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Abstract 
Requirements specification is a collaborative activity that involves several developers 
specifying the requirements elicited through several stakeholders. Operation-base 
merging allows combining specifications using the information available about their state 
as well as their evolution or change. Thus, leading to a more precise, accurate and 
efficient merging. Differencing specifications is a tedious, complicated, and a crucial 
process needed for operation-based merging of specifications resulting from 
collaboration. An approach for differencing Object-Oriented formal specifications is 
proposed in this paper. The difference is modeled as a set of primitive operations and is 
produced based on the matching results of specifications’ elements. These matchings 
are calculated based on an approach employing elements’ syntactic and structural 
similarities. The proposed differencing approach is empirically validated. 

1 INTRODUCTION 

Collaboration [17] is necessary during the development of large-scale software systems 
where several developers work in parallel on different aspects of the same system. Often, 
this leads to the creation of different but related documents. These documents could be in 
the form of design models, software specifications, source code, etc. During a particular 
collaborative activity, a resulting local version of a document needs to be merged [2, 6] 
with the version of the document available in a shared repository. The latter shared 
document encloses all the modifications made locally by the developers involved and 
checked into the repository at that point in time.  

Specifying software requirements is an important, complicated and error prone task 
that involves the collaboration of several peopled specifying requirements elicited 
through several stakeholders. Studies have shown that most of the problems with 
software projects such as not meeting the needs of stakeholders, late delivery and budget 
overrun can be traced back to problems with the requirements [11]. Asynchronous 
collaboration allows members of a group to modify copies of a shared specification in 
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isolation, working in parallel and afterwards synchronizing their copies to reestablish a 
common view. This gives a great deal of flexibility, and matches the needs of 
collaborative requirements specification. Moreover, since requirements specification is an 
early phase of software development, any conflicts detected and resolved at this phase 
will have a positve impact on the quality and cost of the delivered software as these 
conflicts will cost higher to detect and resolve during later stages of development. 

Merging requirements specified informally is unpractical, inefficient, error prone, 
and time consuming due to the ambiguous and imprecise nature of natural languages and 
most of the graphical notations used. Formal methods [8] offer a better alternative 
because of their precise and accurate nature. Object-Oriented (OO) formal methods, such 
as Object-Z [16], combine the strengths of two worlds: the world of formal languages and 
the world of OO methods. When used to specify software requirements, they produce 
specifications that are precise, clear, and highly reusable. Thus, they are suitable to be 
used when developing specifications collaboratively as they facilitate systematic 
manipulation.  

Employing unique identifiers for the elements of the merged documents; such as in 
[13]; introduces tool dependency. The latter term refers to approaches that are dependent 
on the tools used to create and modify the documents to be merged. In order to support 
the tool independence requirement [5], merging should not rely on elements’ unique 
identifiers. Thus, there is a need for an approach that can compute the exact difference 
between two versions of a document.  

In operation-based merging [9, 12], the difference (or delta) is modeled as a set of 
primitive operations transforming a document’s version into another one. Analyzing these 
deltas provides a good support for the systematic detection and resolution of conflicts 
[14] before merging their content with a shared document. Moreover, operation-based 
merging leads to a better efficient as the number of operations differencing documents is 
statistically smaller than the number of elements they contain. 

Several existing differencing approaches; such as in [3, 4, 10]; process the 
manipulated documents as trees, which is restrictive and not applicable to a large number 
of documents including software requirements specifications. Moreover, even if the 
similarity detection approaches used work well with trees, there is no guarantee that they 
will be able to detect the similarities between the elements of documents with a graph 
structure such as OO formal specifications. Furthermore, in [12], it has been indicated 
that domain independent approaches do not to work well with all software documents 
compared to approaches intended for specific documents. Finally, to our knowledge, 
there is no existing differencing approach intended specifically for OO formal 
specifications. 

A differencing approach for OO formal specifications is proposed in this paper. It 
comprises two parts: the first part consists of comparing specifications to identify their 
matching elements, and the second part uses the matching results to produce deltas 
differentiating them. These deltas are formally modeled as a set of primitive operation 
with traceability information allowing the reversal of their effect. The differencing 
approach is empirically validated. 
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2 MATCHING THE ELEMENTS OF SPECIFICATIONS 

Differencing specifications requires identifying their matching elements. As a motivation 
example, consider the following classes representing a shared specification, and two 
versions representing some parallel modifications made to it by two different developers. 
Object-Z notation has been used to specify the three versions. 

