
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 1, January-February 2010

Fathi Taibi, Fouad Mohammed Abbou, and Md. Jahangir Alam: “On Differencing Object-Oriented
Formal Specifcations”, in Journal of Object Technology, vol. 9, no. 1, January - February 2010,
pp. 183 - 198, http://www.jot.fm/issues/issue_2010_01/article5/

On Differencing Object-Oriented Formal
Specifications

Fathi Taibi, University of Tun Abdul Razak, Malaysia
Md. Jahangir Alam, Multimedia University, Malaysia
Junaidi Abdullah, Multimedia University, Malaysia

Abstract
Requirements specification is a collaborative activity that involves several developers
specifying the requirements elicited through several stakeholders. Operation-base
merging allows combining specifications using the information available about their state
as well as their evolution or change. Thus, leading to a more precise, accurate and
efficient merging. Differencing specifications is a tedious, complicated, and a crucial
process needed for operation-based merging of specifications resulting from
collaboration. An approach for differencing Object-Oriented formal specifications is
proposed in this paper. The difference is modeled as a set of primitive operations and is
produced based on the matching results of specifications’ elements. These matchings
are calculated based on an approach employing elements’ syntactic and structural
similarities. The proposed differencing approach is empirically validated.

1 INTRODUCTION

Collaboration [17] is necessary during the development of large-scale software systems
where several developers work in parallel on different aspects of the same system. Often,
this leads to the creation of different but related documents. These documents could be in
the form of design models, software specifications, source code, etc. During a particular
collaborative activity, a resulting local version of a document needs to be merged [2, 6]
with the version of the document available in a shared repository. The latter shared
document encloses all the modifications made locally by the developers involved and
checked into the repository at that point in time.

Specifying software requirements is an important, complicated and error prone task
that involves the collaboration of several peopled specifying requirements elicited
through several stakeholders. Studies have shown that most of the problems with
software projects such as not meeting the needs of stakeholders, late delivery and budget
overrun can be traced back to problems with the requirements [11]. Asynchronous
collaboration allows members of a group to modify copies of a shared specification in

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

184 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

isolation, working in parallel and afterwards synchronizing their copies to reestablish a
common view. This gives a great deal of flexibility, and matches the needs of
collaborative requirements specification. Moreover, since requirements specification is an
early phase of software development, any conflicts detected and resolved at this phase
will have a positve impact on the quality and cost of the delivered software as these
conflicts will cost higher to detect and resolve during later stages of development.

Merging requirements specified informally is unpractical, inefficient, error prone,
and time consuming due to the ambiguous and imprecise nature of natural languages and
most of the graphical notations used. Formal methods [8] offer a better alternative
because of their precise and accurate nature. Object-Oriented (OO) formal methods, such
as Object-Z [16], combine the strengths of two worlds: the world of formal languages and
the world of OO methods. When used to specify software requirements, they produce
specifications that are precise, clear, and highly reusable. Thus, they are suitable to be
used when developing specifications collaboratively as they facilitate systematic
manipulation.

Employing unique identifiers for the elements of the merged documents; such as in
[13]; introduces tool dependency. The latter term refers to approaches that are dependent
on the tools used to create and modify the documents to be merged. In order to support
the tool independence requirement [5], merging should not rely on elements’ unique
identifiers. Thus, there is a need for an approach that can compute the exact difference
between two versions of a document.

In operation-based merging [9, 12], the difference (or delta) is modeled as a set of
primitive operations transforming a document’s version into another one. Analyzing these
deltas provides a good support for the systematic detection and resolution of conflicts
[14] before merging their content with a shared document. Moreover, operation-based
merging leads to a better efficient as the number of operations differencing documents is
statistically smaller than the number of elements they contain.

Several existing differencing approaches; such as in [3, 4, 10]; process the
manipulated documents as trees, which is restrictive and not applicable to a large number
of documents including software requirements specifications. Moreover, even if the
similarity detection approaches used work well with trees, there is no guarantee that they
will be able to detect the similarities between the elements of documents with a graph
structure such as OO formal specifications. Furthermore, in [12], it has been indicated
that domain independent approaches do not to work well with all software documents
compared to approaches intended for specific documents. Finally, to our knowledge,
there is no existing differencing approach intended specifically for OO formal
specifications.

