
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 1, January-February 2010

Suman Roychoudhury, Jeff Gray, Jing Zhang, Purushotham Bangalore, Anthony Skjellum: “A
Program Transformation Technique to Support AOP within C++ Templates”, in Journal of Object
Technology, vol. 9, no. 1, January - February 2009, pp. 143 - 160
http://www.jot.fm/issues/issue_2010_01/article3/

A Program Transformation Technique to
Support AOP within C++ Templates

Suman Roychoudhury, TATA Research Devolopment and Design Center,
India.
Jeff Gray, University of Alabama, USA.
Jing Zhang, Motorola Applied Research Center, USA.
Purushotham Bangalore, University of Alabama at Birmingham, USA.
Anthony Skjellum, University of Alabama at Birmingham, USA.

Abstract
Aspect-oriented programming (AOP) provides assistance in modularizing concerns that
crosscut the boundaries of system decomposition. Aspects have the potential to interact
with many different kinds of language constructs in order to modularize crosscutting
concerns. Although several aspect languages have demonstrated advantages in
applying aspects to traditional modularization boundaries (e.g., object-oriented
hierarchies), additional language concepts such as parametric polymorphism can also
benefit from aspects. Many popular programming languages support parametric
polymorphism (e.g., C++ templates), but the combination of aspects and generics is a
topic in need of further investigation. The paper enumerates the general challenges of
uniting aspects with C++ templates. It also underlines the need for new language
constructs to extend AOP support to C++ templates and provides an initial solution to
realize this goal.

1 INTRODUCTION

Aspect-Oriented Software Development [5] has shown initial promise in assisting a
developer in isolating points of variation in a program. This helps the program to evolve
and adapt to new change requirements during the lifecycle of the program. Aspects are
language constructs that cleanly separate concerns that crosscut the modularization
boundaries of an implementation. In a fundamentally unique way, aspects permit a
software developer to quantify, from a single location, the effect of a concern across a
body of code, thus improving the separation of crosscutting concerns. A translator called
a weaver is responsible for merging the separated aspects with the base code. Some of the
commonly used terminologies’ in aspect-oriented programming (AOP) are:

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Join Points are specific points of execution in a program, such as a method call, a
constructor call or an object initialization.

Pointcuts are a means to identify a set of join points in a program and are expressed
through a predicate expression that indicates a quantification over the code base.

Advice specify actions that are performed when a specific join point is matched by a
given pointcut expression.

Inter-type1 declarations allows crosscutting concerns to modify the structure of
modules by declaring members or parents of another class in a single aspect such that the
code related to a concern can reside in the same place.

Aspects define a modularization of a crosscutting concern for which the
implementation might otherwise be distributed across multiple classes; aspects are
expressed in terms of pointcuts and advice.

Motivation

The majority of research in the area of aspect-oriented programming [8] has focused on
application to languages that support inheritance and subtype polymorphism (e.g., Java).
There is potential benefit for applying the AOP concepts to other forms of polymorphism,
such as parametric polymorphism [3], as found in languages that offer templates or
generics (e.g., C++, Ada and Java). As a specific application area, aspects have the
capability to improve the modularization of crosscutting concerns in large template
libraries. Applying aspects to templates offers an additional degree of adaptation and
configuration beyond that provided by parameterization alone.

The application of aspects to parametric polymorphism has not received much
attention in the existing research literature. The most detailed discussion of aspects and
C++ templates is described in [13], within the context of AspectC++ (an aspect language
for C++) [17]. The effort to add aspects to templates in AspectC++ has been partitioned
along two complimentary dimensions:

• Weaving advice into template bodies
• Using templates in the bodies of aspects

Whereas the AspectC++ work has focused along the second dimension (i.e., using
templates in the aspect body), the key contribution of this paper is a deeper investigation
along the first dimension (i.e., weaving advice in the template body).

In addition, the paper enumerates a key challenge pertaining to aspects and
templates: Although a template is instantiated in multiple places, it may be the case that
the crosscutting feature is required in only a subset of those instances (this challenge is
further described in Section 2). For example, it may be required to weave in vector
templates of type int only (i.e., vector<int>), leaving vectors of all other types

1 The initial work presented in this paper does not consider inter-type declarations in its design.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 145

unchanged. Additional language features are required to describe such specific intentions
and is explained in detail in Section 2. Our solution is driven by a source-to-source pre-
processor that utilizes a program transformation engine to perform the lower level
adaptations. As a specific application area, we believe that there is a strong potential for
impact if aspects can be used to improve the modularization of template libraries tailored
for high-performance scientific computing. Such applications rely heavily on parametric
polymorphism to specialize mathematical operations on vectors, arrays, and matrices
[16], [18]. This paper presents the initial design and implementation of a template-aware
aspect language.

