevant to the initialisation of 

instances of the expanded type. Makers are invoked by an application to create a new 
instance of the expanded type. 

• binary methods, which have at least two parameters of the expanded type. These function 
by accessing the instance methods of their parameters as appropriate. Because they are 
instance methods of a different type, they avoid a number of problems associated with 
normal binary instance and class methods [2]. 

• normal instance methods, which can in effect play the role of class methods in other OO 
languages. The instance data in an implementation of a co-type can likewise play a role 
similar to that of class data in other OO languages. 
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In the companion paper we showed that such an arrangement helps to deal with problems 
which would otherwise arise in a language such as Timor, because of its support for multiple 
implementations of a type and qualifying types with bracket methods. 

We pointed out that a co-type can have subtypes, provided that these expand the same 
type as their supertype. We also drew attention to the fact that while subtypes of a co-type 
cannot expand subtypes of its expanded type, a close relationship nevertheless exists between 
subtype hierarchies of an expanded type and co-types for these subtypes. This paper 
describes the relationship between these hierarchies in the context of Timor. In doing so, we 
present a new concept, which we call adjustment. This mechanism allows co-type definitions 
and their implementations to serve as a pattern for co-types of subtypes of an expanded type 
and their implementations.  

We also introduce a safe form of automatic covariant adjustment of the parameters of co-
types, to reflect the different expanded types which occur in the subtype hierarchy of the 
initial expanded type. Thus for example in a Person hierarchy with subtypes Student and 
Employee, makers and/or binary methods appearing in a co-type for Person can optionally 
be adjusted automatically to serve as makers/binary methods for Student or Employee. 
This approach potentially spares the programmer from writing such methods explicitly and 
helps to ensure consistency between co-types which are related via an adjustment hierarchy. 

Section 2 describes the aims of the adjustment concept in a general way. Section 3 
introduces an example of a type hierarchy. Section 4 presents binary methods for a normal 
co-type and shows how similar binary methods can appear in co-types for subtypes of the 
expanded type. Section 5 uses this example to illustrate the idea of covariantly adjustable 
parameters. Sections 6 and 7 extend the idea to makers and to co-type instance methods. In 
section 8 it is shown how adjusted co-types are derived and can be modified. Sections 9 and 
10 illustrate the reuse of code in adjustment hierarchies. A section then follows on related 
work and after that a conclusion. 

2 THE AIMS OF ADJUSTMENT 

An adjustment hierarchy consists of co-types that mirror a subtype hierarchy for an expanded 
type. Given a subtype hierarchy consisting of a root type Person with two subtypes 
Student and Employee (see Figure 1), an adjustment hierarchy could be created (cf. Figure 
2), where Persons expands Person, Students expands Student and Employees 
expands Employee. 

 

Persons

Students Employees 

Person 

Student Employee

Figure 1: A subtype hierarchy Figure 2: An adjustment hierarchy 
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Adjustment hierarchies preserve some features of inheritance without generating a subtype 
relationship. 

Several advantages can accrue from this concept. 
1) Input parameters (and of course return types) in the corresponding methods of an 

adjustment hierarchy can be safely changed covariantly. 
2) An adjustment hierarchy can help the co-type designer to ensure that all cases are 

covered, because it provides a systematic approach which allows methods to be 
predefined, and these are available even for subtypes which are added later in the 
subtype hierarchy. Thus if a type Manager is added as a subtype of Employee, then 
by definition a co-type Managers appears in the adjustment hierarchy under 
Employees. This is particularly helpful when co-types are designed as components 
which can be added to different systems. 

3) For the application programmer the existence of an adjustment hierarchy can 
guarantee that where certain methods exist in a co-type for an expanded type, similar 
methods will exist in co-types for all the subtypes of the expanded type. 

4) Implementations of co-types can be re-used in implementations of other co-types in 
the adjustment hierarchy. 

Here are some of the differences between a subtype hierarchy and an adjustment hierarchy, 
as illustrated from Figures 1 and 2: 
• Whereas Student and Employee are subtypes of Person, Students and Employees 

are not subtypes of Persons. Thus an instance of type Student can be assigned to a 
variable of type Person, but an instance of type Students cannot be assigned to a 
variable of type Persons. 

• A co-type functions only for its corresponding expanded type. Thus Students cannot 
act as a co-type for Person or Employee. 

• Whereas a subtype hierarchy is open-ended and is extended explicitly, an adjustment 
hierarchy has a parallel set of nodes corresponding to those in the subtype hierarchy, 
starting at the node where a new co-type is explicitly defined. 

