
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 1, January-February 2010

Jennifer Pandolfo, Cui Zhang: “A Framework for Adding Design by ContractTM to the .NET
Object-Oriented Programming Languages”, in Journal of Object Technology, vol. 9, no. 1,
January-February 2010, pp. 81-115. http://www.jot.fm/issues/issue_2010_01/article1/

A Framework for Adding Design by
ContractTM to the .NET Object-Oriented
Programming Languages

Jennifer Pandolfo, California State University, Sacramento
Cui Zhang, California State University, Sacramento

Abstract
Design contracts can be used in software development to ensure the preservation of
assertions for program correctness. This can increase reliability in software design.
Design by ContractTM (DBC) was developed by Bertrand Meyer and is supported by
the Eiffel programming language. Eiffel provides support for checking preconditions,
postconditions, and class invariants automatically at runtime.
Even though DBC has been supported by Eiffel since 1985, other programming
languages that offer built-in DBC support are still rare. Redundant efforts have taken
place to implement the support of DBC for different object-oriented programming
languages. This paper presents the design and implementation of a framework for
extending object-oriented programming languages to support DBC. The framework can
eliminate the redundant effort for various languages by simplifying the addition of DBC
mechanisms for programming language developers.

1 INTRODUCTION

In software development, there has always been the challenge of creating reliable
software products. Numerous methodologies have been developed in an attempt to
accomplish reliability; one of these is Design by ContractTM (DBC). DBC was first
developed by Bertrand Meyer and is supported by the Eiffel programming language
[Eiffel07]. DBC specifies and checks design contracts to verify the preservation of certain
conditions for program correctness.

Eiffel uses contracts to improve the reliability of software. It does so by checking the
preconditions and postconditions of each routine as well as the class invariants. Eiffel
also checks other assertions such as loop invariants [Eiffel07]. Obtaining these built-in
checking mechanisms gives Eiffel power in assuring program correctness. Even though
DBC has been supported by Eiffel since 1985, other programming languages that offer
this level of built-in support are still rare. Various efforts have been taken to extend

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

existing object-oriented languages for providing DBC support. Thus far, a new tool has to
be developed for each particular object-oriented language [Henne-Wu04, Sorceforge03].

Developing a contract-checking tool for each separate language is an unnecessary
effort because these tools [Henne-Wu04, Sorceforge03] perform a common set of
functions that are language independent. These can be grouped together and implemented
once for use by each language extension. Due to this reuse capability, the utilization of
frameworks has become popular in software development [Wikipedia08]. Grouping these
common functions leaves only the job of specifying the framework’s language dependent
portion, which the language designer will have to provide. The combination of language
independent parts with language dependent parts forms the framework to support DBC.
This paper presents such a framework that simplifies the addition of DBC mechanisms
for object-oriented programming language designers. Instead of implementing an entirely
new tool to add DBC support to an existing language, the designer can use the framework
to extend the programming language. The designer only needs to provide language
specific information. Redundant effort is avoided because the language independent
features are already implemented.

In today’s software development industry, there are numerous object-oriented
languages that are widely used, including those in the Microsoft .NET development
environment. This environment contains a framework used by each of the .NET
languages, which share a Common Language Runtime. Programmers can develop custom
applications by combining the unchanging functionality of the framework along with
their customized code [Wikipedia08]. Since its release, the Microsoft .NET framework
has become one of the most frequently used frameworks. Despite their popularity, the
.NET languages do not all contain built-in support for DBC.

The presented framework has been developed for the Microsoft .NET environment.
As discussed earlier, there are language dependent and language independent parts to add
support for DBC to object-oriented languages. The parts that do not depend on specific
languages are unchanged. These parts are utilized to provide DBC support for each
object-oriented programming language in .NET. The language dependent components are
necessary to extend the language and include various information and a compiler.
Language designers must provide these and must also specify how preconditions,
postconditions, and class invariants can be verified within their language. The framework
uses these specifications to check the conditions for program correctness. The framework
provides a mechanism to allow various components to operate together; meaning that the
output of a component can be fed as input to other areas of the framework. The language
designer should only have to supply the required components, which will function as
intended when provided to the framework [Wikipedia08]. The framework also includes a
document generator that uses comments and contracts from the code to create
documentation.

The goal of this framework is to aid in spreading the use of DBC throughout the
software community. More software professionals will be exposed to DBC and to the
notions of software correctness and assertion checking. Software correctness and the use

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 83

of proofs can become more common in industry and not solely in academic
environments. This heightened correctness of software in industry will improve the
overall quality of software products on the market and also of those written for use within
a corporation. This framework not only helps the developer community, but also aids
language designers in making programming languages more robust in ensuring
correctness and reliability. Mostly, this framework solves the redundant efforts to include
DBC support for object-oriented languages. Eliminating this redundancy speeds up
industry exposure to DBC with less implementation efforts.