 

Figure 1: Three versions of an Object-Z class 

The class Professor includes two operations New and Affiliate that are the only elements 
visible outside the class. The operation New is used to assign values to the state attributes 
Id, Name and Expertise, which represents a professor’s personal data. The operation 
Affiliate is used to assign a value to the state attribute Faculty. The classes Academician 
and TeachingStaff are the result of some parallel modifications made to the class 
Professor by two different developers. In the class Academician, in addition to the class 
name that has been changed, the operation Affiliate has been removed and its 
functionality (dealing with the attribute Faculty) has been delegated to the operation New 
that is the only class’ element visible. In the class TeachingStaff, in addition to the class 
name that has been modified, the attribute Expertise has been removed, the attribute 
Faculty has been renamed as Institution while the operations New and Affiliate have been 
renamed as Add and Join respectively. In addition, the operation New has been modified 
by removing the part dealing with the deleted attribute Expertise. 
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A good matching approach should be able to produce precise and accurate results 
identifying the similarities between the elements of the compared specifications. For 
example, it should match the classes Professor and TeachingStaff, the attributes Faculty 
and Institution, the operations New and Add, the operations Join and Affiliate, etc. 

In the proposed matcing approach, each input specification is treated as a graph 
whose nodes are the specification’s elements. Each link has a source and a target element 
as well as a type. For example in case of an operation O defined in a class A, a link is 
created to represent this relation. Its source and target are O and A respectively, and its 
type is “declared_in”. This is further discussed in the next section.  

The similarities that exist between specifications’ elements are stored in a matching 
function: 

 
ELEMENT is the base class representing specifications’ elements that include Class, 
Variable, Operation, and Predicate. The returned value of Match is a real number 
(between 0 and 1) representing the exact similarity that exist between the two compared 
elements. The similarity scorings are added to Match if they are greater than or equal to a 
chosen threshold t. The latter is a real number between 0 and 1 that defines the strictness 
of the matching process. 

The similarity between any two elements e1 and e2 is calculated based on their 
syntactic (SSyntactic) and structural (SStructural) similarity using the following formula: 

 
SSyntactic is best value obtained from Longest Common Substring (LCS) and n-gram [7] 
algorithms (n=2 in the proposed approach) where the computation is case-insensitive and 
all noise characters are normalized before the calculation. This is to overcome the change 
of word order, and the length of strings issues [18]. For example, Professor and 
TeachingStaff are 0.091 similar (LCS gives 0.091 while 2-gram gives 0).  

SStructural is calculated using the following formula: 

 

Where sum is obtained by cumulating the syntactic similarities (or 0 or 1) between the 
compatible items of e1 and e2 and the elements associated with them, and count is the 
number of items/elements used in the calculation of sum. SStructural is not dependent on the 
order of the elements / items used in the calculation. Table 1 illustrates how the overall 
similarity between the operations New and Add of the classes Professor and 
TeachingStaff is computed. 
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Table 1. Similarity computation example 

Aspect Similarity 
Classes 0.091 
Visibility  1 
Accessed Attributes 0.572 
Inputs 0.75 
Outputs N/A 
Preconditions N/A 
Postconditions 0.698 
SSyntactic 0 
SStructural 0.623 
Overall similarity 0.623 

During the computation of SStructural, attribute names (as well as inputs and outputs) are 
replaced by their respective type when processing predicates (init, invariants, 
preconditions, and postconditions). The reason behind this is that for all the latter 
elements; type is the most important factor; names as well as their order of appearance 
could be ignored in this context. Thus, the impact of SSyntactic on SStructural is reduced for 
structurally similar elements. For example, even if the names of operations New and Add 
are not similar at all, their overall similarity is 0.623. Moreover, if two operations are 
matched, their parameters (inputs/outputs) are matched according to the similarities of the 
attributes they manipulate. Parameters with same names and types are not matched unless 
they manipulate matched attributes.  

The proposed matching approach progresses in a bottom-up style as class’ elements 
are compared before top-level elements. It also switches to top-down when the overall 
similarity of classes is known to re-compute the similarities of their elements (i.e. 
Mutual-Enforcing-Relationship). In other word, classes are similar if they have similar 
elements and elements are similar if they are contained in similar classes. Finally, the best 
match is taken in case a specification’s element is matched to more than one element. 