A differencing approach for OO formal specifications is proposed in this paper. It
comprises two parts: the first part consists of comparing specifications to identify their
matching elements, and the second part uses the matching results to produce deltas
differentiating them. These deltas are formally modeled as a set of primitive operation
with traceability information allowing the reversal of their effect. The differencing
approach is empirically validated.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 185

2 MATCHING THE ELEMENTS OF SPECIFICATIONS

Differencing specifications requires identifying their matching elements. As a motivation
example, consider the following classes representing a shared specification, and two
versions representing some parallel modifications made to it by two different developers.
Object-Z notation has been used to specify the three versions.

Figure 1: Three versions of an Object-Z class

The class Professor includes two operations New and Affiliate that are the only elements
visible outside the class. The operation New is used to assign values to the state attributes
Id, Name and Expertise, which represents a professor’s personal data. The operation
Affiliate is used to assign a value to the state attribute Faculty. The classes Academician
and TeachingStaff are the result of some parallel modifications made to the class
Professor by two different developers. In the class Academician, in addition to the class
name that has been changed, the operation Affiliate has been removed and its
functionality (dealing with the attribute Faculty) has been delegated to the operation New
that is the only class’ element visible. In the class TeachingStaff, in addition to the class
name that has been modified, the attribute Expertise has been removed, the attribute
Faculty has been renamed as Institution while the operations New and Affiliate have been
renamed as Add and Join respectively. In addition, the operation New has been modified
by removing the part dealing with the deleted attribute Expertise.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

186 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

A good matching approach should be able to produce precise and accurate results
identifying the similarities between the elements of the compared specifications. For
example, it should match the classes Professor and TeachingStaff, the attributes Faculty
and Institution, the operations New and Add, the operations Join and Affiliate, etc.

In the proposed matcing approach, each input specification is treated as a graph
whose nodes are the specification’s elements. Each link has a source and a target element
as well as a type. For example in case of an operation O defined in a class A, a link is
created to represent this relation. Its source and target are O and A respectively, and its
type is “declared_in”. This is further discussed in the next section.

The similarities that exist between specifications’ elements are stored in a matching
function:

ELEMENT is the base class representing specifications’ elements that include Class,
Variable, Operation, and Predicate. The returned value of Match is a real number
(between 0 and 1) representing the exact similarity that exist between the two compared
elements. The similarity scorings are added to Match if they are greater than or equal to a
chosen threshold t. The latter is a real number between 0 and 1 that defines the strictness
of the matching process.

The similarity between any two elements e1 and e2 is calculated based on their
syntactic (SSyntactic) and structural (SStructural) similarity using the following formula:

SSyntactic is best value obtained from Longest Common Substring (LCS) and n-gram [7]
algorithms (n=2 in the proposed approach) where the computation is case-insensitive and
all noise characters are normalized before the calculation. This is to overcome the change
of word order, and the length of strings issues [18]. For example, Professor and
TeachingStaff are 0.091 similar (LCS gives 0.091 while 2-gram gives 0).

SStructural is calculated using the following formula:

Where sum is obtained by cumulating the syntactic similarities (or 0 or 1) between the
compatible items of e1 and e2 and the elements associated with them, and count is the
number of items/elements used in the calculation of sum. SStructural is not dependent on the
order of the elements / items used in the calculation. Table 1 illustrates how the overall
similarity between the operations New and Add of the classes Professor and
TeachingStaff is computed.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 187

Table 1. Similarity computation example

Aspect Similarity
Classes 0.091
Visibility 1
Accessed Attributes 0.572
Inputs 0.75
Outputs N/A
Preconditions N/A
Postconditions 0.698
SSyntactic 0
SStructural 0.623
Overall similarity 0.623

During the computation of SStructural, attribute names (as well as inputs and outputs) are
replaced by their respective type when processing predicates (init, invariants,
preconditions, and postconditions). The reason behind this is that for all the latter
elements; type is the most important factor; names as well as their order of appearance
could be ignored in this context. Thus, the impact of SSyntactic on SStructural is reduced for
structurally similar elements. For example, even if the names of operations New and Add
are not similar at all, their overall similarity is 0.623. Moreover, if two operations are
matched, their parameters (inputs/outputs) are matched according to the similarities of the
attributes they manipulate. Parameters with same names and types are not matched unless
they manipulate matched attributes.

