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Abstract 
Aspect-oriented programming (AOP) provides assistance in modularizing concerns that 
crosscut the boundaries of system decomposition. Aspects have the potential to interact 
with many different kinds of language constructs in order to modularize crosscutting 
concerns. Although several aspect languages have demonstrated advantages in 
applying aspects to traditional modularization boundaries (e.g., object-oriented 
hierarchies), additional language concepts such as parametric polymorphism can also 
benefit from aspects. Many popular programming languages support parametric 
polymorphism (e.g., C++ templates), but the combination of aspects and generics is a 
topic in need of further investigation. The paper enumerates the general challenges of 
uniting aspects with C++ templates. It also underlines the need for new language 
constructs to extend AOP support to C++ templates and provides an initial solution to 
realize this goal. 

1 INTRODUCTION 

Aspect-Oriented Software Development [5] has shown initial promise in assisting a 
developer in isolating points of variation in a program. This helps the program to evolve 
and adapt to new change requirements during the lifecycle of the program. Aspects are 
language constructs that cleanly separate concerns that crosscut the modularization 
boundaries of an implementation. In a fundamentally unique way, aspects permit a 
software developer to quantify, from a single location, the effect of a concern across a 
body of code, thus improving the separation of crosscutting concerns. A translator called 
a weaver is responsible for merging the separated aspects with the base code. Some of the 
commonly used terminologies’ in aspect-oriented programming (AOP) are: 
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Join Points are specific points of execution in a program, such as a method call, a 
constructor call or an object initialization. 

Pointcuts are a means to identify a set of join points in a program and are expressed 
through a predicate expression that indicates a quantification over the code base. 

Advice specify actions that are performed when a specific join point is matched by a 
given pointcut expression. 

Inter-type1 declarations allows crosscutting concerns to modify the structure of 
modules by declaring members or parents of another class in a single aspect such that the 
code related to a concern can reside in the same place. 

Aspects define a modularization of a crosscutting concern for which the 
implementation might otherwise be distributed across multiple classes; aspects are 
expressed in terms of pointcuts and advice. 

Motivation 

The majority of research in the area of aspect-oriented programming [8] has focused on 
application to languages that support inheritance and subtype polymorphism (e.g., Java). 
There is potential benefit for applying the AOP concepts to other forms of polymorphism, 
such as parametric polymorphism [3], as found in languages that offer templates or 
generics (e.g., C++, Ada and Java). As a specific application area, aspects have the 
capability to improve the modularization of crosscutting concerns in large template 
libraries. Applying aspects to templates offers an additional degree of adaptation and 
configuration beyond that provided by parameterization alone. 

The application of aspects to parametric polymorphism has not received much 
attention in the existing research literature. The most detailed discussion of aspects and 
C++ templates is described in [13], within the context of AspectC++ (an aspect language 
for C++) [17]. The effort to add aspects to templates in AspectC++ has been partitioned 
along two complimentary dimensions:  

• Weaving advice into template bodies 
• Using templates in the bodies of aspects 

Whereas the AspectC++ work has focused along the second dimension (i.e., using 
templates in the aspect body), the key contribution of this paper is a deeper investigation 
along the first dimension (i.e., weaving advice in the template body).  

In addition, the paper enumerates a key challenge pertaining to aspects and 
templates: Although a template is instantiated in multiple places, it may be the case that 
the crosscutting feature is required in only a subset of those instances (this challenge is 
further described in Section 2). For example, it may be required to weave in vector 
templates of type int only (i.e., vector<int>), leaving vectors of all other types 

                                                           
1 The initial work presented in this paper does not consider inter-type declarations in its design. 
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unchanged. Additional language features are required to describe such specific intentions 
and is explained in detail in Section 2. Our solution is driven by a source-to-source pre-
processor that utilizes a program transformation engine to perform the lower level 
adaptations. As a specific application area, we believe that there is a strong potential for 
impact if aspects can be used to improve the modularization of template libraries tailored 
for high-performance scientific computing. Such applications rely heavily on parametric 
polymorphism to specialize mathematical operations on vectors, arrays, and matrices 
[16], [18]. This paper presents the initial design and implementation of a template-aware 
aspect language. 