• Because co-types in an adjustment hierarchy are not subtypes of their adjusting ancestors, 
methods in a higher level co-type need not appear in corresponding lower level co-types. 

• Since any type can serve as an expanded type for a new co-type, it is possible for 
example to define an additional co-type Students2 for Student, and co-types derived 
by adjustment from Students2 will not apply to Person or Employee or their 
subtypes, but only to subtypes of Student. 

The terminology "adjusting" and "adjusted" are used in this paper to indicate co-types and 
methods which have an adjustment relationship to each other. The ancestor(s) and the 
children of a co-type in the adjustment hierarchy is/are called its predecessor(s) and its 
successor(s). 

We now consider a subtype hierarchy and show how an adjustment hierarchy for this 
might appear. 
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3 AN EXAMPLE – THE TIMOR COLLECTION LIBRARY 

The Timor Collection Library (TCL) is a subtype hierarchy based on an abstract type 
Collection. An outline of the TCL was first presented in an earlier paper [8], which in 
some respects is now superseded by the concept of co-types as presented in this and the 
companion paper. In this section we draw liberally on the example as presented in the earlier 
paper. 

Following a collection concept developed initially for Collja [4, 12, 13], the TCL defines 
the organisation of general collections according to the following orthogonal properties of 
their elements: 

• duplication of elements in three forms: 
- duplicates are allowed, 
- duplicates are ignored, 
- duplicates are signalled as exceptions. 

• ordering of elements in three forms: 
- unordered, 
- user-ordered, 
- sorted by user-defined criteria. 

The TCL thus has nine concrete collection types, reflecting all the combinations of these 
properties. These are as follows: 
 

Collection 
Type Name 

Duplication 
Criterion 

Ordering 
Criterion 

Bag Allow duplicates No ordering 
Set Ignore duplicates No ordering 
Table Signal duplicates No ordering 
List Allow duplicates User ordered 
OrderedSet Ignore duplicates User ordered 
OrderedTable Signal duplicates User ordered 
SortedList Allow duplicates Sorted 
SortedSet Ignore duplicates Sorted 
SortedTable Signal duplicates Sorted 

To facilitate their polymorphic use with a high degree of flexibility there are also five 
abstract nodes: 
• the root type Collection (which serves as a polymorphic supertype for all collections); 
• the type DuplFree (derived from Collection, a polymorphic supertype for all 

collections which may not contain duplicate elements), 
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• the type Ordered (derived from Collection, a polymorphic supertype for all ordered 
collections), 

• the type UserOrdered (derived from Ordered, a polymorphic supertype for all user 
ordered collections) and 

• the type Sorted (derived from Ordered, a polymorphic supertype for all sorted 
collections). 

The complete structure is illustrated in Figure 3. 

Figure 3: Structure of the Timor Collection Library 

Collection

Ordered 
Table 

Ordered 

Sorted User 
Ordered Bag 

DuplFree

Set Table 

Ordered 
Set
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List 

Sorted 
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Table

 
In order to guarantee behavioural conformity all the common methods of all collection types 
are initially defined in Collection with a maximum of behavioural flexibility. Thus its 
(abstract) method insert, for example, does not define 
• how an insertion affects the ordering of the collection, 
• whether the insertion will be successful if it involves inserting a duplicate, 
• whether an exception will be thrown to indicate a duplicate (but it defines an exception 

DuplEx which might be thrown). 
An abstract type with such methods is designed to allow a maximum of polymorphism. In 
derived types the actions of the insert method are specified more precisely, depending on 
the node in question. Thus the insert method of the abstract type UserOrdered defines 
that insert appends the element at the end of the collection (and adds new methods for 
inserting at other positions) but without defining its duplication properties further. On the 
other hand the insert method of the concrete type Bag is defined without specifying 
ordering, but indicating that duplicates are accepted (with the effect that the exception 
DuplEx can be removed from Bag's insert method). The actual definitions of all the 
methods of Collection and its subtypes are not important in the present context. 