Overview of Paper Contents

Section 2 presents an overview of the challenges and key concepts of AOP language
design for C++ templates, and provides a solution technique in the design of a pointcut
description language for templates. Section 3 shows the low-level implementation details
that use a program transformation engine to perform the underlying weaving. Section 4
provides comparison to related work. A conclusion offers summary remarks and
discusses future work.

2 AOP FOR C++ TEMPLATES

This section introduces several essential concepts of AOP for C++ templates. An
application of the Standard Template Library (STL) [9] vector class is presented, along
with a description of a program transformation technique for modularizing a crosscutting
concern among vector instances. Initially, some of the elementary pointcut language
constructs for C++ templates are introduced in Section 2. Later on, the paper motivates
the need for advanced pointcuts for C++ templates and presents our initial approach to
support this technique.

Simple Pointcut Expressions for C++ Templates

Listing 1 shows a simple implementation of class Foo that uses several instances of the
STL vector class. The join point model and pointcut language are explained in terms of
actual template definitions. The listing is purposely simplified so that the concepts are not
complicated by peripheral details. There are three fields defined in Foo, either of type
vector<int> or vector<float>. The methods getMyInts and getMyFloats
return the corresponding vector field, and the method addFloats adds a new floating
point number to a given floating point vector.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

1. #include <vector>
2. using namespace std;
3.
4. class Foo {
5. public:
6. vector<int> getMyInts();
7. vector<float> getMyFloats();
8. void addMyFloats(vector<float>,float);
9. protected:
10. vector<int> myInts;
11. vector<float> myFloats;
12. vector<float> someOtherFloats;
13. };
14.
15. vector<int> Foo::getMyInts() {
16. return myInts;
17. }
18. vector<float> Foo::getMyFloats(){
19. return myFloats;
20. }
21. void Foo::addMyFloats(vector<float> any,float aFloat) {
22. any.push_back(aFloat);
23. }
24. ...

Listing 1: An example class with multiple template instantiations

Using Foo as a reference for discussion, some of the primitive pointcut expressions
defined in our aspect language for C++ templates are explained below:

• A primitive get for the field myFloats is captured by the following pointcut
expression:

 get(vector<*> Foo::myFloats) or

 get(vector<float> Foo::myFloats)
 Note the wildcard “*” refers to any vector type.
• The execution of all “getters” (i.e., getMyInts and getMyFloats) is

matched by the pointcut expression:

 execution(vector<*> Foo::get*(..))

The expression “get*” matches all “get” methods.
• However, to match the execution of a specific get method (e.g., getMyInts),

the above pointcut expression can be rewritten as:

 execution(vector<int> Foo::getMyInts(..))

Here, instead of using a wildcard, we specify the exact method signature.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 147

• Similarly, a call to the method addMyFloats is matched by the pointcut
expression:

 call(void Foo::addMyFloats(vector<float>,float)).

In addition to the above examples, there are other pointcut expressions (e.g., set,
constructor, initialization) that are available but not shown in this paper.

A key challenge that is addressed in our pointcut language design occurs from the
realization that a template can be instantiated in multiple places, yet it may be the case
that the crosscutting feature is required in only a subset of those instances. A generalized
pointcut expression that quantifies over specific types may mistakenely capture several
unintended instantiations. For example, if there are multiple vector<float> fields
defined in class foo, it may be required to log a call only to the push_back method for
the field myFloats, and leave other vector<float> fields (e.g.,
someOtherFloats) unaltered.

The flexibility to quantify over specific template instances provides additional power
towards AOP in C++ templates that is not limited to specific types. However, a language
mechanism is needed to define the quantification scope of a pointcut with respect to the
semantics of C++ templates. The following section motivates the need for advanced
pointcut expressions for C++ templates through a preliminary example.

Motivation for Advanced Pointcuts for C++ Templates

A fragment of the actual STL vector class definition is presented in Listing 2a, which
shows the implementation of two vector-specific operations, push_back and
pop_back. The sample code in Listing 2b illustrates the use of a vector in an
application program. In this simple application, three different types of vector instances
are declared (i.e., vectors of type int, char, and float). The push_back method is
invoked on each vector instance to insert an element of a different type.