The proposed matching approach progresses in a bottom-up style as class’ elements
are compared before top-level elements. It also switches to top-down when the overall
similarity of classes is known to re-compute the similarities of their elements (i.e.
Mutual-Enforcing-Relationship). In other word, classes are similar if they have similar
elements and elements are similar if they are contained in similar classes. Finally, the best
match is taken in case a specification’s element is matched to more than one element.

3 DIFFERENCING SPECIFICATIONS

Given a set S of all the specifications, differencing between two specifications S1 and S2
is the process of identifying the exact set of operations (transformations) that allow
obtaining S2 from S1.

The systematic identification of the exact differences that exist between two
specifications requires a formal definition of the change operations involved. An
algorithm to precisely compute this change can then be developed. Table 2 shows the
proposed operations defining a difference between any two given specifications.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

188 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

Table 2: Operations for differencing specifications

Operation Effect

insertNode(e, t) Inserts a new node e where t is the node’s type. t={Class, Variable, Operation,
Predicate}.

setNodeProperty(e, p, v) Assigns for the 1st time a value v to the property p of the element e.
insertLink(k, e1, e2 , t) Creates and inserts a new link k between the elements e1 and e2 where t is the

link’s type, t={aggregated_by, derived_from, associated_with, declared_in,
used_by}.

deleteLink(k) Removes the link k.
deleteAllLink(e) Removes all links and references associated with the element e.
deleteNode(e) Removes the node e.
Rename(e, oldname ,newname) Renames the element e (named oldname) with newname and updates (with

newname) all references made to e in the specification.
Modify(e, p, v1, v2) Modifies the content of e by changing the values of a set of properties p

(excluding the name) whose values are in v1 with a set of new values v2.

In addition to the precise and accurate representation of a difference between two given
specifications, the above operations could also be used to represent the process of
creating specifications. Moreover, the effect of deltas’ operations can be inversed to
obtain the old version of a specification. This is enabled by keeping track of old and new
values (e.g. Rename and Modify), and the complementarities that exists between insertion
and deletion operations, i.e. to revert the insertion of an element, we only need to delete it
and vise versa.

The insertion of a node is concerned about four major meta-classes: Class,
Variable, Operation, and Predicate. In case of OO formal specifications, the Variable
meta-class has three sub-classes. They are the Attribute (global and state attributes) of a
class, the Input and the Output of an operation. Moreover, the Predicate meta-class has
four sub-classes. They are Invariant, Initialization, Precondition and Postcondition.

Renaming a specification’s element requires updating all references made to it with
its new name. For example, if a variable has been renamed, this name change is
propagated to all elements that refer to this variable such as initialization, invariant, and
pre (post) condition predicates. The same rule is applied when renaming classes and
operations. Removing a specification’s element requires removing its associated links,
and all the references made to it as well (deleteAllLink operation). Furthermore, the
operation Modify applies to both specifications’ elements and links where a link’s type
(p) could be changed from v1 to v2. This reduces the number of operations in a delta by
avoiding the removal of a link typed v1 and the insertion of a link typed v2. Table 3
highlights the different attributes of the meta-classes representing specifications’
elements:

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 189

Table 3: The attributes of specifications’ elements

Element Attributes
Class - name: the class’ name
Variable - name: the variable’s name

- data_type: is in the types supported by the formal language including class names.
- visibility is in {yes, no, n/a}

Operation - name: the operation’s name
- changes: is in {{some variable}, empty-set}
- visibility is in {yes, no}

Predicate - value: the predicate content is a set of String
- visibility is in {yes, no, n/a}

Link - type: the link’s type is in {aggregated_by, derived_from, associated_with, declared_in,
used_by}

Most of the attributes of table 3 are self-explanatory. However, there is a need to
highlight the attributes visibility and changes. Visibility is similar to public; it applies to
operations, some variables as well as some predicates. In case the visibility attribute is
not applicable, the proposed value used is “n/a”, such as in the case of inputs and outputs
as well pre and post conditions. If an element needs to be visible outside the class the
value “yes” is used otherwise “no” is used. The default visibility in Object-Z is “no”, i.e.
anything that needs to be visible outside the class has to be explicitly included in the
visibility list. The changes attribute contains a set of variables that are changed by an
operation. In case of a query operation, i.e. an operation that does not change the value(s)
of the class variables it manipulates, the changes attribute is “empty”.