4 BINARY METHODS 

We now define a co-type which expands Collection with binary methods. 
type Collections expands Collection { 
binary: 
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 enq boolean equal(Collection*** c1, c2) throws NullPtr; 
 // *** is the supertype of all modes of a type [5] 
 // compares the elements of c1 and c2 for equality  
 // ignoring their order (if any) but 
 // taking into account the existence of duplicates. 
} 

This co-type does not include makers, because its expanded type Collection is abstract 
and therefore cannot be instantiated. However the co-type is a concrete type which provides a 
binary method for comparing concrete collection instances. The actual concrete types of the 
collections being compared are not important (provided that they are subtypes of 
Collection), because the comparisons are made ignoring the order (if any) of the elements. 
Similarly, because the comparison is made element by element it is not important how the 
actual collections are individually defined with respect to duplicates. (Notice also that the 
actual collections being compared can have different implementations, since the binary 
methods invoke the instance methods of their parameters to make the comparisons.) 

Similar binary methods can be defined which use different criteria to make the 
comparisons. The Collection hierarchy provides an excellent pattern for defining these. 
For example, expanding the type Ordered results in the following co-type: 

type Ordereds expands Ordered { 
binary: 
 enq boolean equal(Ordered*** c1, c2) throws NullPtr; 
 // compares the elements of c1 and c2 for equality  
 // taking into account their order and 
 // taking into account the existence of duplicates. 
}  

Notice that in this case also, actual collections of different types can be compared, provided 
that they are subtypes of Ordered. 

The following example compares concrete collections of the type SortedSet: 
type SortedSets expands SortedSet { 
binary: 
 enq boolean equal(SortedSet*** c1, c2) throws NullPtr; 
 // compares the elements of c1 and c2 for equality  
 // taking into account their order. 
 // Duplicates cannot exist in the parameters. 
} 

5 ADJUSTING PARAMETERS COVARIANTLY IN TIMOR 

Each of the co-types defined above follows a similar pattern (in its definition), though in 
these examples the input parameters differ according to the type being expanded. For this 
reason it would not be safe to define them in a normal subtyping relationship. 

The following co-type definition can form the basis for an adjustment hierarchy which 
has a co-type for each of the Collection subtypes. We have introduced three syntactic 
features which allow such a hierarchy to be defined. 
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type Collection&s expands Collection { 
predefines binary: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr; 
 // compares the elements of c1 and c2 for equality  
 // ignoring their order (if any) but 
 // taking into account the existence of duplicates. 
 } 

Since each co-type in an adjustment hierarchy is a separate type, it needs its own type 
identifier, and for all the successors of the highest node the identifier has to be created 
automatically. In order to achieve this, the type name of each adjusting co-type has three 
parts: the name of the expanded type (here Collection), the ampersand character (&) and a 
suffix (here s). 

The names of adjusted co-types then consist of the appropriate subtype name, the 
ampersand character, and the same suffix, e.g. Ordered&s, List&s. 

The ampersand character is not permitted in identifier names in Timor except in this 
context. This character signals that the co-type is part of an adjustment hierarchy. Several 
adjusting co-types can be created for the same expanded type, using different suffixes and 
co-types can be defined using normal identifiers, but the latter do not generate adjustment 
hierarchies. 

The methods which must appear in each successor are listed in a section where the 
section name (here binary) is preceded by the keyword predefines. 

The keyword TheType, which is not limited to predefining sections, indicates where 
covariant parameter adjustment takes place. In each individual co-type in the adjustment 
hierarchy the name of the corresponding expanded subtype is implicitly substituted for this 
keyword.  

Although the use of TheType allows signatures for similar methods to be automatically 
generated, the methods themselves may need to be redefined in terms of their functionality 
and/or may need individual implementations. 

6 COVARIANT MAKERS 

We omitted makers from the co-type Collections (and the above version of 
Collection&s), because their expanded type Collection is an abstract type, which 
cannot therefore be instantiated. 

However, introducing adjustment allows makers to be predefined in a co-type for an 
abstract type, such that these only become run-time methods in co-types for its concrete 
subtypes. To achieve this we simply predefine makers in an analogous way to the 
predefinitions of binary methods. 

We change the example of Collection&s to include predefined makers: 
type Collection&s expands Collection { 
predefines maker: 
 op TheType init(); 
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  // Returns a new empty collection value of type TheType. 
  // Increments the count of collections of type TheType. 
 op TheType convert(Collection*** c1) throws NullPtr; 
  // Returns a new collection value of type TheType which 
  // contains each element in c1 (possibly ordered and 
  // possibly without duplicates). Increments the count of 
  // collections of TheType. 
predefines binary: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr; 
} 

Notice that the input parameter of the maker convert is not defined as covariantly 
adjustable. The reason is that it should be possible to create an instance of a specific 
collection type from instances of any subtypes of Collection, e.g. by merging them in 
such a way that the resulting order and duplication properties conform to the definition of the 
expanded type. This technique allows an instance of any concrete collection type to be 
converted (by copying the relevant elements) to an instance of any other concrete collection 
type. 