Considering the canonical logging2 example, suppose that important data in specific
vector instances needs to be recorded whenever the contents of the vector are changed.
That is, within the context of an STL vector class, a requirement may state that logging is
to occur for all items added to each execution of the push_back method, but only for
specific instantiations. For example, it may be desired to log only vector fields of type
<int> in class A (e.g., field fi1 in class A) without affecting other local vector
instantiations of type int in class A or B (e.g., those appearing in the local scope of
method foo in class A or method bar in class B).

2 We recognize the clichéd use of logging in AOP examples, but in this section we want to motivate the
challenges of template weaving using a familiar concept.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

1. template <class T>
2. class vector{
3. //...
4.
5. public:
6. void push_back
7. (const T& x) {
8. // insert element at end
9. if (finish !=
10. end_of_storage){
11. construct(finish, x);
12. finish++;
13. } else
14. insert_aux(end(), x);
15. }
16. }
17.void pop_back() {
18.// erase element at end
19. if (!empty())
20. erase(end() - 1);
21.}
22.// ...
23.// other implementation
24.// details omitted here
25.};

1. class A {
2. vector<int> fi1;
3. vector<float> fi2;
4. void foo() {
5. vector<int> ai;
6. //...
7. ai.push_back(1);
8. fi1.push_back(2);
9. fi2.push_back(3.0);
10. //...
11. }
12.};

1. class B {
2. vector<char> bc;
3. vector<int> fi;
4. void bar() {
5. vector<int> bi;
6. vector<float> bf;
7. //...
8. bc.push_back('a');
9. bi.push_back(1);
10. bf.push_back(2.0);
11. //...
12. }
13.};

a) STL vector implementation b) Application using STL vectors

Listing 2: STL Vector Class and its usage

Challenges in Logging Specific Template Instance

In order to record or log the contents of a given vector instance, the push_back3
method as defined in the original vector template (Listing 2a) must be adapted. However,
any change to this base template definition will affect all instantiations that reference the
original vector template. For example, if logging support is added to the push_back
method in the original vector template, all instantiations of vector (e.g., fields fi1, fi2
in class A, fields bc, fi in class B, or method variables bi or bf in class B) will
automatically implement support for logging. But according to the requirement, it is only
desired to capture logging to specific instances of the vector (e.g., fields of type vector
<int>) and not to all instances. The following section outlines an initial solution to
address this challenge.

3 The push_back method is invoked on each vector instance to insert an element of a different type.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 149

Listing 3: STL vector$1 class and updated references in the application
instances

Template Subtyping for AOP

In order to affect only int instances of the given vector template in fields of class A (or
fields of class B) and leave other types (e.g., float, char) of vector instances
unaltered, a new subtype vector$1 is constructed, which inherits from the original
vector template. The log statement is then added to the over-written push_back method
of the vector$1 template. The top-half of Listing 3 shows the adapted definition of the
push_back method in this vector$1 template. Note that the method call
log.add(x) is added at the beginning of the push_back method in Listing 3.
Finally, all field references in class A and B of type vector<int> are updated with this
new vector$1 template (shown in the middle of Listing 3). However, all other
references to the original vector template are left unaltered (e.g., field fi2 or method
variable ai in class A retain their original declaration).

Although template specialization seems related to template subtyping, there could be
instances where specialization may fail. For example, if only a particular instance of a
specific type needs to be adapted (i.e., only the field fi1 in class A), specialization
techniques would fail as any specialization will be universally applied to all references of
type vector<int> (e.g., method variable ai in class A). However, using template
subtyping, only the functions that need to be adapted are transformed with respect to the
new aspect semantics, but the rest of the class template remains unchanged.

1. class B {
2. vector<char> bc;
3. vector$1<int> fi;
4. void bar() {
5. vector<int> bi;
6. vector<float> bf;
7. //...
8. }
9. };

1. template <class T>
2. class vector$1 : public vector<T> { ...
3. public:
4. void vector$1::push_back(const T& x) {
5. log.add(x);
6. __super::push_back(x);
7. }
8. vector$1<T>& vector$1<T>::operator=

 (const vector<T>& _Right) {
9. __super::operator=(_Right);
10. return (*this);
11.} ...
12.