Overview of Paper Contents 

Section 2 presents an overview of the challenges and key concepts of AOP language 
design for C++ templates, and provides a solution technique in the design of a pointcut 
description language for templates. Section 3 shows the low-level implementation details 
that use a program transformation engine to perform the underlying weaving. Section 4 
provides comparison to related work. A conclusion offers summary remarks and 
discusses future work. 

2 AOP FOR C++ TEMPLATES 

This section introduces several essential concepts of AOP for C++ templates. An 
application of the Standard Template Library (STL) [9] vector class is presented, along 
with a description of a program transformation technique for modularizing a crosscutting 
concern among vector instances. Initially, some of the elementary pointcut language 
constructs for C++ templates are introduced in Section 2. Later on, the paper motivates 
the need for advanced pointcuts for C++ templates and presents our initial approach to 
support this technique. 

Simple Pointcut Expressions for C++ Templates  

Listing 1 shows a simple implementation of class Foo that uses several instances of the 
STL vector class. The join point model and pointcut language are explained in terms of 
actual template definitions. The listing is purposely simplified so that the concepts are not 
complicated by peripheral details. There are three fields defined in Foo, either of type 
vector<int> or vector<float>. The methods getMyInts and getMyFloats 
return the corresponding vector field, and the method addFloats adds a new floating 
point number to a given floating point vector. 
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1. #include <vector> 
2. using namespace std; 
3.  
4. class Foo { 
5.   public: 
6.      vector<int>   getMyInts(); 
7.      vector<float> getMyFloats(); 
8.      void addMyFloats(vector<float>,float); 
9.   protected: 
10.      vector<int> myInts; 
11.      vector<float>  myFloats;  
12.      vector<float>  someOtherFloats;  
13.   }; 
14.    
15.   vector<int> Foo::getMyInts() { 
16.        return myInts;  
17.   } 
18.   vector<float> Foo::getMyFloats(){ 
19.        return myFloats;  
20.   } 
21.   void Foo::addMyFloats(vector<float> any,float aFloat) { 
22.        any.push_back(aFloat); 
23.   } 
24.   ...  

Listing 1: An example class with multiple template instantiations 

Using Foo as a reference for discussion, some of the primitive pointcut expressions 
defined in our aspect language for C++ templates are explained below: 

• A primitive get for the field myFloats is captured by the following pointcut 
expression:  

 
  get(vector<*> Foo::myFloats) or  

            get(vector<float> Foo::myFloats) 
     Note the wildcard “*” refers to any vector type.  
• The execution of all “getters” (i.e., getMyInts and getMyFloats) is 

matched by the pointcut expression:  
 

     execution(vector<*> Foo::get*(..)) 
 
The expression “get*” matches all “get” methods. 
• However, to match the execution of a specific get method (e.g., getMyInts), 

the above pointcut expression can be rewritten as: 
 

     execution(vector<int> Foo::getMyInts(..)) 
 

Here, instead of using a wildcard, we specify the exact method signature. 
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• Similarly, a call to the method addMyFloats is matched by the pointcut 
expression: 

 
       call(void Foo::addMyFloats(vector<float>,float)).  

 
In addition to the above examples, there are other pointcut expressions (e.g., set, 
constructor, initialization) that are available but not shown in this paper. 

A key challenge that is addressed in our pointcut language design occurs from the 
realization that a template can be instantiated in multiple places, yet it may be the case 
that the crosscutting feature is required in only a subset of those instances. A generalized 
pointcut expression that quantifies over specific types may mistakenely capture several 
unintended instantiations. For example, if there are multiple vector<float> fields 
defined in class foo, it may be required to log a call only to the push_back method for 
the field myFloats, and leave other vector<float> fields (e.g., 
someOtherFloats) unaltered. 

The flexibility to quantify over specific template instances provides additional power 
towards AOP in C++ templates that is not limited to specific types. However, a language 
mechanism is needed to define the quantification scope of a pointcut with respect to the 
semantics of C++ templates. The following section motivates the need for advanced 
pointcut expressions for C++ templates through a preliminary example. 

Motivation for Advanced Pointcuts for C++ Templates 

A fragment of the actual STL vector class definition is presented in Listing 2a, which 
shows the implementation of two vector-specific operations, push_back and 
pop_back. The sample code in Listing 2b illustrates the use of a vector in an 
application program. In this simple application, three different types of vector instances 
are declared (i.e., vectors of type int, char, and float). The push_back method is 
invoked on each vector instance to insert an element of a different type. 