7 INSTANCE METHODS 

Instance methods of co-types can have parameters of the expanded type, and in this case 
parameters declared as TheType are adjusted covariantly in adjusted successor co-types. 

Instance methods of co-types which play a role similar to that of class methods in 
conventional OO languages typically do not have parameters of the expanded type. 
Nevertheless it can make sense to provide these as predefined methods, even in cases where 
the expanded type is an abstract type. For example each co-type might maintain a count of 
the number of instances which its makers have created. Then each co-type could provide an 
instance method which returns the value of the count. 
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singleton type Collection&s expands Collection { 
predefines instance: 
 enq int instances(); 
  // returns the current count of instances of TheType 

In this example the keyword predefines ensures that an appropriate instance method 
would exist in each co-type in the hierarchy. Timor ensures that singleton types have only 
one instance within a persistent file, see [11]. 

Instance Methods which are not Predefined 

There are cases where it can be useful to define instance methods (but also binary methods 
and makers) which are not intended to appear in their adjusted co-types. For example if each 
collection object were to be provided with a unique serial number, then it would be possible 
to organise the allocation of serial numbers in a singleton object of the co-type 
Collection&s, e.g. 

singleton type Collection&s expands Collection { 
instance: // the following method is not predefined 
 protected op int getNextSerialNumber(); 
  // returns the serial number for a new collection   
... 
} 

In this case the makers for concrete subtypes of Collection would call the method and 
then initialise the newly created collection with the serial number. The method is not 
predefined, because only the singleton object instantiated from Collection&s would 
control the issuing of serial numbers. 

Protected Methods and Co-type Hierarchies 

As the above example illustrates, co-types can define protected methods as a mechanism 
by which controlled access is provided for other co-types in the same adjustment hierarchy. 

8 DEFINING ADJUSTMENT HIERARCHIES 

This section describes how successor co-types in an adjustment hierarchy can be defined in a 
manner analogous to the definition of subtypes in a conventional object oriented 
programming language, modifying the syntax for Timor's derived types where appropriate.  

An Example Definition of Collection&s 

We begin by drawing together the previous examples to provide an overview of a co-type 
Collection&s, which includes a subset of the methods provided in the TCL. This serves as 
starting point for illustrating the principles of adjustment. 
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singleton type Collection&s expands Collection { 
predefines maker: 
 // A maker in an abstract type provides a pattern for 
 // makers of concrete subtypes. 
 // Makers in successors of Collection&s increase a count of 
 // instances of the respective expanded types. 
 op TheType init(); 
  // Successors for concrete expanded types return a new 
  // empty collection value of type TheType. 
 op TheType convert(Collection*** c1) throws NullPtr; 
  // Successors for concrete expanded types return a new 
  // collection value of type TheType containing relevant 
  // elements in c1 in accordance with the definition 
  // of TheType. For duplicate free types duplicates 
  // are eliminated, but exceptions are not raised. 
predefines binary: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr; 
  // compares the elements of c1 and c2 for equality  
  // ignoring their order (if any) but taking into account 
  // the existence of duplicates. 
predefines instance: 
 enq int instances(); 
  // returns the number of instances created for TheType 
  // which for Collection&s (and co-types of other abstract 
  // expanded types) is always zero 
} 

This example automatically implies that co-types, which have the same predefining methods, 
exist for all the subtypes of Collection, and that these have names such as Bag&s, 
List&s, etc. These can be used without being explicitly defined, unless the programmer 
needs to make explicit modifications to the predefined methods or add new methods (which 
can but need not) be predefining. 

Explicitly Modifying Implicit Co-Type Definitions 

• To make changes to an implicit successor co-type the programmer provides an explicit 
definition of this which is introduced with the keyword adjusts (in an analogous way to 
the use of extends or includes for defining derived types in Timor [10, 9, 8, 7]). 

• Methods with semantics which need to be redefined are explicitly described in a 
redefines section and in the adjusted co-type these replace the corresponding methods 
from the adjusting type, provided that the signature does not change (analogous to 
"overriding"). Changes involving only the meaning of TheType are not considered to be 
changes in this sense, and therefore require no redefinition. 