1. class A {
2. vector$1<int> fi1;
3. vector<float> fi2;
4. void foo() {
5. vector<int> ai;
6. //...
7. }
8. };

1 pointcut push_back_method():
2 execution(A::* <-
3 vector<int>::push_back(..));

1 pointcut push_back_method():
2 execution(B::*<-
3 vector<int>::push_back(..));

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

The following section describes in detail the scoping constructs required to specify the
context of a given pointcut expression with respect to C++ templates.

Scoping Rules for Templates

This sub-section introduces the notion of advanced pointcut expressions based on the
scope of a particular template instance. Table 1 illustrates the scoping rules for templates.

Scope Designator Description
 C::* All global template instantiations of class C (fields)
* C.*(..)::* All local template instantiations within all methods of

class C
(C::* || * C.*(..)::*) All template instantiations (both global and local) within

class C
C.M(..)::*

All local template instantiations within method M of class
C

* C.*(..)::V

Any template instantiation that is referenced by a variable
V in all methods of class C

* C.M(..)::V Template instantiation that is referenced by a variable V
in method M of class C

Table 1. Scope designators in pointcut expressions

From the categorization of scope designators shown in Table 1, the example from Listing
3 can be re-visited to observe the scoping rules for classes A and B in the application
program. At the bottom of Listing 3, two pointcut specifications are shown that capture
the logging concern for specific vector instances depending on the scoping rule applied
to the base class template. The pointcut in the bottom-left of Listing 3 can be read as,
“select all fields of type vector<int> in class A that lead to an execution of the
push_back method.” Similarly, the pointcut in the bottom-right of Listing 3 can be
read as, “select all fields of type vector<int> in class B that lead to an execution of
the push_back method.”

To illustrate this scoping rule further, additional examples are provided in Listings 4
through 8. Each pointcut definition is progressively more focused in limiting the scope of
the join points that are captured (i.e., from a pointcut that captures all vectors of any type
in any class, down to a pointcut that specifies a specific instance in a distinct method).
Listing 4 offers an example of the aspect language to add the logging statement to the
push_back method in all vectors of any type from any class. The pointcut
push_back_method represents the points of execution where the advice is to be
applied. In the pointcut expression, vector<*> denotes all types of vector instances.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 151

1. template <class T>
2. aspect InsertPushBackLogToAllVector {
3. pointcut push_back_method(const T& x):
4. execution(vector<*>::push_back(..)) && args(x);
5. before(const T& x):push_back_method(x) {
6. log.add(x);
7. }
8. }

Listing 4: Aspect specification for inserting the push_back log to all vectors of ANY type in ANY class

Listing 5 defines a pointcut that specifies the execution join point for the
push_back method of all vectors of type int. The low-level implementation details
involving the program transformation rules to automate the required changes to the
template class and application program will be shown in Section 3.

1. pointcut push_back_method():
2. execution(vector<int>::push_back(..));

Listing 5: Pointcut specification for weaving into all
vectors of type int in ANY class

To add finer granularity, Listing 6 describes the pointcut specification for execution
of all vectors of type int in class A. The operator '<-' is used to denote the scope of the
vector template, however, a different symbol is chosen to distinguish from the standard
C++ scope operator '::'. To be more specific in limiting the scope of a pointcut, Listing
7 defines a pointcut capturing all int vectors in method foo that are defined in class A.

1. pointcut push_back_method():
2. execution((A::* || * A.*(..)::*)<-
3. vector<int>::push_back(..));

Listing 6: Pointcut specification for weaving into all
vectors of type int in class A

1. pointcut push_back_method():
2. execution(* A.foo(..)::*<-
3. vector<int>::push_back(..));

Listing 7: Pointcut specification for weaving into all vectors
of type int in method foo of class A

Listing 8 is the most specific pointcut expression; it will only match a particular template
instance ai whose type is of vector<int> and is defined within the scope of method
foo of class A.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

1. pointcut push_back_method():
2. execution(* A.foo(..))::ai<-
3. vector<int>::push_back(..));

Listing 8: Pointcut specification for weaving into vectors of type int and referenced by variable ai in
method foo of class A

3 TEMPLATE WEAVING USING PROGRAM TRANSFORMATION

The aspect language shown in the previous section illustrates the high-level language
specifically constructed to handle C++ templates. In this section, emphasis is placed on
the low-level implementation details used to automate the weaving process through a
program transformation engine.

