"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2008

Vol. 9, No. 1, January—February 2010

An Aspect-Oriented Approach for the Devel-
opment of Complex Simulation Software

Tudor B. lonescu, Andreas Piater, Walter Scheuermann,
and Eckart Laurien, University of Stuttgart, Institute of Nu-
clear Technology and Energy Systems, Stuttgart, Germany, Email:
{ionescu,piater,scheuermann,laurien } Qike.uni-stuttgart.de

We propose an aspect-oriented approach for the development of simulation software
aiming at increasing the flexibility, the rapidity of development, and maintainability
of simulation software. The horizontal decomposition method is used to separate the
core functionality of the simulation application from simulation-specific cross-cutting
concerns like distribution, tool integration, persistence, and fault tolerance. We ana-
lyze an existing dispersion simulation application to demonstrate the applicability of
our approach and provide a proof of concept in form of the aspect-oriented implemen-
tation of two cross-cutting concerns, namely distribution and tool integration.

1 INTRODUCTION

In many engineering and natural sciences modeling and simulation play an impor-
tant role in understanding the behavior and limitations of certain technical facilities,
natural phenomena, and other physical or abstract systems. Simulation software has
been developed from the very beginnings of the computer science era and one type
of software component, called simulation code, has been established as the standard
way of encapsulating a simulator for a certain physical aspect of a real system. A
simulation code is a command line executable (often written in FORTRAN) which
uses file-based communication with the outside world. Some of the codes also sup-
port command line parameters.

Codes are usually developed by research institutes and some of them can date
back from the late 1970s. Therefore they pose legacy problems when it comes to
integrating them into modern applications for educational, research, and commercial
purposes. The most common way of reusing the codes is to wrap them into a class
using a modern programming language. Despite the legacy problems they pose,
the codes are still in use and entirely rewriting them using a modern programming
language is not an option. On one hand, time and financial resources are limited
whereas, on the other hand, the knowledge comprised in these codes is largely gone
due to the high fluctuations in personnel (i.e., developer churn) at universities and
research institutes.

In order to cope with the legacy problems, the financial restrictions, and the com-

Cite this document as follows: : An Aspect-Oriented Approach for the Development of Complex
Simulation Software, in Journal of Object Technology, vol. 9, no. 1, January—February 2010,
pages 161-181,

http://www.jot.fm /issues/issue_2010_01/article4/

http://www.jot.fm/issues/issue_2010_01/article4/

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

plex requirements of simulation software for end users a new software development
paradigm is needed. This paradigm must facilitate the encapsulation and tool inte-
gration of the legacy simulation codes as well as the rapid and easy implementation
of all concerns of end users simulation software. Furthermore, it must provide the
implementation with the necessary flexibility to adapt the simulation application to
different usage contexts. Last but not least, a high maintainability of the software
is desired in order to extend the lifespan of products of research institutes.

In this paper, we present an aspect-oriented [1] approach for the development
of simulation software. We aim at increasing the flexibility and maintainability of
simulation software while reducing the development time and extending the prod-
uct’s lifespan. The core functionality of the simulation application must be first
identified and then separated from the cross cutting concerns that are specific for
end user simulation software. Aspect-oriented programming is used to implement
cross-cutting concerns like distribution, tool integration, persistence, and fault tol-
erance whereas standard object-oriented programming is used for implementing the
core functionality of the simulation application. We provide a proof of concept for
this approach by discussing the implementation of two concerns, namely distribu-
tion and tool integration. By employing actor-oriented modeling [2] for the design of
the workflows, the horizontal decomposition (HD) method [3] for systemic decom-
position, declarative programming with Java Annotations, and AspectJ [4] for the
aspect-oriented implementation we claim that our approach leads to less boilerplate
code!, and increased modularity, flexibility, and maintainability of the system.

2 ABR: A DISASTER PREVENTION SYSTEM

In this study we focus on software for simulating the dispersion of radioactive pol-
lutants. Dispersion modeling is a discipline that provides the mathematical models
to calculate the concentration of a substance present in the atmosphere that was
released by some source of pollution in any point of an area surrounding the point
of emission. In case of radioactive pollutants the source might be the reactor of a
nuclear power plant, a dirty bomb, or some other radioactive material. After being
released the pollutants suffer an airborne transport from the source in all three spa-
tial dimensions. The dispersion in the horizontal plane is caused by wind whereas
atmospheric turbulence is the main cause for vertical dispersion. Further meteo-
rological factors influencing the transport and deposition of the pollutants are air
temperature and precipitation.

Our investigation started from a matured dispersion simulation system, called
ABR, which serves as an early-warning system [5] for emergency situations at nuclear
power plants. The dispersion calculation is performed by a number of FORTRAN
and C/C++ codes linked together into different workflows, depending on the type of

'Boilerplate is the term used to describe sections of code that have to be included in many
places with little or no alteration.

162 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

2 ABR: A DISASTER PREVENTION SYSTEM

calculation that is required by an emergency situation. The workflows are controlled
by a workflow service and the codes are wrapped to act as Windows services. All
Windows services communicate with each other and can be hosted on different
machines. The communication between the calculation services is done via a Service
Access Layer (SAL) [6] which is based on CORBA [7]. The communication with
remote clients takes place over a SOAP Webservice [8]. The GUI client is developed
by a third party company.

In this design each service can only be hosted on a single machine and no other
means of distribution has been foreseen in case that more than just a few users would
start a calculation at the same time. The mixture of different technologies (e.g., SAL,
CORBA, and SOAP Webservices) requires skilled programmers to maintain and ex-
tend the system. The use of "heavy-weight” middleware technologies and Windows
services introduces boilerplate code because of the need to wrap every module into
a Windows service and then develop some protocol to allow the modules to commu-
nicate with each other (i.e., the SAL). Hence the principle of modular decoupling of
software components is violated because of the need to modify several components
if a change in one component is required. Finally, the mash-like interconnection
of the calculation services does not allow for any other way of extending the core
functionality of the system than to implement a new Windows service and link it to
the existing ones using the same technologies.