• New methods can be added in the usual way in appropriate sections. If a new method is 
defined which has the same identifier as that of a predefined method but with a changed 
signature (other than changes involving only the meaning of TheType) then this method 
is considered to be a new method (analogous to “overloading”). In this case both the 
predefined method and the new method are present in the adjusted type. 
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• Where signatures of predefined methods need not be changed (except for covariant 
adjustments), neither the relevant section nor its methods need (but can) be included in 
the redefinition of the co-type. 

Redefining Co-Type Methods: An Example 

The binary method in this example needs a semantic redefinition in the co-type for ordered 
collections. Here is an extract illustrating this. 

type Ordered&s expands Ordered { 
adjusts: Collection&s; 
redefines: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr; 
 // compares the elements of c1 and c2 for equality, 
 // taking into account their order and 
 // taking into account the existence of duplicates. 
 ... 
} 

Adding New Methods: An Example 

A key difference between UserOrdered&s and its predecessor Ordered&s is that it 
introduces a new maker which creates a new collection that has the reverse order of its 
parameter, i.e. 

type UserOrdered&s expands UserOrdered { 
adjusts: Ordered&s; 
predefines maker: 
 op TheType reverse(Ordered*** c1) throws NullPtr; 
  // Returns a new ordered value of type TheType  
  // which contains elements in the reverse order from c1 
  // Increments the count of collections of TheType. 
 } 
} 

Notice that a reverse operation cannot be defined in Ordered&s because there is no 
reversal order which can produce a sorted collection (because these are ordered according to 
explicitly provided sorting criteria which affect the type definition). However, a sorted 
collection can be reversed, in which case it becomes a user-ordered collection. Unordered 
collections cannot be reversed, as they have no order.  

Merging of Multiply Adjusted Co-Types for Diamond Inheritance 

When an expanded type has two or more supertypes (as in the case of most of the concrete 
types in the collection hierarchy) the question of merging the corresponding adjusted co-
types arises. This issue resembles that which arises in a subtyping hierarchy with diamond 
inheritance and is handled in an analogous way (see [8]). 

Type Adjustment Rule 1: If in an adjusted type multiple methods which result from a 
common adjusting predecessor and which have the same signature (in this context including 
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parameters defined using the keyword TheType), they are treated as a single method (unless 
they have return types which differ from each other, in which case a compile time error 
arises). According to this definition makers, binary methods and instance methods can all be 
merged. 

Type Adjustment Rule 2: If the definitions of such methods differ (i.e. if one or more of 
them has been redefined differently from the definition in their closest common predecessor), 
they must also be listed in a redefines clause in the type being defined. 

Rule 2 in effect requires that conflicting definitions are clarified. Where a definition in 
one of the ancestors can be used in the new type this can be signalled by the use of the 
keyword from followed by the name of the appropriate co-type. 

For example List&s is adjusted from both UserOrdered&s and Bag&s. One of the 
methods which it derives from both is the binary method equal, which can be redefined as 
follows: 

type List&s expands List { 
adjusts: Userordered&s, Bag&s; 
redefines: 
 boolean equal(TheType*** c1, c2) throws NullPtr 
                                         from UserOrdered&s; 
} 

Merging of Multiply Adjusted Co-Types for Parts 

Lack of space prevents us from providing a detailed description of co-types for types which 
result from the multiple inheritance of separate types. However, the principles basically 
follow mutatis mutandis those used in defining the types themselves (see [9]). In the co-type 
the keyword adjusts is used instead of extends or includes, and in the case of repeated 
inheritance multiple co-type methods for a repeated expanded type are not required. 

9 IMPLEMENTING ADJUSTMENT HIERARCHIES 

In accordance with the normal Timor implementation approach [10, 8] any type (including a 
co-type) can have different implementations coded in different ways. Code is inherited 
neither in implementations of subtypes nor in successor co-types, and like any other type, 
these can be implemented from scratch. The only relationship which might exist between 
implementations of related types is via re-use variables. However re-use variables can also, 
where appropriate, be based on implementations of types which are unrelated to the type 
which is currently being implemented [6, 9]1. 

As at the type level, the keyword TheType can appear anywhere in the code of a co-type 
implementation as if it were the name of the expanded type of the co-type currently being 
                                                           
1 The re-use variable technique is related to delegation, but is more efficient. If the types of re-use variables 
have interface methods which match those of the type being implemented, then the corresponding method 
implementations are treated as the required implementations, unless the method is explicitly re-implemented. A 
re-use variable can also be used like any other internal variable. 
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implemented. The keyword predefines is not used in implementations, because the 
compiler does not automatically produce adjusted implementations of successor co-types. 