The Design Maintenance System
The Design Maintenance System (DMS) [1] is a program transformation system and re-
engineering toolkit developed by Semantic Designs (www.semdesigns.com). The core
component of DMS is a term rewriting engine that provides powerful pattern matching
and source translation capabilities. In DMS terminology, a language domain represents
all of the tools (e.g., lexer, parser, pretty printer) for performing translation within a
specific programming language. DMS provides pre-constructed domains for several
dozen languages.

The DMS Rule Specification Language (RSL) provides basic primitives for
describing numerous transformations that are to be performed across the entire code base
of an application. The RSL consists of declarations of patterns, rules, conditions, and rule
sets using the external form (i.e., concrete syntax) defined by a language domain. Patterns
describe the form of a syntax tree. They are used for matching purposes to find a syntax
tree having a specified structure. Patterns are often used on the right-hand side (target) of
a rule to describe the resulting syntax tree after a transformation rule is applied. The RSL
rules describe a directed pair of corresponding syntax trees. A rule is typically used as a
rewrite specification that maps from a left-hand side (source) syntax tree expression to a
right-hand side (target) syntax tree expression. Rules can be combined into sets of rules
that together form a transformation strategy by defining a collection of transformations
that can be applied to a syntax tree. The patterns and rules can have associated conditions
that describe restrictions on when a pattern legally matches a syntax tree, or when a rule
is applicable on a syntax tree. Typically, a large collection of RSL files, like those
represented in Listing 9 and Listing 10, are needed to describe the full set of
transformations.

In addition to the RSL, a language called PARLANSE (PARallel LANguage for
Symbolic Expressions) is available in DMS. Transformation functions can be written in
PARLANSE to traverse and manipulate the parse tree at a finer level of granularity than
provided by RSL. PARLANSE is a functional language for writing transformation rules

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 153

as external patterns to provide deeper structural transformation. The DMS rules, along
with the corresponding PARLANSE code, represent the transformations on the base STL
library. However, due to the very low-level nature of the rewrite rules, it is not desirable
that programmers be required to write their specifications using term rewriting or
PARLANSE-specific functions. Instead, a high-level aspect language (similar to AspectJ,
an aspect language for Java [10]) that hides the accidental complexities of RSL and
PARLANSE from the programmer can be used to specify the weaving.

Figure 1 presents an overview of the automated transformation process that uses the
DMS program transformation system as its underlying engine. One of the major
components involved in the implementation of the weaver is the translator (bottom of
figure), which parses and translates a high-level aspect language into low-level rewrite
rules (i.e., referenced as items #5 and #6). This facilitates the application programmers to
specify their intent using a high-level aspect language and remain oblivious to the
existence of a low-level transformation engine.

The heart of the weaving process (core infrastructure) is the DMS transformation
engine, which takes the source files and the generated rules as input. The user provides
three different source files as input to the transformation process: the original STL source
code (shown as item #1 in Figure 1), an application program based on the STL instances

(shown as item #2), and a high-level aspect language specification (examples shown in
Section 2) used to describe the specific crosscutting concern with respect to template
instantiations.

The translator includes a lexer, parser, and pattern evaluator (i.e., pattern parser and
attribute evaluator) that takes the aspect specification and instantiates two different sets of
parameterized transformation rules (i.e., STL copy rules and App transformation rules,

Figure 1: Overview of Template Weaving Process Applied to STL

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

shown separately as #5 and #6 in Figure 1). The pointcut expressions are bound to the
corresponding transformation rules that are instantiated for matching patterns. The STL
copy rules generate a subtype copy of the original STL class template by inheriting from
the base template. The crosscutting concerns are weaved into this new subtype by
overwriting appropriate methods as defined in the STL-RSL Binding. Note that each
subtype copy rule encapsulates only one crosscutting concern for each specific template
type (e.g., vector<float>). Therefore, it is desired to generate only one subtype
copy for every type, each of which has one specific concern weaved into its base
definition (shown as #3). However, if multiple concerns crosscut a specific type, then the
corresponding subtype copy should also replicate this behavior by encapsulating multiple
crosscutting concerns weaved into one copy. Similar to the STL-RSL Binding, the App-
RSL Binding transformation modifies the user application program (shown as #2) based
on the App transformation rules, and generates the new application (shown as #4) that is
able to be compiled as a pre-processing phase and executed along with the generated
subtype STL copies. The remainder of Section 3 provides a discussion of the
transformation rules that implement these ideas.