Figure 1 shows the internal workflow used to perform dispersion calculations in
the ABR system which follows the latest VDI 3945 guideline [9] for atmospheric
dispersion models. The internal workflow is executed once for each time step. The
typical length of a time step is 10 minutes. At each new step the updated weather
data (i.e. wind and precipitation conditions) are fetched from the database of the
National Weather Forecast Center for the area surrounding the point of emission
within a radius of 25 to 75 km. Besides the weather data the system requires an
input of emission data. Emission data represent information about the quantity and
nature of the released radioactive pollutants. This information is provided as one
of 20 possible incident or accident categories which range from an incident without
radioactive emission (cat. 20) to a catastrophic reactor core meltdown (cat. 1).

In case of a real emergency a dispersion calculation with a duration of 48 hours is
performed in real time using measured weather and emission data. The system pro-
vides results which are plotted onto a digitized geographical map every 10 minutes.
The functions of the nine C++4/FORTRAN calculation codes presented in figure 1
are as follows: CRE_TOPO — generates topographical data on the basis of a homo-
geneous land surface model; WINDO — using the wind forecast data this module
computes a 3-dimensional Cartesian wind field through interpolation; KART GELF
— converts the Cartesian wind field into one that takes into account the vertical
dimension of land surface; FLAECH_INT — using precipitation forecast data this
module computes the distribution of the intensity of precipitation for a given area;
INVENTAR — computes the nuclide inventory of a nuclear reactor; FREI.MOD —
computes the nuclide release from a reactor; PAS2 — implements a Lagrange dis-

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 163

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

FOR EACH DISPLAY
TIMESTEP
|—= CRE_TOPO WINDO KART_GELF
|—= FLAECH_INT @ PAs2 AIRDOS DOSE
= INVENTAR FREI_MOD

Figure 1: The workflow used to perform dispersion calculations in the ABR system.

persion model which uses the input wind field and the distribution of precipitation
for the dispersion calculation; AIRDOS — computes the equivalent dose of different
trace species; DOSE — computes the effective dose of radioactivity based on the
equivalent dose for different age groups.

Design Goals for the New ABR System

Our experience from the past revealed that most of the problems and bugs that
appear after the development of a simulation application are due to the faulty im-
plementation of cross-cutting concerns like distribution, access control, or persis-
tence rather than from the core functionality of the system. For this reason, the
design of the new system is based on the less is more principle in the sense that
now a method of complete separation of the cross-cutting concerns from the core
functionality is sought. This way the focus is shifted toward the development and
maintainance of the application core rather than of cross-cutting concerns. The
core functionality represents less code but more added value since it is the actual
product of the research institute. The core functionality of a simulation applica-
tion is to be developed by domain experts of research institutes with the assistance
of professional programmers. The implementation of cross-cutting concerns can be
outsourced (i.e., developed by another department, institute, or software company).
With this in mind, the new system achieves the following design goals:

e There is a clear logical and semantical separation of the distribution, access
control, fault tolerance, and persistence cross-cutting concerns from the core
functionality;

e The behavior of cross-cutting concerns is specified in the application code of
the core functionality components through declarative programming;

e The implementation of new features is easy and affects a minimal number of
system components;

e The elimination of obsolete features is equally easy to accomplish;

164 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

3 HORIZONTAL DECOMPOSITION OF THE ABR SYSTEM

e There exists a mechanism for activating and deactivating the extended concern-
specific functionality in order to achieve a high degree of flexibility through
configuration files as well as better modular testing capabilities;

e The new design is based on a layered software architecture where communica-
tion can only take place between neighboring layers;

e The implementation of concerns like distribution, persistence, etc. is tech-
nology independent and is carried out after the implementation of a solid
application core;

e The complete application copes with various usage contexts (e.g. research,
commercial, educational, etc.) and different deployment configurations rang-
ing from a cluster deployment to a notebook installation.

3 HORIZONTAL DECOMPOSITION OF THE ABR SYSTEM

Horizontal decomposition (HD) [3] is a method of systemic decomposition by which
a software system is orthogonally divided into a vertical core architecture and a hor-
izontal axis of functional extensions. The core architecture accomplishes the basic
task of the software whereas the horizontal extensions provide additional function-
ality to the system, like distribution, security, or persistence. The cross-cutting of
the two axes is realized in such a way that the core architecture be unaware of the
horizontal extensions which are built around it in order to adapt the functionality
of the system to different application scenarios. The aim of HD is to eliminate
the implementation convolution problem. Implementation convolution refers to the
fact that although the semantics of different components of a software system are
distinctive, their implementations do not have clear modular boundaries within the
code space but are rather tangled and inseparable.

HD relies on the aspect-oriented programming paradigm [1] and the method
has been shown to be effective in refactoring existing middleware software leading
to a 40% reduction in code size and a significant improvement in performance [3].
Aspect-oriented programming (AOP) aims at increasing modularity by sepparating
cross-cutting concerns. A cross-cutting concern is a particular program functionality
the implementation of which is spread over many components of the application.
The term aspect designates a class that can alter the behavior of other (non-aspect)
classes by applying so called advices at different join-points between these two types
of classes. Advices are additional program code that can be executed before, after,
or around (instead of) a certain method or some other code unit of a program. The
additional behavior implemented through aspects is woven into the bytecode of the
application at compile-time or run-time.