We illustrate an implementation of Collection&s and then show how this can be re-
used to implement successor co-types. 

An Example Implementation of Collection&s 

For illustration purposes the makers in this example return a linked implementation of the 
corresponding expanded Collection type. (An algorithm which chooses between different 
implementations of the expanded type could of course be used, but this would unnecessarily 
complicate the example.)  

impl Collection&s::Impl {// implementation names consist of 
// the type name and an implementation name, separated by :: 
state: 
 int instanceCount = 0; 
maker: 
 op TheType init() { // implementations can be provided for 
  // makers in a co-type for an abstract expanded type 
  // for re-use in successor co-types. 
  instanceCount++; 
  return TheType::LinkedImpl(); 
 } 
 op TheType convert(Collection*** c1) throws NullPtr { 
  // this algorithm functions correctly for all concrete TCL 
  // subtypes despite differing definitions of the expanded 
  // types but in some cases more efficient code is possible 
  if (c1 == null) throw new NullPtr; 
  TheType c = TheType::LinkedImpl(); 
  for (ELEM x in c1) { // ELEM is the generic type of 
    // elements in a collection. Generic issues have been 
    // ignored in this paper, but will be the subject 
    // of a later paper. 
   try { c.insert(x); } 
   catch (DuplEx de) { /* ignore it!*/ }; 
   } 
  instanceCount++; 
  return c; 
 } 
binary: 
 // binary methods can be invoked, even if TheType is 
 // abstract. 
 enq boolean equal(TheType*** c1, c2) throws NullPtr { 
  // This algorithm needs modification for co-types of 
  // subtypes of some expanded types 
  if (c1 == null || c2 == null) throw new NullPtr; 
  if (c1.size() != c2.size()) return false; 
   for (ELEM x in c1) { 
    if (c1.occurrences(x) != c2.occurrences(x)) 
    return false; 
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   } 
   return true; 
 } 
 enq int instances() { 
  return instanceCount; 
 } 
} 

Implementing the Successor Co-Types 

We now try to use the normal Timor re-use variable technique (see [6, 9]) in an attempt to 
implement Bag&s. Our first attempt might be along the follow lines: 

impl Bag&s::Impl { 
state: 
^Collection&s collections s = Collection&s::Impl(); 
  // a re-use variable is indicated by a hat symbol 
} 

The methods of Collection&s match those of Bag&s, and in principle the implementations 
require no changes, since neither new methods nor code overriding is required. However in 
the process of matching the methods of Collection&s to those of Bag&s a type problem 
arises because the relevant parameters have not been covariantly adjusted. 

To overcome this problem we extend the idea of re-use variables to take covariant 
adjustment into account, and to make this clear such re-use variables are denoted by a double 
hat symbol, as follows 

impl Bag&s::Impl { 
state: 
^^Collection&s collections = Collection&s::Impl(); 
  // an adjusted re-use variable is indicated by a double 
  // hat symbol 
}; 

To achieve the adjustment each use of TheType in Collection&s::Impl is adjusted to 
the expanded type of the current implementation, i.e. in this case each occurrence of 
TheType is treated as if it means Bag. 

The expanded type Bag is a concrete type, but Collection&s::Impl was framed in 
such a way that no further change is necessary. In fact the following further co-types could 
be implemented in a similar way:  DuplFree, Set, Table. However, all three could be 
more efficiently implemented, e.g. as follows: 
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impl DuplFree&s::Impl { 
state: 
^^Collection&s collections = Collection&s::Impl(); 
binary: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr { 
  if (c1 == null || c2 == null) throw new NullPtr; 
  if (c1.size() != c2.size()) return false; 
   for (ELEM x in c1) { 
    if (!(x in c2)) return false; 
  } 
  return true; 
 } 
} 

In this case we have simply "overridden" the equal method from Collection&s with 
more efficient code. (There is no confusion with matching, since a method which is explicitly 
re-implemented results in a non-match with the re-use variable.) But now Set&s (and 
Table&s) could be implemented as  

impl Set&s::Impl { 
state: 
^^DuplFree&s duplfrees = DuplFree&s::Impl; 
} 

Implementing the Co-Types for Ordered Collections 

The same principles can easily be applied to Ordered&s and its successors, where in this 
case the ordering of elements is important for the binary method equal. 