3 DIFFERENCING SPECIFICATIONS 

Given a set S of all the specifications, differencing between two specifications S1 and S2 
is the process of identifying the exact set of operations (transformations) that allow 
obtaining S2 from S1.  

The systematic identification of the exact differences that exist between two 
specifications requires a formal definition of the change operations involved. An 
algorithm to precisely compute this change can then be developed. Table 2 shows the 
proposed operations defining a difference between any two given specifications. 
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Table 2: Operations for differencing specifications 

Operation Effect 

insertNode(e, t) Inserts a new node e where t is the node’s type. t={Class, Variable, Operation, 
Predicate}. 

setNodeProperty(e, p, v) Assigns for the 1st time a value v to the property p of the element e.  
insertLink(k, e1, e2 , t) Creates and inserts a new link k between the elements e1 and e2 where t is the 

link’s type, t={aggregated_by, derived_from, associated_with, declared_in, 
used_by}. 

deleteLink(k) Removes the link k. 
deleteAllLink(e) Removes all links and references associated with the element e. 
deleteNode(e) Removes the node e. 
Rename(e, oldname ,newname) Renames the element e (named oldname) with newname and updates (with 

newname) all references made to e in the specification. 
Modify(e, p, v1, v2) Modifies the content of e by changing the values of a set of properties p 

(excluding the name) whose values are in v1 with a set of new values v2. 

In addition to the precise and accurate representation of a difference between two given 
specifications, the above operations could also be used to represent the process of 
creating specifications. Moreover, the effect of deltas’ operations can be inversed to 
obtain the old version of a specification. This is enabled by keeping track of old and new 
values (e.g. Rename and Modify), and the complementarities that exists between insertion 
and deletion operations, i.e. to revert the insertion of an element, we only need to delete it 
and vise versa.  

The insertion of a node is concerned about four major meta-classes: Class, 
Variable, Operation, and Predicate. In case of OO formal specifications, the Variable 
meta-class has three sub-classes. They are the Attribute (global and state attributes) of a 
class, the Input and the Output of an operation. Moreover, the Predicate meta-class has 
four sub-classes. They are Invariant, Initialization, Precondition and Postcondition.  

Renaming a specification’s element requires updating all references made to it with 
its new name. For example, if a variable has been renamed, this name change is 
propagated to all elements that refer to this variable such as initialization, invariant, and 
pre (post) condition predicates. The same rule is applied when renaming classes and 
operations. Removing a specification’s element requires removing its associated links, 
and all the references made to it as well (deleteAllLink operation). Furthermore, the 
operation Modify applies to both specifications’ elements and links where a link’s type 
(p) could be changed from v1 to v2. This reduces the number of operations in a delta by 
avoiding the removal of a link typed v1 and the insertion of a link typed v2. Table 3 
highlights the different attributes of the meta-classes representing specifications’ 
elements:  
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Table 3: The attributes of specifications’ elements 

Element Attributes 
Class - name: the class’ name 
Variable - name: the variable’s name 

- data_type: is in the types supported by the formal language including class names. 
- visibility is in {yes, no, n/a} 

Operation - name: the operation’s name 
- changes: is in {{some variable}, empty-set} 
- visibility is in {yes, no} 

Predicate - value: the predicate content is a set of String 
- visibility is in {yes, no, n/a} 

Link - type: the link’s type is in {aggregated_by, derived_from, associated_with, declared_in, 
used_by} 

Most of the attributes of table 3 are self-explanatory. However, there is a need to 
highlight the attributes visibility and changes. Visibility is similar to public; it applies to 
operations, some variables as well as some predicates. In case the visibility attribute is 
not applicable, the proposed value used is “n/a”, such as in the case of inputs and outputs 
as well pre and post conditions. If an element needs to be visible outside the class the 
value “yes” is used otherwise “no” is used. The default visibility in Object-Z is “no”, i.e. 
anything that needs to be visible outside the class has to be explicitly included in the 
visibility list. The changes attribute contains a set of variables that are changed by an 
operation. In case of a query operation, i.e. an operation that does not change the value(s) 
of the class variables it manipulates, the changes attribute is “empty”.  

Differencing is concerned about four categories of change. The insertion of 
elements / links, the modification of elements’ contents, the modification of links’ types, 
the deletion of elements / links, and the moving of elements. Using accurate matching 
results, differences between specifications can be precisely computed. Matched elements 
with different content are updates, matched elements with different links shows 
adding/removal of links and unmatched elements show adding/removal of elements.  