HD consists of five principles (see [3]) three of which will be considered for the
current approach.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 165

GVL_JAN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

Clients ﬁ@

mER,

NPP
Monitoring

»
o
o
<
(]
—_
=1
=
=
L

Virtual NPP

A -

y\ « T Session Layer « T

Sessions,/ () Simulation Layer =~ Webservice
/ /\ Interfaces

—] Workflow Layer

Simulations/ [ﬁ E\J \ ' Network
j/ AT — w L8 @ Protocol
Calculation [V] X / A z 8 6%
Codes / &% » e
Resources Providers

Figure 2: The layered hourglass architecture of the ABR system. NPP stands for
nuclear powerplant.

First Principle A coherent core decomposition of a system must be established.

Finding the core of an application means identifying the components with func-
tionality that contributes to directly performing the main task of the system. The
main task of our examined system is to perform a dispersion calculation regardless
of the policies used for access control, user management, and persistence. The core
functionality is represented by the codes, the workflows, and the simulation scenarios
needed for performing a dispersion calculation.

Second Principle The semantics of an aspect should be defined according to
the core decomposition; if the semantics and the implementation of a functionality
are not local to a single component of the core then it is considered to be orthogonal
to the core.

If a functionality is orthogonal to the core’s axis, as defined above, it is considered
to be a cross-cutting concern to the application and its implementation represents
an aspect. For example, distribution is not local to one component of the core since
simulation objects can be distributed as well as calculation codes.

Third Principle A class-directional architecture where aspects are "aware” of
functional modules but modules are not “aware” of aspects must be maintained;
cross-cutting concerns should be implemented class-directional towards the core.

For example, the developer of a workflow should not have to think whether or
not the workflow will be executed locally or remotely. Therefore the implementation
of workflows will only focus on the core functionality whereas aspects implementing
other concerns will focus on how to make the core act in different application sce-
narios where these concerns will play a role. A class-directional architecture assures
a clean separation of concerns within the application.

166 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

The Core Architecture of the ABR System

Without risking any loss of generality, we can claim that a typical simulation ap-
plication can be hierarchically decomposed into 4 layers presented in figure 2 (left
side). In this resource-oriented model[11], each of the 4 layers is the host of a certain
type of resource. From the bottom-up we have the fundamental resources, called cal-
culation services, representing software implementations of different mathematical
algorithms (the ABR codes). These modules are interconnected to form workflows
which, in term, are part of simulations. Finally the user represents the ultimate
human resource who uses remote clients to perform simulation sessions.

The right side of figure 2 shows the hourglass physical architecture corresponding
to the layered logical architecture. Each layer corresponds to a resource provider
and can run on a separate machine. Objects that are instantiated at different levels
in the stack represent the actual resources of that layer. The waist of the hourglass
is composed of three layers that are common for all deployment and/or application
scenarios. The fat top of the hourglass is represented by the different remote clients
which are using the simulation framework. The fat bottom is represented by the
most common types of computational resources currently available. In the current
approach the communication between layers that are not hosted on the same machine
is achieved through technology independent Webservices [8].

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

We propose a framework of aspects called AoSiF (Aspect-oriented Simulation Frame-
work) for extending the core functionality of a simulation application in such a way
that no change to the code of the core be needed. The extensions consist of as-
pects that implement cross-cutting concerns like distribution, access control, fault
tolerance, persistence, workflow engine integration, etc. The basic structure that is
applicable to any of these concern is shown in figure 3. The building blocks of this
implementation schema are Java annotations and AspectJ aspects although simi-
lar features of other programming languages could be used (e.g., C# attributes are
equivalent to Java annotations).

From a mathematical point of view a computer program P can be expressed using
a multivariate function P = p(x1, zs, ..., x,). Through functional decomposition we
can identify a set of functions fi...f,, so that

P =x(fi(x1, ..., zp), fo(x1, s)y ey frn (X1, oy) (1)

where x is some other function. The procedure can continue recursively with the
decomposition of fi...f,, producing a hierarchy of dependencies between these func-
tions that can be modeled according to a specific domain.

Now, supposing that the functions f;...f,, represent the core functionality of a
simulation application and that we want to extend or modify the behavior of a par-

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 167

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

Policy * 1, Annotation : * Aspect * 1 Cier}::g::\;t

* : 1
| MewData o Resy . RefleciveComponenis
Core Functionality . . . Functional Extensions
A T A
Y A4 v : v Y v
f-Class f-Constructor © f-Method % : - g-Class g-Constructor g-Method
Clients, Sessions, Simulations, Workflows, : Distribution, Access Control, Fault Tolerance,
Calculation Codes Workflow Engine Integration

Figure 3: A generic model for horizontal decomposition using Java annotations,
AspectJ, and reflection.

ticular function f; we could express this analytically through functional composition
as follows:

g20 fio g = g2 fi(gn)) (2)

where g; and g, represent extended functionality. This extended functionality can
be implemented using AOP, that is g, and g; represent after and before advices,
respectively. This means that f; waits for the execution of g; which can alter some
of the parameters used to call f; whereas g, is executed after f; and may use the
return value(s) of f;. Thus, additional functionality is woven into the program and
P becomes

P=x(fi(z1, s 20), s G, ooy frn (@1, oy T0)) (3)
where

G = ga(fi(91(21), - 1(0))) (4)

Furthermore if f; is a function that at some point needs to be replaced or removed
we could simply create an around advice meaning that f; is replaced by a function
g3 with the same input parameters as f;.

Figure 3 shows how this can be realized in practice by using standard Java and
AspectJ technology. In the lower part of the left hand side the core functionality
is represented by so called f-constructs which are standard language constructs like
classes, constructors or methods. The f-constructs are ”decorated” using concern-
specific annotations, e.g. @Distributed for a class of distributed objects. Each
concern-specific annotation can contain different policies that dictate the new be-
havior assigned to an f-construct through that annotation. Annotations and policies
actually expose additional information (meta-data) about a new behavior for the an-
notated f-construct in a declarative manner.