Differencing is concerned about four categories of change. The insertion of
elements / links, the modification of elements’ contents, the modification of links’ types,
the deletion of elements / links, and the moving of elements. Using accurate matching
results, differences between specifications can be precisely computed. Matched elements
with different content are updates, matched elements with different links shows
adding/removal of links and unmatched elements show adding/removal of elements.

The difference between two given specifications is produced using the following
algorithm.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

190 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

Figure 2: Differencing algorithm

Given two specifications S1 and S2 represented by sets of nodes (N1 and N2) and sets of
links (L1 and L2), the algorithm generates the exact set of operations (delta) that allow
obtaining S2 from S1. The algorithm starts by analyzing the unmatched elements of the
two specifications. The unmatched elements of S1 are added to delta as being deleted
(lines 2-3). In this case, the nodes as well as its associated links are deleted. The
unmatched elements of S2 are added to delta as being newly inserted elements (lines 4-5).
Thus, all their associated properties and links are also added to delta (lines 6-9). The
matched elements with different names are added to delta as renames (lines 11-12). For
these elements, if they are not exact matches (i.e. similarity scoring < 1) then there is a
possibility that their contents (other than names) have been modified, new links have
been attached to them or that some of their links have been removed. The algorithm
addresses this by detecting the changed properties other than names and adding them to
delta (line 13-18). It also detects any new inserted links to them (lines 19-24) and any
removed links (lines 26-29) and adds the changes to delta.

An important goal of differencing is to to have a mechanism that detects moved
elements based on the modifications made in a delta. A potential moved element is a

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 191

Variable, an Operation or a Class. A Variable or an Operation is moved if a new added
link k2 of type “declared_in” connects it to a new class B and a link k1 of the same type
with an old class A is removed. A Class is moved if a new added link k2 of type
“derived_from”, “aggregated_by” or “associated_with” connects it to a new class B and a
link k1 of the same type with an old class A is removed. A function updateMoving is used
to perform the above verification; it accepts a delta containing a list of operations and a
specification element E as parameters and returns an object containing the two elements
representing the old and new link ends or a “null” object if no moving has taken place.
Formally, this verification can be written as:

Let Nx be a reference to every specification elements named x and Ki (i=1...n) the new
links inserted (if any). Table 4 shows the differences between the the class Professor and
the classes Academicien and TeachingStaff of figure 1.

Table 4: Results of Differencing

Professor
Academicien

Rename(NProfessor, “Professor”, “Academician”)
deleteAllLink(NAffiliate)
deleteNode(NAffiliate)
Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name,Expertise,Faculty}”)
insertLink(K1, NFaculty , NNew, “used_by”)
insertLink(K2, Nf? , NNew, “declared_in”)
Modify(NpostNew, value,“{Id’=i?,Name’=n?,Expertise’=e?}”, “{Id’=i?,Name’=n?,Expertise’=e?,Faculty’=f?}”)

Professor
TeachingStaff

Rename(NProfessor, “Professor”, “TeachingStaff”)
deleteAllLinks(NExpertise)
deleteNode(NExpertise)
Rename(NFaculty, “Faculty”, “Institution”)
Rename(NNew, “New”, “Add”)
Modify(NNew, changes, “{Id,Name,Expertise}”, “{Id,Name}”)
deleteAllLinks(Ne?)
deleteNode(Ne?)
Modify(NpostNew, value, “{Id’=i?,Name’=n?,Expertise’=e?}”, “{Id’=i?,Name’=n?}”)
Rename(NAffiliate, “Affiliate”, “Join”)

The operations shown in table 4 represent the natural set of transformations a domain
expert can find when comparing the studied classes manually. Although producing
differences manually is tedious, they form the basis of validating a differencing approach.
The latter should produce results that are as close as possible to deltas that are produced
manually by a domain expert.

4 EMPIRICAL EVALUATION

A differencing approach must be efficient and should provide results that are precise and
accurate. Precision is ensured by using primitive operations for differencing, acting on
one specifications’ element at a time, and containing traceability information allowing the
reversal of a delta’s effect. Accuracy can be measured by comparing the results produced

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

192 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

by the differencing algorithm to the operations that represent the kind of changes a
human will intuitively find when he/she compares the specifications.

A Java prototype tool has been developed to help validating the proposed approach.
It includes a component that parses specifications into graphs. Currently, only Object-Z
specifications are supported. In addition, a differencing component is used to compare
any two specifications represented as graphs using their computed matching results to
produce a set of operations differentiating them.