Following this introduction, Chapter 2 of this paper discusses the background and
related work. Chapter 3 specifies the design and the architecture of this framework. It
reveals how reusable parts interact with the language specific details supplied by the
language designer. Chapter 4 explains the framework implementation and gives samples
of code. Chapter 5 demonstrates the use of this framework by extending two of the .NET
languages to support DBC: C# and Visual Basic .NET. Chapter 6 suggests the future
work that can be done to further improve this framework.

2 BACKGROUND AND RELATED WORK

Design by ContractTM (DBC) and the Eiffel Programming Language

A design contract expresses an obligation that software must attain in order for it to be
accurate and reliable. Software is considered correct if it meets certain specified
conditions and handles unusual situations robustly. Software correctness and reliability
can increase with the use of contracts to ascertain a program functions as expected. Aside
from checking that software functions as intended, there are other circumstances where
DBC can be beneficial in software development. DBC clarifies communication among a
design team by stating a program’s intentions unambiguously. Either before or during the
implementation phase, conditions are explicitly stated that must be met prior to, during,
and after the execution of code. This type of clarification can reveal errors early in the
design process and gives the involved parties a common understanding of what the code
must accomplish [Eiffel07].

DBC not only increases the understanding of software, but can also assist with
document generation. The DBC conditions that must be verified give a logical
perspective of how the program should function and can provide informative
documentation. DBC is also beneficial because it gives an organized process for checking
correctness, which may catch more inconsistencies because more areas of code are
covered than in random testing methods. “Code coverage, in short, is all about how
thoroughly your tests exercise your code base. The intent of tests, of course, is to verify
that your code does what it's expected to, but also to document what the code is expected
to do” [Koskela04]. Checking conditions at certain points of a method’s execution is also
effective because verification occurs at the different possible program states [Koskela04].

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

These stated conditions, commonly called assertions, consist of preconditions, which
must be true before methods are executed, postconditions, which must be true after a
method’s execution when their preconditions are met, and class invariants, which must be
true when an object is created as well as before and after each method invocation.
Examination of these conditions ensures that the software behaves as specified. In Eiffel,
the assertions are automatically checked during program execution to ascertain that
variables are within a valid set of values. If the values that Eiffel checks are not within a
valid range, the assertions have not been met and the contract has been violated. A
violation of contract shows inconsistencies in the program that need correction. Eiffel’s
built-in automatic contract checking also includes inherited contracts [Eiffel07].

Object-Oriented Programming Language Extension

In order to add support for DBC, various tools have been implemented for the popular
object-oriented programming languages. One of these tools, named Contract
Sharp[Henne-Wu04], implements DBC for the C# programming language. Contract
Sharp provides a GUI for programmers to write code and to specify the contracts
associated with that code. With the use of a preprocessor, Contract Sharp combines code
and dynamic contract checking into one C# file. Once the source code file is generated, it
is compiled, which creates an executable program. There is also a tool to support DBC
for the Java programming language [Sorceforge03]. It is called jContractor and enforces
contracts at runtime. When using jContractor, programmers can write contracts within the
class they apply to or they can put contracts in a separate class that is meant solely for
contracts. Like Contract Sharp, jContractor also recognizes preconditions, postconditions,
class invariants, and includes support for contract inheritance [Sorceforge03]. Both tools
perform similar contract checking functions, but are written for their own different
languages. The redundancy in their language extensions can be solved with the use of a
software framework.

Software Frameworks

A framework is a software artifact that is reusable. It does not require full functionality
because it may be built upon to provide new functionality [Wikipedia08]. The popularity
of software frameworks evolved with the release of the Microsoft.NET environment and
the Java 2 Platform, Enterprise Edition. The methods of these two frameworks are
accessed through an application program interface, or an API. Because some areas of
these frameworks can be reused, the low level software details are already accounted for.
This allows developers to focus their attention on application specific requirements as
well as the software architecture. Frameworks are very useful because they eliminate
redundancy in development and yet are also quite flexible.

W. Pree, author of Meta Patterns, describes two areas of software frameworks: hot
spots and frozen spots [Wikipedia08]. Hot spots are the areas of the framework where
programmers add code to utilize the framework for their particular applications. Frozen
spots are the areas that offer reusable unchanging functionality. Frozen spots may not be

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 85

modified because they are the area of the framework that is reused, therefore eliminating
redundancy. These two types of spots give software frameworks their power. Reuse is not
helpful if code cannot meet the needs of an application. Hot spots allow flexibility so that
reusable code can be utilized for specific applications.