On the right hand side in the upper part of the picture there are aspects imple-
menting different concerns that are activated by the presence of certain annotations
over f-constructs. Depending on the type of the annotation and its applied policies,

168 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

a reflective component will instantiate so called g-objects containing g-constructs
that extend the core functionality of the application. Usually for every f-object a
new g-object supporting the extended functionality is needed. The mapping between
f-objects and g-objects is kept in a mapping registry. This mapping is required in
order to avoid duplication of g-objects for one f-object and for call-backs to the f-
object from a g-object. An f-construct can be decorated by one or several annotations
depending on the need of functional extension of the application.

Since annotations can be ignored by the Java compiler through a compiler switch
the application can act the same as before even after being annotated. One direct
advantage of this approach is that the core functionality can be tested as a module
prior to the tests with the extended functionality. Furthermore, each extension can
be switched off to allow the testing of other extensions together with the functional
core.

Tool Integration

Tool integration might not seem to be an obvious cross-cutting concern. However,
we will show in this section that tool integration can be regarded as a cross-cutting
concern since code that makes the link between workflow components and the work-
flow engine is required and spread over many application components.

The codes used by the ABR system are command line executables which com-
municate with the outside world only through input and output ASCII files. In the
beginning the codes were linked together using batch scripting or custom applica-
tions concerned with creating a basic workflow execution environment [12]. This
approach proved to be wrong because it was difficult to handle exceptions, paral-
lelism, and synchronization as well as to manage the unstructured code itself. In
their basic form the ABR codes must be regarded as a heterogeneous system of
interconnected modules with no consistent data flow model. The entire workflow,
however, must act as a homogeneous model of computation.

The Ptolemy II (PtII) [13] scientific workflow engine supports actor-oriented
hierarchical modeling of heterogeneous systems by focusing on the data flow, the
synchronization of the execution, and the visual design of workflows using the Vergil
GUI. The basic building block of a PtII workflow is the actor. The actor is a Java
class which, in our case, wraps the FORTRAN and C/C++ codes. The actor class
is restricted to have a specific structure: it has parameters, I/O ports, and action
methods. Parameters are set by users; ports are used to interconnect actors, for
data flow, and for token based flow control; action methods are invoked by the PtII
workflow manager at different stages of execution, e.g. initialization, fire, wrapup,
etc. When the workflow manager fires an actor, the latter one consumes the tokens
on its input ports, performs its job, and produces tokens on its output ports. A
workflow director dictates the type of interaction and the flow control rules for a
particular type of workflow. The most common type of director is the synchronous
data flow (SDF) director which uses token based flow control. The SDF director is

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 169

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

also suitable for the ABR workflow.

The ABR codes are encapsulated into PtII actors and linked together into work-
flows which are encoded and stored as XML files. For each code the following actors
are needed:

e input preparation actor - collects or generates input files for the code;

e process launcher actor - launches a local or grid process using the executable
code;

e report actor - parses the output files and stores relevant results produced by
the code into a central database.

These three actors are encapsulated into a composite actor that is specific to each
module. A composite actor is actually a subworkflow that has no specified director.
The input preparation and process launcher actors can also be composed of several
actors and therefore can be composite actors themselves. Composite actors provide
the workflow designer with the possibility of having a clear hierarchy of components.
It is also possible to save simple and composite actors in the user library for later
use.

Now, there is a drawback to PtII: because actors are Java classes with a strict
specific structure the developer either implements all components of the system as
PtII actors or a PtII actor wrapper class is needed for each component that has to
be integrated into the workflow. The first solution is unacceptable since components
must be reusable in other applications whereas the second solution generates more
boilerplate code. Furthermore, the implementation of PtII actors is not trivial in
terms of required programming skills. At this point it becomes more evident that
tool integration is actually a cross cutting concern.

Fortunately, by using Java annotations and AOP it is possible to avoid writing a
new actor wrapper class for each component of the workflow without changing the
code of the original component class. A simple PtII actor class contains three main
sections:

e declarations - actor ports, parameters, and other resources are declared here;

e constructor - actor ports and parameters are initialized and type constraints
are applied;

e action methods - these methods are invoked by the workflow manager in a
certain order and perform the actual job of an actor.

Our goal is to eliminate the need of implementing a new actor wrapper class for
each component of the workflow. Given a component class of a simulation system
that is part of a workflow, the proposed solution is to decorate the original methods
of this class with annotations corresponding to key elements of PtII actors. This

170 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

public class ModuleActor implements Serializable{
String paramName = null;
Object simulation = null;

@ActorConstructor
public ModuleActor () {}

@ActorParameter (name="nameParameter'™)
public void setParamName (String paramName) {this.paramName = paramName; }

@ActorAction (actionMethods={ActionType.Fire},callingOrder=0)
@ActorPort (name="outputToken",direction=PortDirection.Output)
public Object start(
@ActorPort (name="inputToken",direction=PortDirection.Input)
Object inputToken
) throws Exception{
// doing some work here
Simulation sim = (Simulation)simulation;
if (sim != null)
sim.receiveActorEvent (this, ActorEventType.Update);
return inputToken;

}
public Object getResults(){ // return some results set }

public void setSimulation (Object simulation) {this.simulation = simulation;}
Figure 4: Annotated component class.

way the component class will act as a PtII actor class with no need to change its
original code. Figure 4 presents such an annotated component class. The following
four annotations were needed to transform this class into a PtII actor:

e QActorPort - over a method states that the return value of the method is to be
encapsulated into a token and put on an output port; over an input argument
of a method states that the value of an argument is received on an input port
of the actor;

e QActorParameter - over a setter method indicates that the value which is set
represents a user definable PtII actor parameter;

e QActorAction - over a method states that the method is to be called when
the action method of the PtIl actor class specified by the actionMethods
annotation parameter is invoked by the workflow manager;

e QActorConstructor - over a constructor indicates the constructor that has to
be indirectly invoked by the PtII workflow manager in order to instantiate an
object of the component class (explanation follows).