Transformation Rules for Template Weaving
Listing 9 (STL template subtype copy rule, also shown as #5 in Figure 1) shows the low-
level RSL specification for weaving a logging concern into the push_back method in
an STL vector class. Two steps are involved in the weaving process: 1) make a
subtype copy of the original vector template class, and 2) insert the logging statement into
appropriate places in the abstract syntax tree. The first line of the rule establishes the
default base language domain (e.g., C++) to which the transformations are applied.

1. default base domain Cpp.
2. pattern log_statement(): statement_seq = "log.add(x);".
3. pattern weaved_method_name(): identifier = "push_back".
4. pattern new_template_name(): identifier = "vector$1".
5. external pattern copy_template
6. (td : template_declaration,
7. st : statement_seq,
8. method_name : identifier,
9. template_name : identifier):
10. template_declaration = 'copy_template' in domain Cpp.
11.
12. rule insert_log_to_template
13. (td : template_declaration):
14. template_declaration -> template_declaration
15. = td ->
16. copy_template (td, log_statement(),
17. weaved_method_name(),

 new_template_name()).

18. public ruleset applyrules = { insert_log_to_template }.

Listing 9: DMS transformation rules for weaving
log statement into push_back method

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 155

Pattern log_statement in line 2 represents the log statement that will be inserted
before the execution of the push_back method. Pattern weaved_method_name in
line 3 defines the name of the method that will be transformed (i.e., push_back in this
case). Pattern new_template_name in line 4 specifies the new name for the vector
(i.e., vector$1).

As stated earlier, exit functions (i.e., external patterns and functions) in DMS are
written in PARLANSE, which use internal APIs for performing various traversal and tree
operations on the parsed abstract syntax tree. In this example, the external pattern
copy_template (line 5 of Figure 9) is a PARLANSE function that performs the actual
process of subtyping, naming, and weaving.

This external pattern takes four input parameters: 1) a template declaration to be
operated on, 2) a statement sequence representing the advice, 3) a method name where
the advice is to be weaved, and 4) a new name for the template subtype. The rule
insert_log_to_template on line 12 triggers the transformation on the vector
class by invoking the specified external pattern.

After applying this rule to the code fragment shown in Listing 2, a new template
class named vector$1 (inherited from vector) will be generated with the logging
statement inserted at the beginning of the push_back method (i.e., the automated result
is the same as found in Listing 3). At this stage, the weaving process is still not complete
because the application program also needs to be updated to reference the new
vector$1 instance.

The DMS transformation rule to update the corresponding application program (App
transformation rule, also shown as #6 in Figure 1) is specified in Listing 10. Pattern
pointcut (lines 2 and 3) identifies the condition under which the rule will be applied
(i.e., in this case, all int vector declarations). Pattern advice (lines 5 and 6) defines the
name of the new transformed type (vector$1<int>). After applying this particular
rule (line 21) to a given user application, the external pattern
replace_vector_instance replaces the type of every template instantiation
declared as type vector<int> into an instance of type vector$1<int>.

The notion of rewrite rules was introduced in this section not to perplex the
interested reader, but to reveal the underlying details that enable the weaving mechanism
to be applied to templates. Due to the low-level nature of the transformation rules, a
programmer is not expected to write these rules. Rather, the aspect language mentioned in
Section 2 and its corresponding binding with the RSL drives the weaving process. A
programmer can specify the pointcut expression using the aspect language and the
underlying rewrite rules are generated and correspondingly instantiated to match patterns
in a manner that is transparent to the programmer.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

1. default base domain Cpp.
2. pattern pointcut(id : identifier):
3. declaration_statement = "vector<int> \id;".
4.
5. pattern advice(id : identifier):
6. declaration_statement = "vector$1<int> \id;".
7.
8. external pattern replace_vector_instance
9. (cd : class_declaration,
10. ds1 : declaration_statement,

 ds2 : declaration_statement):
11. class_declaration = 'replace_vector_instance'
12. in domain Cpp.
13.
14. rule replace_template_instance
15. (cd : class_declaration,
16. id : identifier):
17. class_declaration ->
18. class_declaration
19. = cd -> replace_vector_instance
20. (cd,pointcut(id),advice(id)).
21. public ruleset applyrules = {replace_template_instance}.