Considering the canonical logging2 example, suppose that important data in specific 
vector instances needs to be recorded whenever the contents of the vector are changed. 
That is, within the context of an STL vector class, a requirement may state that logging is 
to occur for all items added to each execution of the push_back method, but only for 
specific instantiations. For example, it may be desired to log only vector fields of type 
<int> in class A (e.g., field fi1 in class A) without affecting other local vector 
instantiations of type int in class A or B (e.g., those appearing in the local scope of 
method foo in class A or method bar in class B). 

                                                           
2 We recognize the clichéd use of logging in AOP examples, but in this section we want to motivate the 
challenges of template weaving using a familiar concept. 
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1. template <class T> 
2. class vector{  
3. //... 
4.  
5. public: 
6. void push_back 
7.       (const T& x ) { 
8. // insert element at end 
9.   if (finish !=    
10.     end_of_storage){   
11.  construct(finish, x); 
12.       finish++; 
13.     } else 
14.   insert_aux(end(), x); 
15.    } 
16. } 
17.void pop_back() { 
18.// erase element at end 
19.  if (!empty()) 
20. erase(end() - 1); 
21.} 
22.// ... 
23.// other implementation 
24.// details omitted here 
25.};  
 

1. class A { 
2. vector<int> fi1; 
3. vector<float> fi2; 
4. void foo() {    
5.    vector<int> ai; 
6.    //... 
7.    ai.push_back(1); 
8.    fi1.push_back(2); 
9.    fi2.push_back(3.0); 
10.   //... 
11.  } 
12.};      
 
1. class B { 
2. vector<char> bc; 
3. vector<int> fi; 
4. void bar() { 
5.    vector<int> bi; 
6.    vector<float> bf; 
7.    //... 
8.    bc.push_back('a'); 
9.    bi.push_back(1); 
10.   bf.push_back(2.0); 
11.   //... 
12.  } 
13.}; 
 

a) STL vector implementation                 b) Application using STL vectors 

Listing 2:  STL Vector Class and its usage 

Challenges in Logging Specific Template Instance 

In order to record or log the contents of a given vector instance, the push_back3 
method as defined in the original vector template (Listing 2a) must be adapted. However, 
any change to this base template definition will affect all instantiations that reference the 
original vector template. For example, if logging support is added to the push_back 
method in the original vector template, all instantiations of vector (e.g., fields fi1, fi2 
in class A, fields bc, fi in class B, or method variables bi or bf in class B) will 
automatically implement support for logging. But according to the requirement, it is only 
desired to capture logging to specific instances of the vector (e.g., fields of type vector 
<int>) and not to all instances. The following section outlines an initial solution to 
address this challenge. 

                                                           
3 The push_back method is invoked on each vector instance to insert an element of a different type. 
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Listing 3: STL vector$1 class and updated references in the application 
instances 

Template Subtyping for AOP 

In order to affect only int instances of the given vector template in fields of class A (or 
fields of class B) and leave other types (e.g., float, char) of vector instances 
unaltered, a new subtype vector$1 is constructed, which inherits from the original 
vector template. The log statement is then added to the over-written push_back method 
of the vector$1 template. The top-half of Listing 3 shows the adapted definition of the 
push_back method in this vector$1 template. Note that the method call 
log.add(x) is added at the beginning of the push_back method in Listing 3. 
Finally, all field references in class A and B of type vector<int> are updated with this 
new vector$1 template (shown in the middle of Listing 3). However, all other 
references to the original vector template are left unaltered (e.g., field fi2 or method 
variable ai in class A retain their original declaration). 

Although template specialization seems related to template subtyping, there could be 
instances where specialization may fail. For example, if only a particular instance of a 
specific type needs to be adapted (i.e., only the field fi1 in class A), specialization 
techniques would fail as any specialization will be universally applied to all references of 
type vector<int> (e.g., method variable ai in class A). However, using template 
subtyping, only the functions that need to be adapted are transformed with respect to the 
new aspect semantics, but the rest of the class template remains unchanged. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. class B { 
2. vector<char> bc; 
3. vector$1<int> fi; 
4. void bar() { 
5.      vector<int> bi; 
6.      vector<float> bf; 
7.      //... 
8.    } 
9. }; 

1. template <class T> 
2. class vector$1 : public vector<T> {    ...       
3.    public: 
4.    void vector$1::push_back(const T& x ) {      
5.          log.add(x); 
6.        __super::push_back(x);  
7.    } 
8.    vector$1<T>& vector$1<T>::operator= 

                  (const vector<T>& _Right) { 
9.        __super::operator=(_Right); 
10.      return (*this); 
11.} ... 
12. 