The use of a framework to add support for DBC to the .NET object-oriented
programming languages allows extensive code reuse, which saves time and effort for
programming language designers. There is no need to write a completely different tool
for the DBC extension of each language because the common features are already
implemented for use. These parts of the code are the frozen spots. Language designers
provide the hot spots to customize the common features to function for their particular
programming language. Adding DBC support to programming languages helps ensure
code correctness by assessing that the code functions as intended. Because the framework
provides this functionality, time and effort are saved when including DBC support for a
programming language.

3 FRAMEWORK DESIGN

Identification of Hot Spots and Frozen Spots

In the framework to add support for DBC to object-oriented languages, the parts that can
be shared among all languages are considered language independent. They offer
unchanging functionality and are the frozen spots of the framework. Frozen spots
eliminate redundancy in the implementation of adding DBC support for each language
since they can be used by all languages. The parts of the framework that cannot be reused
are only functional for a specific language. These parts are language dependent and may
not be reused. Because these areas must be adjusted to the needs of a specific language,
they are the hot spots of the framework. The language designer must provide hot spots to
extend a language for DBC support.

Figure 3.1 gives a list of information that must be supplied for a language extension.
Data is organized into two groups: language independent information and language
dependent information. The language dependent information listed provides DBC
functionality once it is combined with the framework’s frozen spots. Once the language
specific data is provided, the language is then extended to support DBC. When the
language has been extended to support DBC, the extended language programmer can use
the automatically created GUI to input code and contracts. The language designer
supplies the language syntax and the compiler, written by the compiler writer. These
components are provided to the framework along with the source code and contracts
written in the extended language. These components, code, and contracts are combined
with the frozen spots to generate a syntactically correct source code file with contracts
written in the extended language.

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Language Dependent Language Independent
Assignment Syntax Class Attribute List

Class Access Modifiers Class Access Modifier
Class Syntax Class Invariant

Conditional Syntax Class Name
Compiler Path Class Other Modifier

Conditional Syntax Method Access Modifer
Language Name Method Body

Method Access Modifiers Method Name
Method Syntax Method Other Modifier

Other Class Modifiers Method Parameter List
Program Syntax Method Return Type

Source File Extension Precondition
Write To File Syntax Postcondition

Figure 3.1 - Information Required for DBC Language Extension

System Software Architecture Design

Figure 3.2 illustrates the architecture design for the framework to add support for DBC to
the .NET object-oriented programming languages. The language designer provides
language specific information including syntactic information for class and method
definitions, the path to the compiler, language name, and source code file extension. The
syntactic information required includes valid class and method modifiers as well as the
syntax for the following: a conditional statement, writing output to a file, an assignment
statement, method definition, and class definition. The modifiers are combined with the
unchanging functionality of the framework to create a GUI for use by the extended
language programmer. The generated GUI is for the specific language and includes the
DBC extension.

Syntactic information is used by the framework to generate a preprocessor for the
given language definition. When the extended language programmer provides code and
contracts, they are supplied to this preprocessor. The preprocessor generates contracts by
inserting the code provided by the extended language programmer into the areas specified
by the language’s syntactic definitions. The contracts provided by the extended language
programmer are inserted into the appropriate areas as the code file is generated. A
conditional statement to verify the class invariant is inserted at the beginning and also at
the end of each method body. Two more conditional statements are inserted into each
method body, one of which is inserted at the beginning to check the method precondition
and the other is inserted at the end of the method body to verify the method
postcondition. Once the preprocessor has processed the provided code, a source code file

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

containing both code and checkable contracts is created in the extended language. This
source code file is complied to generate an executable, which will automatically run to
check for contract violations. The execution results are recorded in a file for the extended
language programmer to examine.

Figure 3.2 - System Architecture of the Framework

Class-Level Design

Figure 3.3 shows the class level design of the framework to add DBC support to the .NET
object-oriented programming languages. The Language class has attributes that contain
information about a programming language such as the syntax of a class, method,
assignment statement, conditional statement, and also the syntax for writing to a file.
Objects of the Language class also contain a path to the compiler, the source code file
extension, and the valid modifiers for classes and methods. Accessor and modifier
methods are included in the Language class so that objects can be accessed from various
forms in the language extension GUI.

Class and Method classes are also provided. These store code and contracts provided
by the extended language programmer. Most class and method information is stored in

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

XML representation for the generation of a final XML document, which occurs once the
code and contract specification is complete. Prior to the creation of this document, the
XML containing information for each class and method is stored in the XML attribute of
each Class and Method object. Class objects are stored in a collection and Method objects
are stored in a separate collection. This storage technique simplifies the addition and
deletion of both classes and methods from the user interface.