The difference between two given specifications is produced using the following 
algorithm. 
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Figure 2: Differencing algorithm 

Given two specifications S1 and S2 represented by sets of nodes (N1 and N2) and sets of 
links (L1 and L2), the algorithm generates the exact set of operations (delta) that allow 
obtaining S2 from S1. The algorithm starts by analyzing the unmatched elements of the 
two specifications. The unmatched elements of S1 are added to delta as being deleted 
(lines 2-3). In this case, the nodes as well as its associated links are deleted. The 
unmatched elements of S2 are added to delta as being newly inserted elements (lines 4-5). 
Thus, all their associated properties and links are also added to delta (lines 6-9). The 
matched elements with different names are added to delta as renames (lines 11-12). For 
these elements, if they are not exact matches (i.e. similarity scoring < 1) then there is a 
possibility that their contents (other than names) have been modified, new links have 
been attached to them or that some of their links have been removed. The algorithm 
addresses this by detecting the changed properties other than names and adding them to 
delta (line 13-18). It also detects any new inserted links to them (lines 19-24) and any 
removed links (lines 26-29) and adds the changes to delta.  

An important goal of differencing is to to have a mechanism that detects moved 
elements based on the modifications made in a delta. A potential moved element is a 
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Variable, an Operation or a Class. A Variable or an Operation is moved if a new added 
link k2 of type “declared_in” connects it to a new class B and a link k1 of the same type 
with an old class A is removed. A Class is moved if a new added link k2 of type 
“derived_from”, “aggregated_by” or “associated_with” connects it to a new class B and a 
link k1 of the same type with an old class A is removed. A function updateMoving is used 
to perform the above verification; it accepts a delta containing a list of operations and a 
specification element E as parameters and returns an object containing the two elements 
representing the old and new link ends or a “null” object if no moving has taken place. 
Formally, this verification can be written as:  

 
Let Nx be a reference to every specification elements named x and Ki (i=1...n) the new 
links inserted (if any). Table 4 shows the differences between the the class Professor and 
the classes Academicien and TeachingStaff of figure 1. 

Table 4: Results of Differencing 

Professor  
Academicien 
 

Rename(NProfessor, “Professor”, “Academician”) 
deleteAllLink(NAffiliate) 
deleteNode(NAffiliate) 
Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name,Expertise,Faculty}”) 
insertLink(K1, NFaculty , NNew, “used_by”) 
insertLink(K2, Nf? , NNew, “declared_in”) 
Modify(NpostNew, value,“{Id’=i?,Name’=n?,Expertise’=e?}”, “{Id’=i?,Name’=n?,Expertise’=e?,Faculty’=f?}”) 

Professor  
TeachingStaff 
 

Rename(NProfessor, “Professor”, “TeachingStaff”) 
deleteAllLinks(NExpertise) 
deleteNode(NExpertise) 
Rename(NFaculty, “Faculty”, “Institution”) 
Rename(NNew, “New”, “Add”) 
Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name}”) 
deleteAllLinks(Ne?) 
deleteNode(Ne?) 
Modify(NpostNew, value, “{Id’=i?,Name’=n?,Expertise’=e?}”, “{Id’=i?,Name’=n?}”) 
Rename(NAffiliate, “Affiliate”, “Join”) 

The operations shown in table 4 represent the natural set of transformations a domain 
expert can find when comparing the studied classes manually. Although producing 
differences manually is tedious, they form the basis of validating a differencing approach. 
The latter should produce results that are as close as possible to deltas that are produced 
manually by a domain expert. 

4 EMPIRICAL EVALUATION 

A differencing approach must be efficient and should provide results that are precise and 
accurate. Precision is ensured by using primitive operations for differencing, acting on 
one specifications’ element at a time, and containing traceability information allowing the 
reversal of a delta’s effect. Accuracy can be measured by comparing the results produced 
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by the differencing algorithm to the operations that represent the kind of changes a 
human will intuitively find when he/she compares the specifications.  

A Java prototype tool has been developed to help validating the proposed approach. 
It includes a component that parses specifications into graphs. Currently, only Object-Z 
specifications are supported. In addition, a differencing component is used to compare 
any two specifications represented as graphs using their computed matching results to 
produce a set of operations differentiating them.  