The principle used for integrating such a class into a PtII workflow is based on
the generalized model presented in figure 3. For all of the annotated component
classes we need one generic PtII actor class, named ActorBase, to provide the link
to the PtII workflow. The ActorBase class extends the PtIl TypedAtomicActor
class and therefore exposes all the action methods of a PtII actor. The ActorBase

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 171

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

class is invisible to the developer and contains arrays of ports and parameters that
have to be initialized by an ActorAspect.

Now, when an ActorBase actor is instantiated from the user library in Ptolemy
I1? its name has to be changed to a fully qualified class name. This name string
is actually used to initialize an object of the specified component class in the con-
structor of ActorBase which is invoked by the workflow manager at initialization
time. The link between the ActorBase object and the object of the annotated com-
ponent class is then realized through reflection. The proper constructor from the
component class is identified by its @ActorConstructor annotation. At this point
the ActorAspect reacts on the basis of the invocation of a constructor annotated by
@ActorConstructor. Using reflection it looks for the methods and arguments of the
actor class that are annotated by @ActorPort and @ActorParameter and initializes
the port and parameter arrays of the ActorBase object. It also identifies and adds
references to the methods of the component class marked with the @ActionMethod
annotation into an array of the ActorBase object. Finally, the ActorAspect ap-
plies an advice every time an action method of the ActorBase class is invoked by the
workflow manager. Using the methods array of the ActorBase object the method(s)
of the component class marked with the @ActorAction annotation which match the
type of action method invoked by the workflow manager are identified and executed
using reflection. The ActorAspect also manages the consumption and production
of tokens on the I/O ports defined using the @ActorPort annotation.

The setSimulation method is used to provide the actor with a mean of commu-
nicating with the simulation object. A reference to the simulation object is passed
from the workflow manager object to the actor by the ActorAspect at initialization
time. The reference must be passed by the simulation object itself to the workflow
manager when the workflow is started. Therefore a customized version of the work-
flow manager containing a setSimulation method is needed. The communication
between the actor and the simulation actually represents the link between the simu-
lation and the workflow layers of the core architecture and will be explained in more
details in the next section.

Distributed Resources

There are two main reasons why the distribution concern plays a role in the develop-
ment of applications. The first reason is related to the need of distributed processing
which, unlike parallelization, applies when a single processor can deliver the result
of a computation in due time but there are too many computations that need to be
performed at the same time, possibly is a multi-user scenario. The second main rea-
son for distribution is motivated by the need of external software tools or hardware
resources that are not available on the same machine from licensing, compatibility,
or performance reasons. Thus different components of the application need to run

2In PtII's GUI users can drag and drop custom actors from a menu called User Library.
ActorBase is such a custom actor.

172 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

Ptolemy Il Machine Condor Machine
R L NERL VEETINE

of the SIM and ACT objects Mirrored ACT object Mirrored SIM object

Ref) »
Dispatcher < ——Ref
—— > init(SIM)
Mapping of hash codes

- IO [\12pping - [
Registry

SIM object ACT object
—— —ARef

Ref)
_ AFTER ‘

caid > init(SIM) »>—

Initialization

= SIM object ACT object Mirrored ACT object Mirrored SIM object
E Forwards the function call(s) Ref) »
» € —(Ref and the return value(s) € (Ref
ie] Ref}—F—— P @
= ~ Dispatch
8 cally > start())pf RIS start()
§ Return value < = - Y
[}
SIM object ACT object Mirrored ACT object Mirrored SIM object
Forwards the function call(s) Ref)
E’: < ——— CRef and the return value(s) ————— CRef
Ref}f——————— P>
2 —@ Dispatcher \
° caly————————————Pp{ start() p— start() can» {revEvent(),
E revEvent() < Y
o
< —@—
> cally »getResults()> » getResults()
< Return value < - -

Figure 5: AoSiF’s distribution mechanism.

on different machines and communicate with each other in order to provide the user
with a final result. AoSiF addresses these two aspects of distributed computing.

A central point of the distributed objects (DO) model [14] is the fact that,
after the relocation of objects using some middleware technology, the programmer
will have no knowledge of whether an object is local or not [15]. In middleware
platforms like CORBA this is achieved through automated generation of stubs for
each distributed class. Instead of invoking methods of the actual object one invokes
the stubs which are always local. The middleware then locates the actual object on
the network and forwards the call to the proper machine. Web services technology
is based on the same principle: stubs are generated for local invocation whereas the
actual objects (Webservices) are hosted on a remote web server.

The goal of our approach is to eliminate the need of stubs for distributed objects
and inline calls to middleware API from the core application code. By using Java
annotations and AOP we can automate the actual distribution of the objects. One
good reason for this is the fact that although stubs are automatically generated
by IDEs or other middleware specific tools they still represent boilerplate code and
sometimes can even contain erroneously generated code?.

The Working Scenario. In the previous section we discussed the concern of
tool integration of existing component classes. As part of workflows these compo-
nents become actors which communicate with other actors through ports. This com-
munication takes place within the lowest level of the layered architecture presented
in figure 2. The modules that are wrapped as PtII actors also need to communicate
with the simulation objects from which the PtII workflow has been instantiated.

3In Netbeans 6.0 Webservice stubs are sometimes generated erroneously due to some faulty
argument type identification mechanism.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 173

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

This way actors can provide the simulation object with information regarding the
progress in the execution of the workflow and the results of the computation. The
simulation, in term, sends this information to its upper layer and so on. With this
in mind, we can imagine the following scenario:

Actors must be fired on a machine running the Condor workload management
system [16] for computer grids;

Workflows run on a PtII machine together with the simulation objects;

The upper layers of the stack are hosted on a separate web server;

Actors must report their progress to the upper layer.

