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The Discrete Fourier Transform, Part 
5: Spectrogram 

By Douglas Lyon 

Abstract 
This paper is part 5 in a series of papers about the Discrete Fourier Transform 
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is 
on the spectrogram. The spectrogram performs a Short-Time Fourier Transform 
(STFT) in order to estimate the spectrum of a signal as a function of time. The 
approach requires that each time segment be transformed into the frequency 
domain after it is windowed. Overlapping windows temporally isolate the signal by 
amplitude modulation with an apodizing function. The selection of overlap 
parameters is done on an ad-hoc basis, as is the apodizing function selection.  
This report is a part of project Fenestratus, from the skunk-works of DocJava, Inc. 
Fenestratus comes from the Latin and means, “to furnish with windows”. 

1 INTRODUCTION TO SHORT-TIME SPECTRAL ESTIMATION 

A spectrogram (sometimes called a spectral water fall, sonogram, voiceprint or voice 
gram) is a visual rendering of the harmonics of an input signal as a function of time. 
From an implementation point-of-view, this means windowing an input signal, taking 
the Fourier transform and then displaying it. The window is translated in time across 
the signal. Window size, sample overlap, the sample rate, number of bits per-sample, 
etc., are application-specific design parameters. 

Suppose, for example, we are given a turning fork that produces a tone at 440 Hz. 
To compute the period of the waveform, in milliseconds, we divide 1000 by 440 Hz to 
obtain 2.27 milliseconds. The capture/display oscilloscope (written in Java) displays 
the output in Figure 1. 
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Figure 1. The Tuning Fork 

It is clear from Figure 1 that the tuning fork waveform is not sinusoidal. There are 
several possible reasons for this. The tuning fork is in direct contact with the 
microphone (it is not very loud), there is some ambient noise in the input, the 
digitization is only 8 bits and is using u-law coding, finally, the tuning fork waveform 
may not sinusoidal. 

 

Figure 2. The Spectrogram Display Control 

Figure 2 shows the spectrogram display control panel. It enables the user to select a 
Power Spectral Density (PSD), the real part or imaginary part of the FFT or 
“Normal”. 
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Figure 3. The Spectrogram Control Panel 

Figure 3 shows the control over the windowing used for the spectrogram. The window 
functions are described in Part 4 of this series of articles [Lyon 09]. The window size 
is given in samples. The log scale allows for the visualization of the subtler harmonic 
content of the input signal. 

 

Figure 4. The Spectrogram of the Tuning Fork 

Without the log scale, the 440 Hz fork looks like it has 3rd harmonic content (440*3 = 
1320 Hz). 



 
THE DISCRETE FOURIER TRANSFORM, PART 5: SPECTROGRAM 

 
 
 

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1. 

 

Figure 5. The Spectrogram in Log Scale 

The log scale shows power at several harmonics (110, 220, 440, 880, 1320,and 1760). 
With a sample window of 256 samples and a spread of 4 KHz (at 8000 samples per 
second) each sample represents 4000/256 = 15.625 Hz. Further, this is not a pure tone, 
as the waveform suggests. To compensate, we use a 440 Hz sine wave, and compute 
the spectrogram. 
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Figure 6. Spectrogram of a 440 Hz Sine Wave 

Figure 6 shows a log display of the PSD for a 440 Hz sine wave with a rectangular 
window that has 256 samples and 50% overlap. The most powerful harmonic is said 
to be at 437 Hz (which is only 3 Hz away from the actual 440 Hz frequency). Also, 
because the windows is 256 sample with an 8 KHz sampling rate, the duration of the 
window is  1000*256/8000 = 32 ms. This gives a reasonable frequency and temporal 
resolution for our voice-grade audio analyzer. 

The less-than-pure tone tuning fork has its two strongest harmonics at 125 Hz 
and 437 Hz. The 4th harmonic down from the 440 Hz signal is 110 Hz, and 125 Hz - 
110 Hz is 15 Hz, which is right at the limit of the size of our 15.6 Hz bucket. An 
increase in the size of the window (and length of the sample) should enable an 
improved frequency resolution, at the expense of temporal resolution. 

In our last test, we increase the window size to 1024 samples. The two strongest 
buckets are 437 Hz and 445 Hz. This is consistent with our quantization frequency 
(4000 samples per second / 1024 sample = 3.9 Hz). Considering this is an old, abused 
tuning fork, which may not be 440 Hz, our analyzer seems to be doing pretty well. 
However, 1024 is a 1 second sample, and most note events do not last that long. In 
fact, if you average the 437 and 445 buckets together, you get 441 Hz (which is really 
very close to 440 Hz). 