1. class A { 
2. vector$1<int> fi1; 
3. vector<float> fi2; 
4. void foo() { 
5.    vector<int> ai; 
6.    //...  
7.    } 
8. }; 

1 pointcut push_back_method(): 
2 execution(A::* <- 
3  vector<int>::push_back(..)); 

1 pointcut push_back_method(): 
2 execution(B::*<- 
3  vector<int>::push_back(..));  
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The following section describes in detail the scoping constructs required to specify the 
context of a given pointcut expression with respect to C++ templates. 

Scoping Rules for Templates  

This sub-section introduces the notion of advanced pointcut expressions based on the 
scope of a particular template instance. Table 1 illustrates the scoping rules for templates.  
 
 

Scope Designator Description 
 C::* All global template instantiations of class C (fields) 
* C.*(..)::* All local template instantiations within all methods of 

class C 
(C::*  || * C.*(..)::*) All template instantiations (both global and local) within 

class C 
C.M(..)::* 

 
All local template instantiations within method M of class 
C 

* C.*(..)::V 
 

Any template instantiation that is referenced by a variable 
V in all methods of class C 

* C.M(..)::V Template instantiation that is referenced by a variable V 
in method M of class C 

Table 1. Scope designators in pointcut expressions 

From the categorization of scope designators shown in Table 1, the example from Listing 
3 can be re-visited to observe the scoping rules for classes A and B in the application 
program. At the bottom of Listing 3, two pointcut specifications are shown that capture 
the logging concern for specific vector instances depending on the scoping rule applied 
to the base class template. The pointcut in the bottom-left of Listing 3 can be read as, 
“select all fields of type vector<int> in class A that lead to an execution of the 
push_back method.” Similarly, the pointcut in the bottom-right of Listing 3 can be 
read as, “select all fields of type vector<int> in class B that lead to an execution of 
the push_back method.”  

To illustrate this scoping rule further, additional examples are provided in Listings 4 
through 8. Each pointcut definition is progressively more focused in limiting the scope of 
the join points that are captured (i.e., from a pointcut that captures all vectors of any type 
in any class, down to a pointcut that specifies a specific instance in a distinct method). 
Listing 4 offers an example of the aspect language to add the logging statement to the 
push_back method in all vectors of any type from any class. The pointcut 
push_back_method represents the points of execution where the advice is to be 
applied. In the pointcut expression, vector<*> denotes all types of vector instances. 
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1.  template <class T> 
2.  aspect InsertPushBackLogToAllVector { 
3.    pointcut push_back_method(const T& x): 
4.       execution(vector<*>::push_back(..)) &&  args(x); 
5.    before(const T& x):push_back_method(x) { 
6.      log.add(x); 
7.     } 
8. } 

Listing 4: Aspect specification for inserting the push_back log to all vectors of ANY type in ANY class 

Listing 5 defines a pointcut that specifies the execution join point for the 
push_back method of all vectors of type int. The low-level implementation details 
involving the program transformation rules to automate the required changes to the 
template class and application program will be shown in Section 3. 

 

1. pointcut push_back_method(): 
2.   execution(vector<int>::push_back(..));  

Listing 5: Pointcut specification for weaving into all 
vectors of type int in ANY class 

To add finer granularity, Listing 6 describes the pointcut specification for execution 
of all vectors of type int in class A. The operator '<-' is used to denote the scope of the 
vector template, however, a different symbol is chosen to distinguish from the standard 
C++ scope operator '::'.  To be more specific in limiting the scope of a pointcut, Listing 
7 defines a pointcut capturing all int vectors in method foo that are defined in class A. 