Starting from this distribution scenario we are now interested in describing how
actors communicate with the simulation object from which the workflow has been
launched (see figure 5). Figure 6 shows the same component class presented in the
previous section with the difference that now some distribution related annotations
have been added. @DistributedResource indicates that objects of this class have
to be instantiated on the server (or server group) specified by targetName. This
target is specified in the host’s AoSiF configuration file.

The Initialization. Returning to figure 5, we have a simulation object (SIM
object) residing on the PtII Machine that instantiates a workflow which contains,
among others, the ModuleActor object (ACT object) from figure 6. The config-
uration file, however, states that PtII and Condor are hosted on different ma-
chines. Therefore when the ModuleActor object is initialized an aspect, named
DistributedResourceAspect, processes the @DistributedResource annotation and
reads the targetName parameter of the ModuleActor class. The aspect contains an
after advice that requests the Dispatcher to process the newly created resource.
Since targetName="condor machine" and this is the PtIl machine it decides to
serialize and transport the object to the Condor machine.

Transport and Remote Calls. Our implementation of the Dispatcher is ac-
tually composed of two components: a routing component which is called by the
aspect processing the @DistributedResource annotation and a Webservice compo-
nent. The routing component selects the target server, based on the configuration
file and the parameters of the annotation, serializes the object(s), and calls the
Webservice component on the specified target server. This one processes the call,
deserializes the object and stores a reference in the server’s registry. One thing to
note is that the deserialization process also comprises a call to the class’s construc-
tor. This means that the hashcode of the deserialized object will be different from
the one the object had before being serialized. The dispatcher therefore creates and
sends along with the resource object another object of the type ResourceBase which
contains all the information regarding the object being transported, including the
old hashcode. The dispatcher also inserts a reference to the object being transported

174 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

in the local registry of the Condor machine (a simple Hashtable object). Both ob-
jects are serialized and stored in a ResourceContainer object and sent from the
PtII machine to the Condor machine as arguments of the host method of the Web-
service component of the dispatcher. Here the new hashcode is mapped to the old
one and the deserialized object becomes a mirror of the initial object. Further calls
to methods of the ACT object residing on the PtII machine will be forwarded to
the mirrored ACT object from the Condor machine in a similar fashion. Figure 5
also illustrates how these calls are processed and forwarded by the dispatcher syn-
chronously or asynchronously. The only difference from the initialization phase is
that now an around advice is used instead of an after advice, meaning that the
start method is called on the ACT object but is actually executed on the mirrored
ACT object.

Handling Callbacks. The same mechanism as the one described above is used
to perform callbacks to the parent resource in the asynchronous case. Remember
that at this point the setSimulation method of the ModuleActor has already been
locally* invoked by the ActorAspect in order to provide the ModuleActor with a
reference to the Simulation object. Moreover, all arguments of the constructors
and methods of the remote object are also mirrored on the target server. This
way a mirrored Simulation object is available to the mirrored ModuleActor ob-
ject. Now, looking at the implementation of the start method of the ModuleActor
object in figure 6 one can notice that the callback is performed by invoking the
receiveActorEvent method of the mirrored Simulation object. This time the dis-
tribution scheme is inverted: the Simulation class has also been annotated with
@istributedResource but its targetName="ptolemy machine". The dispatcher
uses the Condor machine’s AoSiF configuration file to identify the target and for-
wards the call to the original Simulation object hosted by the PtII machine. Fi-
nally, the Simulation object could optionally call the getResults method of the
ModuleActor to get the results of the calculation.

Distribution Features and Policies. At this point it becomes clear that
regardless of how many machines are used to distribute objects, on each of them the
same version of the application is needed. The only thing that differs from machine
to machine is the AoSiF configuration file. The dispatcher uses reflection to resolve
the type of the object being transported as well as for all the other mirrored objects.
This allows for a very simple web service interface with only a few web methods that
can handle any kind of object types.

We have used the @DistributedResource annotation to exemplify the distri-
bution mechanism. AoSiF provides three other types of annotation listed in table
[. @DistributedConstructor can be used together with @DistributedResource
indicating that only this constructor has to be invoked on a different server than
the rest of the methods of the class. This is useful for database constructors. There
are two policies that can be used together with this annotation as parameters to it:

4Notice the @NotDistributable annotation over this method stating that it should be invoked
locally on all original or mirrored objects.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 175

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

@DistributedResource (

targetName="co machine",

cleanupMethod="g
transportable=true

esults”,

)

public class ModuleActor implements Serializable{
String paramName = null;
Object simulation = null;

@NotDistributable
@ActorConstructor
public ModuleActor () {}

@NotDistributable
@ActorParameter (name="nameParameter')
public void setParamName (String paramName) {this.paramName = paramName; }

@ActorAction (actionMethods={ActionType.Fire},callingOrder=0)
@ActorPort (name="outputToken",direction=PortDirection.Output)
public Object start(
@ActorPort (name="inputToken",direction=PortDirection.Input)
Object inputToken
) throws Exception{
// doing some work here
Simulation sim = (Simulation)simulation;
if(sim != null)
sim.receiveActorEvent (this, ActorEventType.Update);
return inputToken;

}
public Object getResults(){ // return some results set }

@NotDistributable
public void setSimulation (Object simulation) {this.simulation = simulation;}

Figure 6: A distributed actor class.

Static and Dynamic distribution modes. Static distribution means that the anno-
tated constructor needs to be invoked and mirrored on a remote server because other
remote method calls will follow. Dynamic distribution means that after having in-
voked the constructor on a remote server, the newly created object is returned to the
initiating host without mirroring it on the remote host. The @DistributedMethod
annotation’s effect is similar with the difference that no record of the object exists
on the remote server by the time the annotated method was invoked. This type
of behavior is desired when a distributed class contains methods that make use of
hardware or software resources that are spread on several servers. Finally, whenever
present the @NotDistributable annotation simply cancels the effects of the other
annotations for classes, methods, and constructors.