Listing 10: DMS transformation rules to update
 the application program

4 RELATED WORK

As noted in the introduction, a discussion of templates and aspects in AspectC++ within
the context of generative programming is discussed in [13]. The focus of the AspectC++
work is on the interesting notion of incorporating parametric polymorphism into the
bodies of advice. In contrast, the focus of our contribution is a deeper discussion of the
complimentary idea of weaving crosscutting features into the implementation of template
libraries. As an alternative to DMS, there are several other transformation systems that
are available (e.g., ASF+SDF [2], TXL [4]) that could perhaps offer an alternative
platform for the low-level transformation rules. With respect to the application of
program transformation systems to aspect weaving, an investigation was described by
Fradet and Südholt in an early position paper [6]. In similar work, Lämmel [11] discusses
the implementation of an aspect weaver for a declarative language using functional meta-
programs. Lopez et al. discussed the relationship of program transformation with respect
to AspectJ [12]. In a different context [7], we applied program transformation technology
to construct an aspect weaver for Object Pascal. This paper extends that work to C++
templates in order to address the challenges of transforming complex template code.
AspectJ provides support for generics and parameterized types in pointcuts and intertype
declarations. In order to restrict matching of patterns within given parameter types (for
methods and constructors), return types (for methods) and field types, an appropriate
parameterized type pattern is specified in the signature pattern of a pointcut expression.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 157

Our initial work with C++ is also based on this idea. Additional flexibility is also
provided by matching parameterized types within a given context using scope designators
(as explained in Section 2).

5 CONCLUSIONS

Parametric polymorphism enables implementation of common algorithms and data
structures in a type-independent manner. A template is contained in a single specification,
but instantiated in multiple places within a target application. As shown in Section 2,
applying aspects to templates raises several issues that need further investigation. For
example, it is most likely that only a subset of the instances of a template is related to a
specific crosscutting feature. In such cases, it would be incorrect to weave a concern
naively into all template instantiations. A capability is needed to identify and specify
those instances that are affected by an aspect, and to provide appropriate transformations
that make a copy of the original template and weave on each copy. The study also
illustrated the reason why adaptation has to be made not only to the template definition,
but also to the application program that instantiates the template in multiple places.

Given the relevance of concern-based template adaptation, the contribution presented
in this paper can be used for other programming languages that support parametric
polymorphism (note: DMS provides mature grammars for several dozen languages). For
instance, similar issues will arise with adoption of generics in other languages, as
discussed by Silaghi [19].

Future directions will involve evaluating our weaver as applied to several scientific
libraries that are implemented using C++ Templates (e.g., Blitz++ [18], POOMA [14],
MTL [15]). An interesting topic that we will investigate is library-independent aspects
that may exist within a specific domain, such as scientific computing, but applicable to
several different libraries.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

REFERENCES

[1] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS: Program
Transformation for Practical Scalable Software Evolution,” International
Conference on Software Engineering (ICSE), Edinburgh, Scotland, May
2004, pp. 625-634.

[2] Mark van den Brand, Jan Heering, Paul Klint, and Pieter Olivier, “Compiling Rewrite
Systems: The ASF+SDF Compiler,” ACM Transactions on Programming
Languages and Systems, July 2002, pp. 334-368.

[3] Luca Cardelli and Peter Wegner, “On Understanding Types, Data Abstraction, and
Polymorphism,” ACM Computing Surveys, vol. 17, no. 4, December 1985,
pp. 471-522.

[4] James Cordy: “The TXL Source Transformation Language.” Science of Computer
 Programming. 61(3): 190-210 (2006)

[5] Robert Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, Aspect-Oriented
Software Development, Addison-Wesley, 2004.

[6] Pascal Fradet and Mario Südholt, “Towards a Generic Framework for Aspect-
Oriented Programming,” Third AOP Workshop, ECOOP '98 Workshop
Reader, Springer-Verlag LNCS 1543, Brussels, Belgium, July 1998, pp. 394-
397.

[7] Jeff Gray and Suman Roychoudhury, “A Technique for Constructing Aspect Weavers
Using a Program Transformation System,” International Conference on
Aspect-Oriented Software Development (AOSD), Lancaster, UK, March 2004,
pp. 36-45.