Several medium sized specifications have been used in the experiments. The first 
author of this paper created the specifications and two different domain experts were in 
charge of reviewing the created specifications and make any amendments to them 
according to requirements they think should be taken into consideration. These case 
studies include among others: a university management system, a hotel management 
system, an online purchase system, and a project tracking and monitoring system. The 
validation process involves comparing the results produced using the differencing 
approach with differences created manually by a third domain expert. Table 5 shows a 
summary of these differences. 

Table 5: Details of the experiments 

 V V1 V2 
 Elements & Links Insertions Deletions Modifications Insertions Deletions Modifications 
Case 1 77 13 5 20 4 22 11 
Case 2 131 0 12 33 7 16 18 
Case 3 216 0 35 27 20 15 23 
Case 4 183 5 19 4 11 7 25 
Total 608 173 179 

The combined base specifications (V) contain a total number of 608 elements and links. 
The first versions of the specifications (V1) were obtained after performing 173 delta 
operations and the second versions (V2) were obtained through 179 delta operations made 
to the base specifications respectively.  

The differencing approach was validated through the number of correct operations 
produced (positives), the number of all operations produced (positives and false 
positives), the number of correct operations missed (negatives), and the total number of 
correct operations (as shown in Table 5). Precision and recall metrics were used in the 
evaluation. Precision measures quality and is the ratio of the number of correct operations 
produced to the total number of operations produced. Recall measures coverage and is the 
ratio of the correct operations produced to the total number of correct operations. Figure 3 
shows the experimental results obtained for similarity thresholds ranging from 0.5 to 0.9.  
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                         (a)       (b) 

Figure 3: Experimental results 

The combined results obtained through differencing the base specification V and the first 
version V1 for all case studies used in the experiments are shown in figure 3 (a). A very 
good recall (98%-99%) combined with a good precision (86%-95%) were obtained for 
thresholds raging from 0.5 to 0.65. Moreover, a very good recall (99%) combined with a 
very good precision (98%-99%) were obtained for threshold ranging from 0.7 to 0.75. 
Furthermore, an acceptable recall (69%-75%) combined with good precision (81%-83%) 
were obtained for thresholds ranging from 0.8 to 0.85. For a threshold equal to 0.9, only 
100 correct operations were obtained out of the 140 operations produced compared to the 
173 correct operations, which is indicated by a considerable drop of the approach’s recall 
(58%), and a drop in its precision (71%).  

Figure 3-(b) shows the combined results obtained through differencing the base 
specification V and the second version V2 for all case studies used in the experiments. A 
good recall (79%-88%) combined with a good precision (88%-99%) were obtained for 
thresholds raging from 0.5 to 0.75. For thresholds ranging from 0.8 to 0.85, the recall and 
precision obtained were lower, 71% and 79%-82% respectively. A high threshold of 0.9 
resulted in a sharp drop in the approach’s precision (54%) and recall (49%). The average 
precsion and recall obtained for the combined experiments (in (a) and (b)) were 87% and 
83% respectively. 

For a reference threshold of 0.7, the approach’s recall and precision for the 
combined experiments (in (a) and (b)) were 93% and 99% respectively. The performance 
was almost the same for thresholds ranging from 0.6 to 0.65. Consequently, the 
differencing approach performed the best for thresholds ranging from 0.6 to 0.7 as the 
average recall and precision obtained were 92% and 97% respectively. 

To study the impact of the distribution of the modifications made on the 
performance of the differencing approach, we have edited the specifications versions in 
such a way that: (a) most of the modifications made are concentrated on a small number 
of specifications’ elements, and (b) the modifications are distributed fairly between the 
elements of the specifications. Figure 4 shows the combined results obtained in terms of 
precision and recall. 
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                         (a)       (b) 

Figure 4: Results of controlled experiments 

The overall results obtained showed that precsion and recall of the differencing approach 
were consistent when the modifications made are concentrated mainly on a small number 
of elements (figure 4 (a)). The precision and recall obtained were between 70% and 79%, 
with an average precision of 73% and an average recall of 77%. When the modifications 
made are well distributed across the specifications’ elements (figure 4 (b)), the results 
obtained were slightly better compared to the results of the uncontrolled experiments. The 
average precision and recall obtained were 88% and 86% respectively. Thus, if the 
modifications made fall under categorie (a), there is no considerable impact on the 
performance of the differencing approach. However, if they fall under category (b), the 
differencing results produced are slightly better and closer to the kind of changes a 
human will intuitively find when he/she compares the specifications manually. This is 
because specifications’ elements are more precisely matched when they undergo small 
change. This translates into a better performance for the differencing approach. 