2 TUNING A GUITAR 

Guitars are an interesting instrument for tonal identification. They can have rich 
harmonics (i.e., you can play chords) and they can be monophonic (i.e., they can be 
played just one note at a time) and they are easily tuned. I tune my guitar using the 
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(440 Hz) tuning fork on the A string. The rest of the guitar is tuned by ear, using the 
fret board for relative tuning. 

We take the approach of playing open strings, using a 1024 sample window with 
10% overlap and compare our guitar with the published turning standard for guitars 
[Vaughns].  

Note Name Frequency Measured
E 82 78
A 110 109
D 146 148
G 196 195
B 247 250
E 330 328  

Figure 7. Standard vs. Measured Frequencies 

Figure 7 shows the standard frequencies vs. the measured frequencies, for several note 
names. The nature of the guitar makes it rich in harmonics. For example, a second 
harmonic of G (390 Hz) is sometimes dominant in the output. Considering our 
predicted bucket size is 3.9 Hz, Figure 7 shows the measure frequencies to be within 
the bucket spread. 

We define the bucket spread as the center frequency +-1 bucket frequency 
quanta. So, 82 Hz +- 3.9 Hz is a range from 78 Hz to 86 Hz. Clearly, to reduce the 
bucket spread, we need more samples (either longer events or faster sample rate or 
both). 

3 A MAJOR SCALE 

In this section we play a major scale (doe re me fa sol la ti doe) and see how our 
analysis is able to do, based on the spectrogram. For this experiment, we use a 
window of 256 samples and so expect a bucket quantum of 4000/256 = 15.6 Hz. Thus 
showing what happens when the number of samples is too small. 

Note Name Frequency Measured
C 261 250
D 294 281
E 329 343
F 349 343
G 392 406
A 440 437
B 493 500
C 523 531  

Figure 8. Specified and Measured Frequencies 

Figure 8 shows the specified and measure frequencies. Note that E and F are only 20 
Hz away from one another. The mid-point frequency is only 10 Hz apart. It is clear 
we need more samples, or another algorithm to determine the strongest harmonic. 
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Figure 9. Spectrogram of a Major Scale 
 

Figure 9 shows the 256-sample window spectrogram. This demonstrates that, to the 
human eye, the E and F notes (3rd and 4th notes) are very close to one another on the 
graph and thus hard to tell apart. 

4 INCREASING THE NUMBER OF SAMPLES 

There are two ways to increase the number of samples for the signal, either increase 
the sample rate or increase the signal duration. In this section, we increase the signal 
duration to over 1 second per note, and then increase the window size to 1024 
samples, with 10% overlap and a rectangular window function. 
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Figure 10. Long Duration Notes 

Figure 10 shows the spectrogram for a guitar playing the major scale, in the key of C, 
with notes that last for longer than 1 second. 

Note Name Frequency 256 Wind 1024 Wind
C 261 250 257
D 294 281 289
E 329 343 335
F 349 343 351
G 392 406 398
A 440 437 445
B 493 500 500
C 523 531 531  

Figure 11. Comparison of 256 and 1024 Sample Windows 

Figure 11 shows the expected improvement in precision when the window (and 
signal) size increase. The ability to tell the difference between the E and the F notes 
has been greatly improved. The trade-off between time and frequency precision is also 
made far more clear. 

5 SUMMARY  

This paper shows how Java can be used to drive home the lesson that temporal and 
frequency precision are an engineering trade-off that can drive system design. Using a 
short-time Fourier transform, we demonstrated, both numerically and graphically, 
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how window size, sample rate and duration impact our ability to identify pitch events 
on an input signal. 

Spectrograms are not new [Bartlett]. Nor, for that matter are the windows for 
doing harmonic analysis [Harris]. In fact the CMU Sphinx project has done this type 
of processing in the past [CMU]. However the Sphinx project used native methods. 
What is new is the use of Java (without any native methods) for performing this type 
of processing. Chris Lauer has a pure Java “Sonogram project” but this does not 
attempt to digitize directly from the microphone. Nor does it attempt to do note 
identification. 

There are several methods available for improving our ability to identify guitar 
notes. For example, each note has a unique harmonic signature. Presently, we only 
take the strongest harmonic. However, if we look at several harmonics, we could take 
advantage of individual note harmonic signatures. 

Extending the harmonic signature argument, we might do well to cross correlate 
the input signal with a bank of sampled notes, thus performing a kind of pattern 
recognition. The question of which approach is better remains open. 
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