[8] John Irwin, Jean-Marc Loingtier, John Gilbert, Gregor Kiczales, John Lamping,
Anurag Mendhekar, and Tatiana Shpeisman, “Aspect-oriented Programming
of Sparse Matrix Code,” International Scientific Computing in Object-
Oriented Parallel Environments (ISCOPE), Springer-Verlag LNCS 1343,
Marina del Ray, CA, December 1997, pp. 249-256.

[9] Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-
Wesley, 1999.

[10] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold, “Getting Started with AspectJ,” Communications of the
ACM, October 2001, pp. 59-65.

[11] Ralf Lämmel, “Declarative Aspect-Oriented Programming,” ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, San Antonio, TX, January 1999, pp. 131-146.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 159

[12] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer, “A Disciplined
Approach to Aspect Composition,” ACM SIGPLAN 2006 Workshop on
Partial Evaluation and Program Manipulation (PEPM '06), Charleston, SC,
January 2006, pp. 68-77.

[13] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk, “Generic Advice: On the
Combination of AOP with Generative Programming in AspectC++,”
Generative Programming and Component Engineering (GPCE), Springer-
Verlag LNCS 3286, Vancouver, BC, October 2004, pp. 55-74.

[14] John V. W. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas,
Subhankar Banerjee, William F. Humphrey, Steve R. Karmesin, Katarzyna
Keahey, Marikani Srikant, and Mary Dell Tholburn, “POOMA: A
Framework for Scientific Simulations of Paralllel Architectures,” in Parallel
Programming Using C++, MIT Press, 1996.

[15] Jeremy Siek and Andrew Lumsdaine, “The Matrix Template Library: A Generic
Programming Approach to High Performance Numerical Linear Algebra,”
Computing in Object-Oriented Parallel Environments (ISCOPE), Springer-
Verlag LNCS 1505, Santa Fe, NM, December 1998, pp. 59-70.

[16] Anthony Skjellum, Purushotham Bangalore, Jeff Gray, and Barrett Bryant,
“Reinventing Explicit Parallel Programming for Improved Engineering of
High Performance Computing Software,” ICSE 2004 Workshop:
International Workshop on Software Engineering for High Performance
Computing System (HPCS) Applications, Edinburgh, Scotland, May 2004.

[17] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat, “AspectC++: An
Aspect-Oriented Extension to C++,” International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific 2002), Sydney,
Australia, February 2002, pp. 53-60.

[18] Todd Veldhuizen, “Arrays in Blitz++,” 2nd International Scientific Computing in
Object-Oriented Parallel Environments (ISCOPE'98), Springer-Verlag LNCS
1505, Santa Fe, NM, December 1998, pp. 223-230.

[19] Raul Silaghi and Alfred Strohmeier, “Better Generative Programming with Generic
Aspects,” Second OOPSLA Workshop on Generative Techniques in the
Context of MDA, Anaheim, CA, October 2003.

A PROGRAM TRANSFORMATION TECHNIQUE TO SUPPORT AOP WITHIN C++

TEMPLATES

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

About the authors
Suman Roychoudhury is a Research Scientist at the Tata Research
Development and Design Center, Pune, India. He received his PhD
from the University of Alabama at Birmingham (UAB). His research
interests are energy-aware embedded systems, aspect-oriented software
development, service-oriented computing and model-driven
engineering. He can be reached at suman.roychoudhury@tcs.com.

Jeff Gray is an Associate Professor in the Department of Computer
Science at the University of Alabama. His research interests include
model-driven engineering, aspect-orientation, and generative
programming. He can be reached at gray@cs.ua.edu.

Jing Zhang is a senior research engineer at Motorola Applied Research
Center, where she is responsible for conducting research on adaptive
and distributed architectures, event-driven system, and policy-based
service orchestration. She received her PhD in Computer Science from
the University of Alabama at Birmingham. She can be reached at
j.zhang@motorola.com.

Purushotham Bangalore is an Associate Professor in the CIS
Department at UAB. He has a Ph.D. in Computational Engineering
from Mississippi State University. As Director of the Collaborative
Computing Laboratory, Dr. Bangalore undertakes research in the area
of Grid Computing Programming Environments. He can be reached at
puri@cis.uab.edu.

Anthony Skjellum is Professor and Chair of the CIS Department at
UAB. He received his Ph.D. in Chemical Engineering from the
California Institute of Technology. He specializes in reusable, scalable
mathematical software, and message passing middleware for scalable,
real-time, and fault-tolerant systems. He can be reached at
tony@cis.uab.edu.