Windows Forms are utilized for the language designer to input language information
as well as for the extended language programmer to input class, method, and contract
definitions in that particular language. The LanguageDesignerForm class allows language
designers to add valid modifiers and access modifiers for classes and methods in the
language being extended. An event handler called GenerateToolStripMenuItemClick()
uses the provided information to extend the language to include DBC. This event handler
writes all language information to a file in XML format. This file is later used to provide
language specific information to the language extension GUI. The extended language
GUI creates an instance of the LanguageExtensionMainForm. This form contains a
language object encapsulated with the language specific information loaded from the
XML file. The LanguageExtensionMainForm creates an instance of the
LanguageExtensionClassForm when the AddClassButtonClick() method is called. The
LanguageExtensionClassForm creates an instance of the
LanguageExtensionMethodForm when the method AddMethodButtonClick() is called.

When the CreateSourceCodeFile() method of the Preprocessor class is called, an
XML document is generated that contains all code and contracts provided by the
extended language programmer. The document is parsed to extract the necessary
information and the code with contracts is written into one source code file. The syntactic
information for the language specified by the designer is used to ensure the code and
contracts are syntactically correct. At this point, a documentation file is generated that
includes a description of each class and method as well as their contracts in the program
written in the extended language. Once the source code and documentation files have
been generated, the extended language programmer can generate an executable file.
When the programmer clicks the ‘Generate EXE file’ button, the
GenerateEXEButton_Click() event handler is called. This method compiles the source
code file and generates an executable, which is automatically run. The results of the
contract checking are output to a text file.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

Figure 3.3 - Class Diagram of the Framework

Graphical User Interface Design

The design of the graphical user interface is divided into two parts. The first part consists
of a GUI where language designer inputs information for the language extension. This
information includes the language name, compiler location, source code file extension,
and syntactic information for conditional statements, assignment statements, writing to a
file, classes, and methods. These are provided to the framework, which generates various
components behind the scenes and also on the front end. If the language designer has
provided the necessary information and chooses ‘File’ > ‘Generate GUI for Language
Extension’, a different GUI is generated. This newly created GUI, displayed in Figure
3.4, is for programmers to enter code and contracts in the language extended by the
designer. The GUI shows the modifiers that were provided during the language
extension. When a programmer specifies a class, he or she must select one of these
modifiers. Using this interface, programmers provide the class invariant, name of the
class, attribute list, and also a description, which is used to generate documentation.

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

When adding a class to the program, at least two methods are required. One of these
methods must be a constructor and one of these methods must not be a constructor.

Figure 3.4 - GUI to Define Classes in the Extended Language

When the user clicks the ‘Add New’ button for the class methods, a form to input these
methods is displayed and is shown in Figure 3.5.

On this form, the extended language programmer checks a CheckBox indicating if
the method is a constructor. The method name, return type, body, and parameter list must
also be entered. Programmers choose method modifiers from a ListBox populated with
those which are valid in the extended language. Contracts are also input using this form,
including the method precondition and postcondition. A method description is included to
generate documentation. Once a method is added to the class, its name will appear in a
list on the form for inputting classes. When the user enters the required class information
and at least two methods, the class may be added to the program. Once added, the class
name will appear on the main form.

The main form is displayed in Figure 3.6, which shows the classes that have been
defined and also allows the programmer to add namespace and library information to the
program. When the programmer clicks ‘Generate Source Code’, an XML file is created
by combining the XML of all classes and methods in the program. This file is parsed by
the preprocessor to create a file with code and contracts in the extended language. At this

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

point, all class and method descriptions are collected and appended to a string, which is
then written to a documentation file. Once the source code and the documentation file
have been generated and the ‘Generate EXE file’ button is clicked, the source code is
compiled to generate an executable. This executable is run automatically and the contract
checking results are written to a text file.

