
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 1, January-February 2010

John D. McGregor: “Intentionality”, in Journal of Object Technology, vol. 9, no. 1, January-
February 2009, pp. 7-13 http://www.jot.fm/issues/issue_2010_01/column1/

Intentionality
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
In philosophical circles intentionality has a very abstract meaning that relates to
consicousness of the mind. I have a somewhat simpler view that “being intentional”
means consciously deciding what you wish to do and then doing it. This includes
following “best practices,” but only those that apply to the current context. In this issue
of Strategic Software Engineering I will discuss examples of how intentionality has
been, and can be, used to improve products and organizations.

1 INTRODUCTION

“If you keep doing what you have always done, you will keep getting what you have
always gotten,” according to Special Agent Anthony Denozo of CBS television’s NCIS.
He said this as he “intentionally” chose to take a different path because he was tired of his
life as it was. All too often we simply do what we have always done without first
considering alternatives even though forces in the world may have made a once very
good decision into what is now a very bad one. With the latest statistics claiming that 15 -
50% of projects are cancelled before they deliver anything, perhaps what we have always
gotten is not what we have always wanted. In this issue of Strategic Software Engineering
I will discuss being intentional in our work and careers.

Intentionality is a property of a decision. A decision that is the result of explicit
examination of relevant factors is an intentional decision. It takes longer to make an
intentional decision so many managers don’t make the effort. They go with the default,
business as usual, and they get what they have always gotten.

The same is true for defining development methods. We need to be intentional about
how we choose to develop. Gary Chastek and I have developed a sequence of steps that a
software product line organization can follow to determine the plan for producing
products [Chastek 08]. The organization first determines a production strategy based on
the strategic goals of the product line. The product line organization filters the strategic
goals to identify those that relate to how the products are developed. The strategic
production goals are associated with specific production techniques forming the
production method. This is where it gets intentional. Rather than just doing what we have
always done, we intentionally select only those production techniques that explicitly

 INTENTIONALITY

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

relate to the current goals of the product line. Finally the production plan is formed by
creating a template schedule for carrying out the production method.

Like many researchers my age (old enough) I have seen many research areas
blossom and I have seen many of them fade. Some faded because the most important
problems were solved (basic issues of object-orientation) while others (AI) have faded
because insufficient progress was made. A researcher has to be particularly intentional
since we know that no problem will last a 30 year career. We have to make decisions to
knowingly shift directions no matter how subtle the shift may be as new research areas
emerge and old ones wane.

One manager in Microsoft made an intentional decision [Taft 09]. He determined
that his organization needed to be more intentional about their engineering. He shut down
development for several months and directed a bug hunt. They found the bugs by
increasing the amount of automated testing they had available to use. Once the majority
of the bugs in their current product were identified and repaired he put in place a new
method. Visual Studio was the product. At one point during the development of Visual
Studio 2005 32,000 defects had accumulated. By being intentional about maintaining the
appropriate level of test automation the building of Visual Studio 2008 never had more
than 5,000 defects identified but not found.

Bureaucratic intentionality is not always a useful thing. All of us have seen “This
page intentionally left blank” in some official document. In this column I will avoid
philosophical arguments about whether the page is actually blank once that notice is
added or not; however, every time I see that phrase I am reminded of people following
procedure whether it makes sense or not. I will try to remain focused on productive uses
of intentionality.

In the next section I will discuss best practices in the context of intentional decision
making. Then I will consider three critical areas: requirements, software architecture, and
reuse. I will conclude with some observations cutting across these areas.

2 BEST PRACTICES

Many organizations claim to follow best practices and a few even publish what they term
best practices. Perhaps I am just splitting hairs but “best” is an absolute that requires
justification. Most of the published best practices have not been critically compared to
any other practices much less all other similar practices. At best, “best” means best in the
limited scope of that organization or that of the author.

Companies publish best practices for internal use and for use by their customers. For
example, IBM has their famous Red Book series, but most of those are how to solve
specific problems using IBM built tools. At best, these are well-thoughtout processes, but
with no claim to the title “best practice.”

Just as I was writing this column a group of well-known software engineering
researchers made public an effort to be more intentional about identifying best practices

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 9

by establishing a theory regarding the foundations of software engineering. If this effort
bears fruit, software engineers will be able to make more precise decisions about how to
engineer processes.

Their effort, Software Engineering Method and Theory (SEMAT) is described at
www.semat.org. They present obstacles to and objectives for their work. One point that I
am certain they recognize, but have not explicitly stated, is that no technique is best, or
even necessarily good, in every possible situation. To establish best practices, there needs
to also be research on specifying contexts. Then practices can be evaluated in specific,
and appropriate, contexts and compared fairly.