Several medium sized specifications have been used in the experiments. The first
author of this paper created the specifications and two different domain experts were in
charge of reviewing the created specifications and make any amendments to them
according to requirements they think should be taken into consideration. These case
studies include among others: a university management system, a hotel management
system, an online purchase system, and a project tracking and monitoring system. The
validation process involves comparing the results produced using the differencing
approach with differences created manually by a third domain expert. Table 5 shows a
summary of these differences.

Table 5: Details of the experiments

 V V1 V2
 Elements & Links Insertions Deletions Modifications Insertions Deletions Modifications
Case 1 77 13 5 20 4 22 11
Case 2 131 0 12 33 7 16 18
Case 3 216 0 35 27 20 15 23
Case 4 183 5 19 4 11 7 25
Total 608 173 179

The combined base specifications (V) contain a total number of 608 elements and links.
The first versions of the specifications (V1) were obtained after performing 173 delta
operations and the second versions (V2) were obtained through 179 delta operations made
to the base specifications respectively.

The differencing approach was validated through the number of correct operations
produced (positives), the number of all operations produced (positives and false
positives), the number of correct operations missed (negatives), and the total number of
correct operations (as shown in Table 5). Precision and recall metrics were used in the
evaluation. Precision measures quality and is the ratio of the number of correct operations
produced to the total number of operations produced. Recall measures coverage and is the
ratio of the correct operations produced to the total number of correct operations. Figure 3
shows the experimental results obtained for similarity thresholds ranging from 0.5 to 0.9.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 193

 (a) (b)

Figure 3: Experimental results

The combined results obtained through differencing the base specification V and the first
version V1 for all case studies used in the experiments are shown in figure 3 (a). A very
good recall (98%-99%) combined with a good precision (86%-95%) were obtained for
thresholds raging from 0.5 to 0.65. Moreover, a very good recall (99%) combined with a
very good precision (98%-99%) were obtained for threshold ranging from 0.7 to 0.75.
Furthermore, an acceptable recall (69%-75%) combined with good precision (81%-83%)
were obtained for thresholds ranging from 0.8 to 0.85. For a threshold equal to 0.9, only
100 correct operations were obtained out of the 140 operations produced compared to the
173 correct operations, which is indicated by a considerable drop of the approach’s recall
(58%), and a drop in its precision (71%).

Figure 3-(b) shows the combined results obtained through differencing the base
specification V and the second version V2 for all case studies used in the experiments. A
good recall (79%-88%) combined with a good precision (88%-99%) were obtained for
thresholds raging from 0.5 to 0.75. For thresholds ranging from 0.8 to 0.85, the recall and
precision obtained were lower, 71% and 79%-82% respectively. A high threshold of 0.9
resulted in a sharp drop in the approach’s precision (54%) and recall (49%). The average
precsion and recall obtained for the combined experiments (in (a) and (b)) were 87% and
83% respectively.

For a reference threshold of 0.7, the approach’s recall and precision for the
combined experiments (in (a) and (b)) were 93% and 99% respectively. The performance
was almost the same for thresholds ranging from 0.6 to 0.65. Consequently, the
differencing approach performed the best for thresholds ranging from 0.6 to 0.7 as the
average recall and precision obtained were 92% and 97% respectively.

To study the impact of the distribution of the modifications made on the
performance of the differencing approach, we have edited the specifications versions in
such a way that: (a) most of the modifications made are concentrated on a small number
of specifications’ elements, and (b) the modifications are distributed fairly between the
elements of the specifications. Figure 4 shows the combined results obtained in terms of
precision and recall.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

194 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

 (a) (b)

Figure 4: Results of controlled experiments

The overall results obtained showed that precsion and recall of the differencing approach
were consistent when the modifications made are concentrated mainly on a small number
of elements (figure 4 (a)). The precision and recall obtained were between 70% and 79%,
with an average precision of 73% and an average recall of 77%. When the modifications
made are well distributed across the specifications’ elements (figure 4 (b)), the results
obtained were slightly better compared to the results of the uncontrolled experiments. The
average precision and recall obtained were 88% and 86% respectively. Thus, if the
modifications made fall under categorie (a), there is no considerable impact on the
performance of the differencing approach. However, if they fall under category (b), the
differencing results produced are slightly better and closer to the kind of changes a
human will intuitively find when he/she compares the specifications manually. This is
because specifications’ elements are more precisely matched when they undergo small
change. This translates into a better performance for the differencing approach.