The proposed approach scales up well in terms of efficiency (performance and 
memory usage) as the size of the specifications increases. This is due to three main 
reasons. Firstly, the approach used to detect the similarities between specifications has an 
acceptable complexity bounded by O(nm) where n and m are the number of elements of 
the specifications. In addition, only compatible elements are compared, i.e. classes with 
classes, variables with variables, etc. Thus, the actual number of comparison is far 
smaller than n*m. Secondly, during delta calculation only the difference between the 
specifications is calculated and stored, which leads to a more efficient memory usage. 
Finally, the proposed approach is operation-based which leads to a better performance 
when merging the differences because the operations contained in the deltas are 
compared rather than comparing the input specifications themselves. Knowing that the 
number of operations a delta can have is statistically smaller than the number of 
specifications’ elements.  
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5 RELATED WORK 

In [20], a differencing algorithm is proposed to detect the structural changes between the 
designs of subsequent versions of OO software. The algorithm reports the differences 
between them in terms of additions / removals, moves, and renaming of program 
elements such as packages and classes. The differencing algorithm computes an overall 
similarity based on name and structure similarity metrics. The proposed algorithm 
assumes that enough design entities remain the “same” between the two consecutive 
versions of the system. The latter assumption is weak as there is no guarantee that the 
developers of the new version of the system do not make too many modifications. The 
experimental results obtained reported limitations in detecting moved fields and methods. 
Moreover, any mistakenly identified renaming or moving of an entity is propagated to the 
class or the interface that contains it, and the latter will be reported as changed as well.  

In [19] an algorithm is proposed to detect changes in XML documents. As a mean 
to improve change results, unordered tree representation of the analyzed models were 
used. The matching part of the approach uses nodes signatures and prevents matching 
child nodes with different ancestors. This restriction affects the change detection by 
limiting the recognition of moved nodes. The experimental results obtained showed a 
slow running time while leading to a good accuracy. Similar differencing algorithms were 
proposed in [1] and [3] to deal with different kind of documents namely OO programs 
and UML models respectively. 

In [4], an approach for fine-grained source code change extraction is proposed. The 
approach processes programs as trees and uses a combination of proven similarity metrics 
and measures to improve the detection of matching between versions of a program. These 
matching are used to produce tree edit operations comprising insertions, deletions, 
alignments, moves and updates. The approach has been empirically evaluated using data 
extracted from open source case studies. The results obtained showed a mean error rate of 
34%, which is an improvement from the 79% obtained with the algorithm [3] based on 
which their work was based. 

Finally, in [15] an approach is proposed to perform a change impact analysis on OO 
programs. Source code edit operations are transformed into a set of atomic changes. Eight 
categories of atomic changes were defined for the fields, the methods, and the classes of 
an OO program. Given a program and a set of test drivers exercising a program’s 
methods, the approach formally defines the impact of the change undergone by the 
program on the behavior of the test drivers. The drawback of the proposed approach lies 
in the assumption that the edit operations performed on the program are obtained directly 
through an Integrated Development Environment (IDE). This may apply to some IDEs, 
but in general, this is not applicable. For example, the proposed change impact analysis 
cannot be applied to a Java program that has been edited using a simple text editor. Thus, 
the approach lacks a proper differencing mechanism capable of computing the change 
undergone by the studied OO programs. 
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6 CONCLUSION AND FUTURE WORK 

The paper discussed an approach for differencing OO formal specifications. The 
proposed approach processes specifications as graphs unlike existing approaches that are 
based on tree data structures. Thus, a better generality is achieved. The proposed 
approach computes matching results using proven similarity metrics combining syntactic 
and structural information about the compared specifications’ elements, and is not 
dependent on the order of elements (nodes). The change operations produced were 
formally defined as a set of primitive operations whose effects can be reversed because of 
the traceability information they contain. The proposed approach incorporates also a 
mechanism capable of detecting moved elements. The approach was empirically 
validated, an average precision of 87% and an average recall of 83% were obtained for 
the combined experiments made. The differencing approach proposed in this paper is part 
of a project that aims at merging OO formal specifications resulting from collaboration. 
For future work, the emphasis will be on combining the deltas to merge specifications, 
and detecting and resolving merge conflicts. Finally, providing means to compress the 
result of the differencing approach could be explored as it leads to a better efficiency, and 
it is important to run more experiments on the differencing approach using larger 
specifications. 
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