 

1. pointcut push_back_method(): 
2.   execution((A::*  || * A.*(..)::*)<- 
3.              vector<int>::push_back(..)); 

Listing 6: Pointcut specification for weaving into all  
vectors of type int in class A 

 

1. pointcut push_back_method(): 
2.   execution(* A.foo(..)::*<- 
3.               vector<int>::push_back(..)); 

Listing 7: Pointcut specification for weaving into all vectors 
of type int in method foo of class A 

Listing 8 is the most specific pointcut expression; it will only match a particular template 
instance ai whose type is of vector<int> and is defined within the scope of method 
foo of class A. 
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1. pointcut push_back_method(): 
2.   execution(* A.foo(..))::ai<- 
3.               vector<int>::push_back(..)); 

Listing 8: Pointcut specification for weaving into vectors of type int and referenced by variable ai in 
method foo of class A 

3 TEMPLATE WEAVING USING PROGRAM TRANSFORMATION 

The aspect language shown in the previous section illustrates the high-level language 
specifically constructed to handle C++ templates. In this section, emphasis is placed on 
the low-level implementation details used to automate the weaving process through a 
program transformation engine. 

The Design Maintenance System 
The Design Maintenance System (DMS) [1] is a program transformation system and re-
engineering toolkit developed by Semantic Designs (www.semdesigns.com). The core 
component of DMS is a term rewriting engine that provides powerful pattern matching 
and source translation capabilities. In DMS terminology, a language domain represents 
all of the tools (e.g., lexer, parser, pretty printer) for performing translation within a 
specific programming language. DMS provides pre-constructed domains for several 
dozen languages. 

The DMS Rule Specification Language (RSL) provides basic primitives for 
describing numerous transformations that are to be performed across the entire code base 
of an application. The RSL consists of declarations of patterns, rules, conditions, and rule 
sets using the external form (i.e., concrete syntax) defined by a language domain. Patterns 
describe the form of a syntax tree. They are used for matching purposes to find a syntax 
tree having a specified structure. Patterns are often used on the right-hand side (target) of 
a rule to describe the resulting syntax tree after a transformation rule is applied. The RSL 
rules describe a directed pair of corresponding syntax trees. A rule is typically used as a 
rewrite specification that maps from a left-hand side (source) syntax tree expression to a 
right-hand side (target) syntax tree expression. Rules can be combined into sets of rules 
that together form a transformation strategy by defining a collection of transformations 
that can be applied to a syntax tree. The patterns and rules can have associated conditions 
that describe restrictions on when a pattern legally matches a syntax tree, or when a rule 
is applicable on a syntax tree. Typically, a large collection of RSL files, like those 
represented in Listing 9 and Listing 10, are needed to describe the full set of 
transformations. 

In addition to the RSL, a language called PARLANSE (PARallel LANguage for 
Symbolic Expressions) is available in DMS. Transformation functions can be written in 
PARLANSE to traverse and manipulate the parse tree at a finer level of granularity than 
provided by RSL. PARLANSE is a functional language for writing transformation rules 
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as external patterns to provide deeper structural transformation. The DMS rules, along 
with the corresponding PARLANSE code, represent the transformations on the base STL 
library. However, due to the very low-level nature of the rewrite rules, it is not desirable 
that programmers be required to write their specifications using term rewriting or 
PARLANSE-specific functions. Instead, a high-level aspect language (similar to AspectJ, 
an aspect language for Java [10]) that hides the accidental complexities of RSL and 
PARLANSE from the programmer can be used to specify the weaving. 

Figure 1 presents an overview of the automated transformation process that uses the 
DMS program transformation system as its underlying engine. One of the major 
components involved in the implementation of the weaver is the translator (bottom of 
figure), which parses and translates a high-level aspect language into low-level rewrite 
rules (i.e., referenced as items #5 and #6). This facilitates the application programmers to 
specify their intent using a high-level aspect language and remain oblivious to the 
existence of a low-level transformation engine. 

The heart of the weaving process (core infrastructure) is the DMS transformation 
engine, which takes the source files and the generated rules as input. The user provides 
three different source files as input to the transformation process: the original STL source 
code (shown as item #1 in Figure 1), an application program based on the STL instances 

(shown as item #2), and a high-level aspect language specification (examples shown in 
Section 2) used to describe the specific crosscutting concern with respect to template 
instantiations. 