impl Ordered&s::Impl { 
state: 
^^Collection&s collections = Collection&s::Impl();; 
binary: 
 enq boolean equal(TheType*** c1, c2) throws NullPtr { 
  if (c1 == null || c2 == null) throw new NullPtr; 
  if (c1.size() != c2.size()) return false; 
  int pos = 0; 
   for (ELEM x in c1) { 
    if (x != c2[pos]) return false; 
    pos++; 
  } 
  return true; 
 } 
} 

This co-type implementation could, for example be re-used in UserOrdered&s, which also 
needs an additional maker, e.g. 

impl UserOrdered&s::Impl { 
state: 
^^Ordered&s ordereds = Ordered&s::Impl; 
maker: 
 op TheType reverse(Ordered*** c1) throws NullPtr; 
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  TheType c = TheType::LinkedImpl(); 
  for (ELEM x in c1) { 
   try { c.insertAtPos(0); } 
   catch (DuplEx de) { /* ignore it!*/ }; 
   } 
  instanceCount++; 
  return c; 
 } 
} 

Handling Multiple Predecessors 

In this example some co-types have multiple predecessors. In principle it would be possible 
to nominate multiple re-use variables (which could be relevant for cases involving parts 
inheritance [9]), but in this example it is not necessary to do so. For example List&s has 
two predecessors, but its implementation can simply re-use UserOrdered&s. 

Alternative Implementations 

As we demonstrated for example in [8] the way in which re-use variables are applied need 
not follow a pattern similar to subclassing. It would for example be equally feasible to begin 
the implementations with an implementation of List&s and re-use this to implement the 
other co-types in the TCL.  

10 FURTHER CODE RE-USE TECHNIQUES 

The techniques described previously can result in very significant savings both at the type 
and implementation levels. However, they do not illustrate how the code of predecessor co-
types can be re-used in cases where methods are not predefined. 

Suppose that a type Person has been defined with three abstract variables name, 
address and dateOfBirth. A co-type Persons might expand Person by defining a 
maker init with parameters for initialising the three abstract variables and a binary method 
equal which compares the values of the three abstract variables. It is not intended that 
successor co-types should have exactly equivalent makers or binary methods and therefore 
these are not declared as predefining. As we shall see it can nevertheless help with re-use if 
the methods are coded in terms of TheType:  

type Persons expands Person { 
maker:  // not predefining 
 op TheType init(String name, addr; Date dob); 
binary: // not predefining 
 enq boolean equal(TheType p1, p2); 
} 

Here is an implementation of Persons: 
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impl Persons::Impl { 
maker:  
 op TheType init(String name, addr; Date dob) { 
  TheType p = TheType::Impl(); 
  p.name = name; p.addr = addr; p.dob = dob; 
  return p; 
 } 
binary: // not predefining 
 enq boolean equal(TheType p1, p2) { 
  return ((p1.name == p2.name) && 
          (p1.addr == p2.addr) && 
          (p1.dob == p2.dob)); 
 
 } 
} 

A type Student might extend Person by adding two abstract variables uniName and 
matricDate and this could have a co-type Students which defines a maker with 
parameters for initialising both Person-related and Student-related variables. A binary 
method might compare the values of all five abstract variables. The co-type for Student is 
not adjusted from Persons. We use different method names to emphasize this. 

type Students expands Student { 
maker:  // not predefining 
 op TheType newStudent(String name, addr; Date dob; 
                         String uniName; Date matricDate); 
binary: // not predefining 
 enq boolean compare(TheType p1, p2); 
} 

Because Persons is defined in terms of TheType an implementation of Students could 
re-use an implementation of Persons as follows: 

impl Students::Impl { 
state: 
 ^^Persons persons = Persons::Impl(); 
maker:    
 op TheType newStudent(String name, addr; Date dob; 
                 String uniName; Date matricDate) { 
  TheType s = persons.init(name, addr, dob); 
  s.uniName = uniName; s.matricDate = matricDate; 
  return s; 
 } 
binary: 
 enq boolean compare(TheType p1, p2) { 
  return ((persons.equal(p1. p2)) && 
          (p1.uniName == p2.uniName) && 
          (p1.matricDate == p2.matricDate)); 
 } 
} 
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Thus Students::Impl re-uses the code of Persons::Impl in order to initialise/compare 
the Person details and then adds further code to initialise/compare the Student details. 
Notice that in this context any implementation of Persons could be re-used. 