Related Work

Although there are a number of approaches for aspect-oriented distribution of ob-
jects [17, 18, 19, 20] which build upon different middleware technologies, none of
these approaches uses Java annotations or similar declarative programming tech-
niques. Furthermore, to the best knowledge of the authors, our approach is the only

176 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

Table 1: Distribution related annotations
Annotation Target

@DistributedResource Class
Effect: indicates that the objects of this class are to be hosted by a
specific server or server group.

@DistributedConstructor Constructor

Effect: indicates that this constructor has to be invoked on a specific
server or server group. When present, this annotation overrides the
effect of the @DistributedResource annotation.

@DistributedMethod Method

Effect: indicates that this method has to be invoked on a specific server
or server group. When present, this annotation overrides the effect of the
@DistributedResource annotation.

@NotDistributable Constructor or Method

Effect: indicates that this method or constructor has to be invoked
locally. When present, this annotation overrides the effect of all the other
distribution related annotations.

one to use Webservices as middleware technology. In [21] XDoclet [22] templates
are used to generate aspect code. XDoclet comments are the precursors of Java
annotations but here they are used to annotated the aspects rather than the code
of the core application.

There are also a number of development efforts related to distributed Ptolemy
IT actors and workflows [23, 24], none of which being based on aspect-oriented pro-
gramming. In [25] the need for the separation of concerns in actor-oriented hetero-
geneous modeling is mentioned. Here the concerns of communication, conservation
of internal semantics, and adaptation to the host model of computation are identi-
fied when it comes to domain-polymorphic component design [26] and the authors
plan on using AOP for future developments. Concerning the aspect-oriented auto-
mated integration of existing software components into workflow engines, we have no
knowledge of such approaches from the research literature that is publicly available.

Other aspect based approaches for decoupling cross-cutting concerns from the
core software architecture target the concerns of quality of service [15], automated
software updates [27], and fault tolerance [27, 28, 15]. Security [29] and persistence
[30] annotations are already standardized Java 5.0 features. There is however no
aspect based implementation of the actual security and persistence features that
would eliminate the need of writing additional code for the security and persistence
related business-logic.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 177

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

Conclusion and Future Work

We have presented a new approach for the development of simulation software which
relies on the combination of aspect-oriented, declarative, and reflective program-
ming. We have provided a proof of concept for this new approach by implementing
the concerns of workflow engine integration and distribution using AspectJ, Java
annotations, and reflection for a dispersion calculation simulation application. In
essence, the method we presented enables the reuse of legacy simulation codes and
their integration into new applications for different research, commercial, and educa-
tional purposes. We have shown that the code needed to encapsulate and integrate
computer codes into PtII workflows is minimal and therefore allows for rapid appli-
cation development. The same applies when it comes to the concern of distribution.
By following the proposed aspect-oriented approach, research institutes have more
freedom in choosing how to implement different concerns in simulation software and
can even outsource their implementation. This higher degree of modularity allows
for better quality and a longer lifespan of simulation software while also reducing
the time needed for the development of end user simulation applications.

We created an open source library called AoSiF® that we intend to extend with
the implementations of other concerns related to but not limited to access control,
persistence, and fault tolerance.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP °97 - Object-
Oriented Programming. Springer-Verlag Berlin, 1997, pp. 220-242.

2] G. Agha, Actors: a model of concurrent computation in distributed systems.

Cambridge, MA, USA: MIT Press, 1986.

[3] C. Zhang and H.-A. Jacobsen, “Resolving feature convolution in middleware
systems,” SIGPLAN Not., vol. 39, no. 10, pp. 188-205, 2004.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,
“An overview of aspectj,” in ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming. London, UK: Springer-Verlag,
2001, pp. 327-353.

[5] W. Hrster and T. Wilbois, “Early warning and risk management an interdis-
ciplinary approach,” Information Technologies in Environmental Engineering,
vol. 7, pp. 343-356, 2004.

5AoSiF can be downloaded at http://code.google.com /p/AoSiF.

178 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

6] A. Grohman, “Entwicklung und erprobung eines dienstleistungskonzepts zur
integration von simulationen in die kernreaktor-fernberwachung,” Ph.D. dis-
sertation, Universitt Stuttgart, Institut fr Kernenergetik und Energiesysteme,
2002.

[7] OMG, “The common object request broker: Architecture and specification,”
1995.

[8] W3C, “Simple object access protocol 1.1,” 2003.

9] K. R. der Luft im VDI und DIN, “Richtlinie vdi 3945 blatt 3. umweltmeteo-
rologie. atmosphrische ausbreitungsmodelle. partikelmodell.” 2007.

[10] R. S., “A 3d lagrangian particle model for direct plume gamma dose rate cal-
culations,” Journal of Radiological Protection, vol. 21, pp. 145-154(10), 2001.

[11] A. Piater, T. B. Ionescu, and W. Scheuermann, “A distributed simulation
framework for mission critical systems in nuclear engineering and radiologi-
cal protection,” INT J COMPUT COMMUN CONTROL, vol. 3, no. Suppl.
Issue - ICCCC 2008, pp. 448-453, 2008.

[12] M. Weigele, “Berechnung der nassen deposition von spurenstoffen im rah-
men des notfallschutzes,” Ph.D. dissertation, Universitt Stuttgart, Institut fr
Kernenergetik und Energiesysteme, 1997.

[13] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong, “Taming heterogeneitythe ptolemy approach,” in
Proceedings of the IEEFE, vol. 91, 2003, pp. 127-144.

[14] M. B. Juric, I. Rozman, M. Hericko, A. P. Stevens, and S. Nash, “Java 2 dis-
tributed object models performance analysis, comparison and optimization,”
in ICPADS ’00: Proceedings of the Seventh International Conference on Par-
allel and Distributed Systems (ICPADS’00). Washington, DC, USA: IEEE
Computer Society, 2000, p. 239.