The translator includes a lexer, parser, and pattern evaluator (i.e., pattern parser and 
attribute evaluator) that takes the aspect specification and instantiates two different sets of 
parameterized transformation rules (i.e., STL copy rules and App transformation rules, 

Figure 1: Overview of Template Weaving Process Applied to STL 
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shown separately as #5 and #6 in Figure 1). The pointcut expressions are bound to the 
corresponding transformation rules that are instantiated for matching patterns. The STL 
copy rules generate a subtype copy of the original STL class template by inheriting from 
the base template. The crosscutting concerns are weaved into this new subtype by 
overwriting appropriate methods as defined in the STL-RSL Binding. Note that each 
subtype copy rule encapsulates only one crosscutting concern for each specific template 
type (e.g., vector<float>). Therefore, it is desired to generate only one subtype 
copy for every type, each of which has one specific concern weaved into its base 
definition (shown as #3). However, if multiple concerns crosscut a specific type, then the 
corresponding subtype copy should also replicate this behavior by encapsulating multiple 
crosscutting concerns weaved into one copy. Similar to the STL-RSL Binding, the App-
RSL Binding transformation modifies the user application program (shown as #2) based 
on the App transformation rules, and generates the new application (shown as #4) that is 
able to be compiled as a pre-processing phase and executed along with the generated 
subtype STL copies. The remainder of Section 3 provides a discussion of the 
transformation rules that implement these ideas. 

Transformation Rules for Template Weaving 
Listing 9 (STL template subtype copy rule, also shown as #5 in Figure 1) shows the low-
level RSL specification for weaving a logging concern into the push_back method in 
an STL vector class. Two steps are involved in the weaving process: 1) make a 
subtype copy of the original vector template class, and 2) insert the logging statement into 
appropriate places in the abstract syntax tree. The first line of the rule establishes the 
default base language domain (e.g., C++) to which the transformations are applied. 
 

1.    default base domain Cpp. 
2.    pattern log_statement(): statement_seq = "log.add(x);". 
3.    pattern weaved_method_name(): identifier = "push_back". 
4.    pattern new_template_name(): identifier = "vector$1". 
5.    external pattern copy_template 
6.       ( td : template_declaration, 
7.         st : statement_seq, 
8.         method_name : identifier,  
9.      template_name : identifier ):  
10.   template_declaration = 'copy_template' in domain Cpp.  
11.      
12.   rule insert_log_to_template 
13.   ( td : template_declaration ):  
14.     template_declaration -> template_declaration 
15.   = td ->     
16.     copy_template (td, log_statement(),  
17.                    weaved_method_name(),   

                    new_template_name()). 
 

18.   public ruleset applyrules = { insert_log_to_template }. 

Listing 9: DMS transformation rules for weaving  
log statement into push_back method 



 
 
 
 
 
 

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 155 

Pattern log_statement in line 2 represents the log statement that will be inserted 
before the execution of the push_back method. Pattern weaved_method_name in 
line 3 defines the name of the method that will be transformed (i.e., push_back in this 
case). Pattern new_template_name in line 4 specifies the new name for the vector 
(i.e., vector$1). 

As stated earlier, exit functions (i.e., external patterns and functions) in DMS are 
written in PARLANSE, which use internal APIs for performing various traversal and tree 
operations on the parsed abstract syntax tree. In this example, the external pattern 
copy_template (line 5 of Figure 9) is a PARLANSE function that performs the actual 
process of subtyping, naming, and weaving. 

This external pattern takes four input parameters: 1) a template declaration to be 
operated on, 2) a statement sequence representing the advice, 3) a method name where 
the advice is to be weaved, and 4) a new name for the template subtype. The rule 
insert_log_to_template on line 12 triggers the transformation on the vector 
class by invoking the specified external pattern. 

After applying this rule to the code fragment shown in Listing 2, a new template 
class named vector$1 (inherited from vector) will be generated with the logging 
statement inserted at the beginning of the push_back method (i.e., the automated result 
is the same as found in Listing 3). At this stage, the weaving process is still not complete 
because the application program also needs to be updated to reference the new 
vector$1 instance.  

The DMS transformation rule to update the corresponding application program (App 
transformation rule, also shown as #6 in Figure 1) is specified in Listing 10. Pattern 
pointcut (lines 2 and 3) identifies the condition under which the rule will be applied 
(i.e., in this case, all int vector declarations). Pattern advice (lines 5 and 6) defines the 
name of the new transformed type (vector$1<int>). After applying this particular 
rule (line 21) to a given user application, the external pattern 
replace_vector_instance replaces the type of every template instantiation 
declared as type vector<int> into an instance of  type vector$1<int>. 