In summary, although the methods of a co-type may not be predefining (nor even have 
the same names) the modified re-use technique can be applied to good effect to re-use the co-
type in implementations of related co-types. 

11 RELATED WORK 

Co-type adjustment represents a limited form of covariant parameter adjustment as found for 
example in Eiffel [15, 14]. This technique has fallen into disrepute because in the case of 
input parameters2 it can lead to breaches of static type safety in connection with subtyping 
(cf. [3, 16, 17]). 

Bruce et al. [2] examined this issue with respect to binary methods in considerable detail. 
The essence of their discussion is that covariant adjustment of parameter types cannot be 
fully reconciled with inheritance, that there can be a loss of symmetry and that privileged 
access to the code of one binary parameter can be lost. In the Timor philosophy privileged 
access is not encouraged, because we see it as a violation of the information hiding principle. 
It will be evident to readers that Timor treats binary method parameters symmetrically in co-
types, albeit not in the sense of Bruce et al. 

More significantly, by defining binary methods as instance methods in co-types Timor 
side-steps the issue of reconciling covariant adjustment with inheritance. This separation 
makes covariance possible in an adjustment hierarchy (not only for binary methods but also 
for makers and instance methods), leaving the possibility of subtype polymorphism open not 
only for expanded types but also (independently) for co-types, provided that they expand the 
same type. Hence all the aims formulated by Bruce et al. are reconciled in Timor, albeit in an 
unconventional way. 

The benefits of covariant input parameters for binary methods can be partly achieved via 
overloading, e.g. with Java and C++. When overriding inherited methods the number and 
types of input parameters must be retained unchanged, but the same-named methods with 
covariant parameter types can be added in subtypes. However, using this possibility can 
easily lead to confusion, if attention is not paid to the fact that the selection of the fitting 
method at compile-time depends on the statically declared types of the objects involved. 
Therefore explicit type conversions may be necessary to ensure that the desired methods will 
be called. Type checks and type conversions at run-time are inevitably incurred when 
overriding an inherited binary method, but using overloaded methods instead does not always 
eliminate these. Overloading the Java equals-methods for example is not recommended, 
because it is considered costly and error-prone (see [1] pp.26-35). By contrast the Timor 
approach simplifies the programmer's task and avoids additional run-time checks. 

                                                           
2  Covariant changes to return types were added to the 1998 version of C++ and to the 2005 version of Java, 
because this does not create breaches of static type safety. 
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Finally, in his PhD thesis [16] Schmolitzky proposed avoiding a further problem with 
binary class methods which arises as a result of static binding, by allowing the equivalent of 
Timor's TheType to be used to select, for example, the appropriate equal method 
dynamically, i.e. by using a syntax which in Timor might look like TheType.equal(p1, 
p2). However, because Timor co-types do not use static binding, this problem does not exist 
and therefore Timor does not support this use of TheType. 

12 CONCLUSION 

The paper builds on the concept of co-types described in a companion paper [11], adding the 
idea that co-types can be enhanced in a new hierarchical arrangement which superficially 
resembles subtyping but which has some crucial differences. The basic idea of an adjustment 
hierarchy is that the definitions and implementations of makers, binary methods and instance 
methods (corresponding to static methods in conventional class based languages) for 
expanded types can be adjusted covariantly to match the subtyping hierarchy of the expanded 
types without creating problems for static type safety. Some of the additional advantages of 
this technique are as follows. 

Using adjustment hierarchies can help the co-type designer to ensure that all cases are 
covered, because they provide a systematic approach by predefining methods. The 
implementer of a hierarchy can also take advantage of implementations of other co-types in 
that the compiler can automatically adjust re-use variables covariantly. 

For the application programmer using co-types an adjustment hierarchy guarantees that 
certain makers, binary methods and instance methods (i.e. those which are predefined) exist 
in co-types for all the types in a subtype hierarchy. 

From the technical viewpoint covariant adjustment can be used not only for return types 
but also for input parameters in a type safe manner. 

Over and above this, the idea of co-types as such is very useful, providing a modular 
basis on which types and their co-types can be expanded in different ways, allowing them to 
be designed and implemented as separate components by software houses and even to be 
concurrently used in a single system, in contrast with the conventional idea of supporting a 
single hidden "class object" associated with each class. 

Finally we note that adjustment hierarchies (and all their advantages) can be used not 
only where the expanded type has a hierarchy of subtypes, but also where expanded types are 
derived by inclusion and therefore do not have a subtyping relationship [10]. 
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