The context includes the culture and domain of the organization which the
development occurs and of the users of the product. The rhythm at which the organization
is operating also influences which practices are best. Intentional selection of practices
will be far better than relying on “best practices” until we arrive at a method for actually
determining “best”.

3 BEING INTENTIONAL ABOUT REQUIREMENTS

Over time I have seen many managers be passive about requirements: “Yes, requirements
change late in the project. It has always been that way.” “Customers never know what
they really want until they see what they don’t want” is heard often. With no claim to be
defining a best practice, lets consider some techniques for requirements modeling.

There are several ways to represent requirements.
• For many years, and still in some domains, requirements were individual

statements of required behaviors and qualities. The favorite tool was a
spreadsheet. This form is very modular. It is easy to change one requirement but it
is virtually impossible to determine the impact of that change on other
requirements.

• Then the use case technique introduced actors and scenarios [Jacobson 92]. By
intentionally identifying the set of actors, a use case model could be evaluated for
completeness, which had eluded previous requirements techniques. The addition
of scenarios gave a basis for structuring and classifying requirements. This in turn
provided a basis for determining the impact of a change and determining whether
the requirements were consistent.

• Agile development methods introduced stories as a means of capturing
requirements. [Cohan 04] suggests a format for user stories:

As a (role) I want (something) so that (benefit).

These stories are less formal than the scenarios in use cases and less structured.
Each story is assigned a priority which provides a sequence but does not support
impact analysis.

 INTENTIONALITY

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Most recently software product line people have used feature models as at least part of
the representation of requirements [Kang 90]. Feature models add the concept of
variability so that the features can represent the requirements of several products, not just
one. Combined with a constraint language to identify dependencies among features, this
model supports a number of analyses.

I now use a combination of feature modeling for high level product specification and
use cases for more detailed modeling of requirements. I intentionally combined these
techniques because neither provides everything needed for the total development cycle
but together they do.

The actor model of the use case model is easier to evaluate for completeness than a
list of requirements and the feature model is easier to evaluate for consistency. I
proactively conduct this analysis and then actively work to complete the use case model.

4 BEING INTENTIONAL ABOUT ARCHITECTURE

Grady Booch has said, “An intentional architecture is explicitly identified and then
implemented. [Booch 06]” Software architecture has gone from being a “black art” to an
engineering discipline because of the intentional techniques developed by the software
architecture research community. Previously I described some of the techniques in the
modern theory of software architecture so I will not go into much detail here [McGregor
04]. What I will do is list several items that illustrate how intentional architecture practice
has become.

Quality attributes – The recognition of non-functional requirements is no recent
discovery, but earlier methods left much of the responsibility for satisfying these
requirements to developers rather than architects. Developers often coded a system and
then evaluated its performance. If it was not acceptable they then attempted repairs.
Recent techniques have become much more intentional. Attributes such as performance
are now intentionally included in the architecture design and models are used to predict
the level of that quality in the final products. The Architecture Analysis and Design
Language (AADL) provides an extensible set of properties that are used to represent
specific quality attributes [AADL 09].

Architecture tactics – An architecture tactic is a design decision that affects the value
of a quality attribute [Scott 09]. The software architecture initiative of the Software
Engineering Institute has defined a standard approach to representing a tactic and has
identified a number of tactics. Arche is an experimental tool that allows the user to
explore their architecture in terms of two specific quality attributes: performance and
modifiability [Bachmann 03]. The tool allows users to add other quality attributes by
defining their own plug-ins to Arche. Each reasoning framework associates a means of
predicting the level of the quality attribute with specific tactics that enhance the level of
that attribute.

Architecture documentation – Techniques for identifying multiple views and
standards for the content of those views have made architecture documentation more

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 11

effective and more complete. Explicit directions for documenting, such as Views and
Beyond [Clements 02] and the IEEE 1471 standard [IEEE 09], allow the architect to
explicitly address the needs of individual stakeholders.

Architecture evaluation – The Architecture Trade-off Analysis Method (ATAM) is
used to evaluate an architecture [Barbacci 03]. The evaluation technique identifies
scenarios that address each of the quality attributes specified in the requirements. The
scenarios in the use cases are a starting point for the development of these scenarios. The
evaluation can be focused in any way that supports the goals of the organization.

Beyond these ideas, there is a convergence that will make architecture practice more
intentional. Architecture description languages are maturing to the point that the architect
can make models to aid their thinking. Those models of the architecture can be used to
analyze and predict quality attribute levels. That same description can be used as the basis
for the documentation and evaluation.