The proposed approach scales up well in terms of efficiency (performance and
memory usage) as the size of the specifications increases. This is due to three main
reasons. Firstly, the approach used to detect the similarities between specifications has an
acceptable complexity bounded by O(nm) where n and m are the number of elements of
the specifications. In addition, only compatible elements are compared, i.e. classes with
classes, variables with variables, etc. Thus, the actual number of comparison is far
smaller than n*m. Secondly, during delta calculation only the difference between the
specifications is calculated and stored, which leads to a more efficient memory usage.
Finally, the proposed approach is operation-based which leads to a better performance
when merging the differences because the operations contained in the deltas are
compared rather than comparing the input specifications themselves. Knowing that the
number of operations a delta can have is statistically smaller than the number of
specifications’ elements.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 195

5 RELATED WORK

In [20], a differencing algorithm is proposed to detect the structural changes between the
designs of subsequent versions of OO software. The algorithm reports the differences
between them in terms of additions / removals, moves, and renaming of program
elements such as packages and classes. The differencing algorithm computes an overall
similarity based on name and structure similarity metrics. The proposed algorithm
assumes that enough design entities remain the “same” between the two consecutive
versions of the system. The latter assumption is weak as there is no guarantee that the
developers of the new version of the system do not make too many modifications. The
experimental results obtained reported limitations in detecting moved fields and methods.
Moreover, any mistakenly identified renaming or moving of an entity is propagated to the
class or the interface that contains it, and the latter will be reported as changed as well.

In [19] an algorithm is proposed to detect changes in XML documents. As a mean
to improve change results, unordered tree representation of the analyzed models were
used. The matching part of the approach uses nodes signatures and prevents matching
child nodes with different ancestors. This restriction affects the change detection by
limiting the recognition of moved nodes. The experimental results obtained showed a
slow running time while leading to a good accuracy. Similar differencing algorithms were
proposed in [1] and [3] to deal with different kind of documents namely OO programs
and UML models respectively.

In [4], an approach for fine-grained source code change extraction is proposed. The
approach processes programs as trees and uses a combination of proven similarity metrics
and measures to improve the detection of matching between versions of a program. These
matching are used to produce tree edit operations comprising insertions, deletions,
alignments, moves and updates. The approach has been empirically evaluated using data
extracted from open source case studies. The results obtained showed a mean error rate of
34%, which is an improvement from the 79% obtained with the algorithm [3] based on
which their work was based.

Finally, in [15] an approach is proposed to perform a change impact analysis on OO
programs. Source code edit operations are transformed into a set of atomic changes. Eight
categories of atomic changes were defined for the fields, the methods, and the classes of
an OO program. Given a program and a set of test drivers exercising a program’s
methods, the approach formally defines the impact of the change undergone by the
program on the behavior of the test drivers. The drawback of the proposed approach lies
in the assumption that the edit operations performed on the program are obtained directly
through an Integrated Development Environment (IDE). This may apply to some IDEs,
but in general, this is not applicable. For example, the proposed change impact analysis
cannot be applied to a Java program that has been edited using a simple text editor. Thus,
the approach lacks a proper differencing mechanism capable of computing the change
undergone by the studied OO programs.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

196 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

6 CONCLUSION AND FUTURE WORK

The paper discussed an approach for differencing OO formal specifications. The
proposed approach processes specifications as graphs unlike existing approaches that are
based on tree data structures. Thus, a better generality is achieved. The proposed
approach computes matching results using proven similarity metrics combining syntactic
and structural information about the compared specifications’ elements, and is not
dependent on the order of elements (nodes). The change operations produced were
formally defined as a set of primitive operations whose effects can be reversed because of
the traceability information they contain. The proposed approach incorporates also a
mechanism capable of detecting moved elements. The approach was empirically
validated, an average precision of 87% and an average recall of 83% were obtained for
the combined experiments made. The differencing approach proposed in this paper is part
of a project that aims at merging OO formal specifications resulting from collaboration.
For future work, the emphasis will be on combining the deltas to merge specifications,
and detecting and resolving merge conflicts. Finally, providing means to compress the
result of the differencing approach could be explored as it leads to a better efficiency, and
it is important to run more experiments on the differencing approach using larger
specifications.