The notion of rewrite rules was introduced in this section not to perplex the 
interested reader, but to reveal the underlying details that enable the weaving mechanism 
to be applied to templates. Due to the low-level nature of the transformation rules, a 
programmer is not expected to write these rules. Rather, the aspect language mentioned in 
Section 2 and its corresponding binding with the RSL drives the weaving process. A 
programmer can specify the pointcut expression using the aspect language and the 
underlying rewrite rules are generated and correspondingly instantiated to match patterns 
in a manner that is transparent to the programmer. 
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1.    default base domain Cpp. 
2.    pattern pointcut( id : identifier ):  
3.         declaration_statement = "vector<int> \id;". 
4.  
5.    pattern advice( id : identifier ):  
6.         declaration_statement = "vector$1<int> \id;". 
7.  
8.    external pattern replace_vector_instance 
9.        ( cd  : class_declaration, 
10.       ds1 : declaration_statement, 

              ds2 : declaration_statement ):  
11.    class_declaration = 'replace_vector_instance'  
12.                        in domain Cpp.  
13. 
14.   rule replace_template_instance 
15.    ( cd : class_declaration, 
16.      id : identifier):  
17.    class_declaration ->  
18.    class_declaration 
19.    = cd -> replace_vector_instance 
20.           (cd,pointcut(id),advice(id)). 
21.   public ruleset applyrules = {replace_template_instance}. 

Listing 10: DMS transformation rules to update 
 the application program 

4 RELATED WORK 

As noted in the introduction, a discussion of templates and aspects in AspectC++ within 
the context of generative programming is discussed in [13]. The focus of the AspectC++ 
work is on the interesting notion of incorporating parametric polymorphism into the 
bodies of advice. In contrast, the focus of our contribution is a deeper discussion of the 
complimentary idea of weaving crosscutting features into the implementation of template 
libraries. As an alternative to DMS, there are several other transformation systems that 
are available (e.g., ASF+SDF [2], TXL [4]) that could perhaps offer an alternative 
platform for the low-level transformation rules. With respect to the application of 
program transformation systems to aspect weaving, an investigation was described by 
Fradet and Südholt in an early position paper [6]. In similar work, Lämmel [11] discusses 
the implementation of an aspect weaver for a declarative language using functional meta-
programs. Lopez et al. discussed the relationship of program transformation with respect 
to AspectJ [12]. In a different context [7], we applied program transformation technology 
to construct an aspect weaver for Object Pascal. This paper extends that work to C++ 
templates in order to address the challenges of transforming complex template code. 
AspectJ provides support for generics and parameterized types in pointcuts and intertype 
declarations. In order to restrict matching of patterns within given parameter types (for 
methods and constructors), return types (for methods) and field types, an appropriate 
parameterized type pattern is specified in the signature pattern of a pointcut expression. 
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Our initial work with C++ is also based on this idea. Additional flexibility is also 
provided by matching parameterized types within a given context using scope designators 
(as explained in Section 2). 

5 CONCLUSIONS 

Parametric polymorphism enables implementation of common algorithms and data 
structures in a type-independent manner. A template is contained in a single specification, 
but instantiated in multiple places within a target application. As shown in Section 2, 
applying aspects to templates raises several issues that need further investigation. For 
example, it is most likely that only a subset of the instances of a template is related to a 
specific crosscutting feature. In such cases, it would be incorrect to weave a concern 
naively into all template instantiations. A capability is needed to identify and specify 
those instances that are affected by an aspect, and to provide appropriate transformations 
that make a copy of the original template and weave on each copy. The study also 
illustrated the reason why adaptation has to be made not only to the template definition, 
but also to the application program that instantiates the template in multiple places. 

Given the relevance of concern-based template adaptation, the contribution presented 
in this paper can be used for other programming languages that support parametric 
polymorphism (note: DMS provides mature grammars for several dozen languages). For 
instance, similar issues will arise with adoption of generics in other languages, as 
discussed by Silaghi [19].  

Future directions will involve evaluating our weaver as applied to several scientific 
libraries that are implemented using C++ Templates (e.g., Blitz++ [18], POOMA [14], 
MTL [15]). An interesting topic that we will investigate is library-independent aspects 
that may exist within a specific domain, such as scientific computing, but applicable to 
several different libraries.  
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