5 BEING INTENTIONAL ABOUT REUSE

Over the years many schemes have been defined for reusing software from one product to
another. Most of these schemes have failed. Those failures are the result of unintentional
choices that accept the status quo rather than intentionally exploring techniques that
address explicit objectives. For example, everyone has agreed that reuse works best
within a specified context, but most projects are single development projects. There often
is not sufficient continuity or prior planning to retain a sufficient amount of context from
one single-product project to the next. A software product line organization has several
characteristics that help the organization make intentional decisions about reuse and
operate as a single context:

An explicit scope – A software product line organization explicitly chooses the limits
on the set of products it will construct. This scope is represented by a feature model. The
scope provides the context needed to make a software reuse approach successful.

Architecture-centric – The architecture drives many of the decisions in a software
product line organization. In particular, the architecture provides a context in which
choices can be made explicitly.

Explict production plan – As described in the Introduction, a software product line
organization intentionally analyzes its goals and derives a production method. The
process of developing the production strategy, production method, and production plan
stimulates an intentional approach.

Hewlett Packard was intentional about the design of their reuse organization, but in
an intriguing way. They intentionally put in place an approach they termed “Progressive
Open Source [Melian 02].” However, to be successful the approach had to be allowed to
grow organically rather than following a mandated approach. They intentionally started a
process that is not intentional! This is consistent with management reducing their level of
control of an open source development process.

 INTENTIONALITY

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

6 SUMMARY

Being intentional is necessary for being strategic. Strategic planning requires intentional
actions to reach specific goals. Many software engineering methods have taken what used
to be intuitive techniques and made them more intentional. Strategic software engineering
is inherently intentional and will get you where you plan to go. Just be certain that where
you plan to go is where you want to go.

REFERENCES

[AADL 09] www.aadl.info, 2009. Last visited 12/5/09.

[Bachmann 03] Felix Bachmann, Len Bass, and Mark H. Klein. Preliminary Design of
ArchE: A Software Architecture Design Assistant, CMU/SEI-2003-TR-021,
2003.

[Barbacci 03] Mario R. Barbacci, Paul C. Clements, Anthony J. Lattanze, Linda M.
Northrop, and William G. Wood. Using the Architecture Tradeoff Analysis
Method (ATAM) to Evaluate the Software Architecture for a Product Line of
Avionics Systems: A Case Study, CMU/SEI-2003-TN-012, 2003.

[Bell 07] Peter Bell. A practical high volume software product line, Conference on Object
Oriented Programming Systems Languages and Applications, 2007.

[Booch 06] Grady Booch. The Accidental Architecture, vol 23, n 3 IEEE Software, 2006.

[Chastek 08] Gary J. Chastek, John D. McGregor: Production Planning in a Software
Product Line Organization. SPLC 2008: 369.

[Chesbrough 03] Henry Chesbrough, Open Innovation: The New Imperative For
Creating and Profiting from Technology, Boston: Harvard Business School
Press, 2003.

[Cohan 04] Mike Cohan. User Stories Applied: For Agile Software Development,
Addison-Wesley, 2004.

[Clements 02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, Judith Stafford. Documenting Software
Architectures: Views and Beyond, Addison-Wesley, 2002.

[IEEE 09] IEEE 1471, Recommended Practice for Architectural Description of Software-
Intensive Systems, http://www.iso-architecture.org/ieee-1471/, last visited
11/29/2009.

[Jacobson 92] Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, 1992.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 13

[Kang 90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A.
Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study, CMU/SEI-90-TR-021, 1990.

[McGregor 04] John D. McGregor: “Software Architecture”, in Journal of Object
Technology, vol. 3, no. 5, May-June 2004.
http://www.jot.fm/issues/issue_2004_05/column7/

[Melian 02] Catharina Melian1, Cathy Burles Ammirati 2, Pankaj Garg, Guje Sevon.
Building Networks of Software Communities in a Large Corporation.
www.hpl.hp.com/techreports/2002/HPL-2002-12.pdf, last visited 11/29/2009.

[Scott 09] James Scott and Rick Kazman. Realizing and Refining Architectural Tactics:
Availability, CMU/SEI-2009-TR-006, 2009.

[Taft 09] Darryl K. Taft. Microsoft pays the Visual Studio Debt, DevSource,
http://www.devsource.com/c/a/Using-VS/Microsoft-Pays-Visual-Studio-
Debt/, last visited 11/29/2009.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a visiting scientist at the Software Engineering Institute, and a partner in
Luminary Software, a software engineering consulting firm. His research interests
include software product lines and component-base software engineering. His latest book
is A Practical Guide to Testing Object-Oriented Software (Addison-Wesley 2001).
Contact him at johnmc@lumsoft.com.