REFERENCES

[1] Apiwattanapong, P., Orso, N. & Harrold, M.J. (2007). JDiff: A Differencing
Technique and Tool for Object-Oriented Programs. Automated Software
Engineering, 14(1), 3-36.

[2] Boronat, A., Carsi, J.A., Ramos, I. & Letelier, P. (2007). Formal Model Merging
Applied to Class Diagram Integration. Electronic Notes in Theoretical Computer
Science, 166 (1), 5–26.

[3] Chawathe, S. S., Rajaram, A., Garcia-Molina, H. (1996). Change Detection in
Hierarchically Structured Information. Proceedings of ACM Sigmod Int’l Conf. on
Management of Data, pp.493-504.

[4] Fluri, B., Wursch, M., Pinzger, M. and Gall, H. C (2007). Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions
of Software Engineering, 33(11), 725-743.

[5] Fortsch, S. & Westfechtel, B. (2007). Differencing and merging of software
diagrams - state of the art and challenges. Proceedings of Int’l Conf. on Software
and Data Technologies, pp. 90-99.

[6] Godfrey, M. W. & Zou, L. (2005). Using Origin Analysis to Detect Merging and
Splitting of Source Code Entities. IEEE Transactions on Software Engineering, 31
(2), 166-181.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 197

[7] Gusfield, D. (1999). Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press.

[8] Hinchey, M. G. (2008). Industrial-Strength Formal Methods in Practice, Springer.

[9] Ignat, C. L. & Norrie, M. C. (2004). Operation-based versus State-based Merging in
Asynchronous Graphical Collaborative Editing. 6th Int’l Workshop on
Collaborative Editing, IEEE Distributed Systems Online.

[10] Kelter, U., Wehren, J. & Niere, J. (2005). A Generic Difference Algorithm for
UML Models, Proceedings of Software Engineering Conference, pp. 105-116.

[11] Kontonya, G. & Sommerville, I. (2002). Requirements Engineering Process and
Techniques, John Wiley and Sons.

[12] Lippe, E. & Oosterom, N. V. (1992). Operation-based Merging. ACM SIGSOFT
Software Engineering Notes, 17 (5), 78-87.

[13] Mehra, A., Grundy, J. & Hosking, J. A. (2005). Generic Approach to Supporting
Diagram Differencing and Merging for Collaborative Design. Proceedings of Int’l
Conf. on Automated Software Engineering, pp 204-213.

[14] Mens, T. (2002). A State of the Art Survey on Software Merging. IEEE
Transactions on Software Engineering, 28 (5), 449-462.

[15] Ryder, B. G., Tip, F. (2001). Change impact analysis for object-oriented programs.
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering, pp. 46-53.

[16] Smith, G. (2000). The Object-Z Specification Language, Kluwer Academic
Publishers.

[17] Sriplakich, P., Blanc, X. & Gervais, M. P. (2008). Collaborative Software
Engineering on Large-Scale Models: Requirements and Experience in ModelBus.
Proceedings of SAC’08 Conference, pp. 674-681.

[18] Taibi, F., Abbou, F. M. & Alam, M. D. (2008). A Matching Approach for Object-
Oriented Formal Specifications. Journal of Object Technology, 7(8), 139-153.

[19] Wang, Y. (2003). X-Diff: An Efficient Change Detection Algorithm for XML
Documents. Proceeding of 19th Int’l Conf. on Data Engineering, pp. 519-530.

[20] Xing, Z. & Stroulia, E. (2007). Differencing logical UML models, Journal of
Automated Software Engineering, 14(2), 215-259.

ON DIFFERENCING OBJECT-ORIENTED FORMAL SPECIFICATIONS

198 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1.

About the authors
Fathi Taibi is a senior lecturer at the Faculty of Information Technology of the
University of Tun Abdul Razak. His research interests include formal specification,
Object-Oriented methods, collaborative development, and software verification. He can
be reached at taibi@unitar.edu.my.
Dr. Md Jahangir Alam is a lecturer at the Faculty of Information Technology of
Multimedia University. His research interests include image processing, pattern
recognition, and artificial intelligence. He can be reached at
md.jahangir.alam@mmu.edu.my.
Dr. Junaidi Abdullah is a lecturer at the Faculty of Information Technology of
Multimedia University. His research interests include computer vision, image processing
and augmented reality. He can be reached at junaidi@mmu.edu.my.