[15] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky, “Building adaptive
distributed applications with middleware and aspects,” in AOSD ’04: Proceed-
ings of the 3rd international conference on Aspect-oriented software develop-
ment. New York, NY, USA: ACM, 2004, pp. 66-73.

[16] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” in Grid
Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox,
and A. Hey, Eds. John Wiley & Sons Inc., April 2003.

[17] P. Soule, T. Carnduff, and S. Lewis, “A distribution definition language for the
automated distribution of java objects,” in DSAL ’07: Proceedings of the 2nd

workshop on Domain specific aspect languages. New York, NY, USA: ACM,
2007, p. 2.

VOL 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 179

G#_/AN ASPECT-ORIENTED APPROACH FOR THE DEVELOPMENT OF COMPLEX SIMULATION SOFTWARE

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

M. Ceccato and P. Tonella, “Adding distribution to existing applications by
means of aspect-oriented programming,” in SCAM °04: Proceedings of the
Source Code Analysis and Manipulation, Fourth IEEE International Workshop.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 107-116.

S. Soares, E. Laureano, and P. Borba, “Implementing distribution and per-
sistence aspects with aspectj,” SIGPLAN Not., vol. 37, no. 11, pp. 174-190,
2002.

M. Nishizawa and S. Chiba, “Jarcler: Aspect-oriented middleware for dis-
tributed software in java,” in Dept. of Math. and Comp. Sciences Research
Reports C-164, Tokyo Institute of Technology, 2002.

E. Tilevich, S. Urbanski, Y. Smaragdakis, and M. Fleury, “Aspectizing server-
side distribution,” Automated Software Engineering, 2003. Proceedings. 18th
IEEFE International Conference on, pp. 130-141, Oct. 2003.

C. Walls, N. Richards, and R. Oberg, XDoclet in Action (In Action series).
Greenwich, CT, USA: Manning Publications Co., 2003.

D. L. Cuadrado, A. P. Ravn, and P. Koch, “Automated distributed simulation
in ptolemy ii,” in PDCN’07: Proceedings of the 25th conference on Proceedings
of the 25th IASTED International Multi-Conference. Anaheim, CA, USA:
ACTA Press, 2007, pp. 139-144.

B. Ludascher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the kepler

system: Research articles,” Concurr. Comput. : Pract. Fxper., vol. 18, no. 10,
pp. 1039-1065, 2006.

M. Feredj, F. Boulanger, and A. M. Mbobi, “A model of domain-polymorph
component for heterogeneous system design,” J. Syst. Softw., vol. 82, no. 1, pp.
112-120, 2009.

M. Feredj, F. Boulanger, and M. Mbobi, “An approach for domain-polymorph
component design,” Information Reuse and Integration, 2004. IRI 2004. Pro-
ceedings of the 2004 IEEFE International Conference on, pp. 145-150, Nov. 2004.

S. Fleissner and E. L. A. Baniassad, “Epi-aspects: aspect-oriented conscientious
software,” SIGPLAN Not., vol. 42, no. 10, pp. 659-674, 2007.

S. Bouchenak, N. D. Palma, S. Fontaine, and B. Téte, “Aosd for internet service
clusters: the case of availability,” in AOMD ’05: Proceedings of the 1st workshop
on Aspect-oriented middleware development. New York, NY, USA: ACM, 2005.

S. Microsystems, “Security annotations and authorization in glassfish and the
java ee 5 sdk,” 2006.

C. Bauer and G. King, Hibernate in Action (In Action series). Greenwich,
CT, USA: Manning Publications Co., 2004.

180

JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 1

4 THE ASPECT-ORIENTED SIMULATION FRAMEWORK

ABOUT THE AUTHORS

Tudor Basarab Ionescu is a doctoral candidate at the Insti-
tute of Nuclear Technology and Energy Systems of the Univer-
sity of Stuttgart, Germany and a member of the SimTech Clus-
ter of Excellence. His research interests include dispersion model-
ing and simulation, software engineering and evolution, and parallel
and distributed computing. He can be reached at ionescu@ike.uni-
stuttgart.de.

Andreas Piater is a postdoctoral researcher at the Institute of Nu-
clear Technology and Energy Systems of the University of Stuttgart,
Germany. His research interests are simulation of complex systems,
software engineering, and knowledge systems. He can be reached at
piater@ike.uni-stuttgart.de.

Walter Scheuermann has received his doctorate degree from the
University of Stuttgart and is now the head of the Knowledge En-
gineering Department of the Institute of Nuclear Technology and
Energy Systems of the University of Stuttgart, Germany. His re-
search interests are simulation of complex systems, dispersion mod-
eling and simulation, and parallel and distributed computing. He
can be reached at scheuermann@ike.uni-stuttgart.de.

Eckart Laurien is a full professor and the head of the Institute
of Nuclear Technology and Energy Systems of the University of
Stuttgart, Germany. 1985 — Dissertation (Dr.-Ing), University of
Karlsruhe, 1986/87 — Research Fellowship, University of Arizona,
Tucson (USA), Aerospace and Mechanical Engineering, 1987/88 —
Research Associate, University of Colorado, Boulder (USA), Me-
chanical Engineering Sciences, 1995 — Habilitation (Dr.-Ing. habil.),
University of Braunschweig, Institute for Fluid Mechanics, 1996 —
Professor, University of Stuttgart, Departement for Thermofluiddy-
namics. He can be reached at laurien@ike.uni-stuttgart.de.

VOL 9, NO. 1

JOURNAL OF OBJECT TECHNOLOGY 181

mailto:ionescu@ike.uni-stuttgart.de
mailto:ionescu@ike.uni-stuttgart.de
mailto:piater@ike.uni-stuttgart.de
mailto:scheuermann@ike.uni-stuttgart.de
mailto:laurien@ike.uni-stuttgart.de