Figure 3.5 - GUI to Define Methods in the Extended Language

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Figure 3.6 - GUI to Add Classes and Generate Output Files

4 FRAMEWORK IMPLEMENTATION

Language Extension

The framework for adding DBC to object-oriented programming languages is
implemented in the C# programming language in the .NET environment. The framework
contains a GUI, which allows language designers to input syntactic information for the
language to be extended. This GUI is a Windows Form called LanguageDesignerForm. A
MenuStrip control is used for the top menu and a TabPage control is used for each tab.
When the designer clicks the ‘Add’ button to add a modifier, the modifier in the TextBox
is added to a list of strings, which are subsequently displayed in a ListBox.
AccessModifiers are added in the same manner and are also stored in a list of strings.
These lists are attributes of the Language class. The lists are named
classAccessModifiers, classModifiers, methodAccessModifiers, and methodModifiers. If
the language designer chooses an item in a ListBox of modifiers and clicks ‘Remove’, the
modifier will be removed from both the ListBox and from its corresponding List
construct.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

Once the language designer has provided all required data and selects ‘File’ >
‘Generate GUI for extended language’, the language specific information is validated. If
all information is complete and in the correct format, the data is extracted from the
interface and is stored in a Language object. The Language object’s attributes are written
to a file in XML format, as shown in Figure 4.1. The extended language programmer
must run the extended language GUI and specify the path to the XML file containing
language specific information. At this time, a new form, named
LanguageExtensionMainForm, is instantiated. This form is the GUI that extended
language programmers use to provide code and contracts. The Language object, which
contains data for the language extension, is passed as a parameter to the
LanguageExtensionMainForm’s constructor.

Extended Language

If the extended language programmer wants to add a class to the program, he or she may
click the ‘Add Class’ button on the LanguageExtensionMainForm. When this occurs, a
new form called LanguageExtensionClassForm is created. Multiple classes can be added
using this form. The LanguageExtensionClassForm’s constructor takes the Language
object and the LanguageExtensionMainForm as parameters. The
LanguageExtensionClassForm is a Windows Form that includes ListBoxes populated
with the language specific modifiers provided by the language designer. The modifier
lists of the Language object are iterated through and each item is added to its appropriate
ListBox. Programmers must select an item from each of these ListBoxes when specifying
classes. When the extended language programmer wishes to add a new method, he or she
must click the ‘Add New’ button. Once clicked, a new form is instantiated for the
collection of method information.

private void SaveLanguageData()
{

StringBuilder sb = new StringBuilder();
sb.Append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
sb.Append("<LANGUAGE _Name=\""
ReplaceSpecialChars(LanguageNameTextbox.Text) + "\" ");

sb.Append("_CompilerPath=\"" +
ReplaceSpecialChars(CompilerPathTextbox.Text.Trim()) + "\" ");
sb.Append("_ConditionalSyntax=\"" +
ReplaceSpecialChars(ConditionalTextbox.Text) + "\" ");
sb.Append("_MethodSyntax=\"" +
ReplaceSpecialChars(MethodSyntaxTextbox.Text) + "\" ");
sb.Append("_SourceFileExtension=\"" +
ReplaceSpecialChars(SourceExtensionTextbox.Text.Trim()) + "\" ");
sb.Append("_WriteToFileSyntax=\"" +
ReplaceSpecialChars(WriteToFileTextbox.Text) + "\" ");
sb.Append("_AssignmentSyntax=\"" +
ReplaceSpecialChars(AssignmentTextbox.Text) + "\" ");

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

sb.Append("_ProgramSyntax=\"" +
ReplaceSpecialChars(ProgramSyntaxTextbox.Text) + "\" ");
sb.Append("_ClassSyntax=\"" +
ReplaceSpecialChars(ClassSyntaxTextbox.Text) + "\">");
foreach (string accessModifier in language.ClassAccessModifiers){

sb.Append("<ClassAccessModifier _Value=\"" +
ReplaceSpecialChars(accessModifier) + "\"/>");

}
foreach (string modifier in language.ClassModifiers){

sb.Append("<ClassModifier _Value=\"" + ReplaceSpecialChars(modifier) +
"\"/>");

}

foreach (string accessModifier in language.MethodAccessModifiers){

sb.Append("<MethodAccessModifier _Value=\"" +
ReplaceSpecialChars(accessModifier) + "\"/>");

}

foreach (string modifier in language.MethodModifiers){

sb.Append("<MethodModifier _Value=\"" + ReplaceSpecialChars(modifier)
+ "\"/>");

}
sb.Append("</LANGUAGE>");
string xmlFileName = ExtendedXMLTextbox.Text.Trim() + "\\" +
LanguageNameTextbox.Text.Trim() + ".xml";
FileInfo fi = new FileInfo(xmlFileName);
if (!fi.Exists)

fi.Create().Dispose();

StreamWriter txtWriter = File.AppendText(fi.FullName);
txtWriter.Write(sb.ToString());
txtWriter.Close();

MessageBox.Show(xmlFileName + " has been generated");
this.Close();

}

Figure 4.1 - Code to Store Language Specific Data

This form is called LanguageExtensionMethodForm and allows method specification for
that particular class in the extended language. Each time the extended language
programmer chooses to add a method, a new instance of this form is created. The
LanguageExtensionMethodForm’s constructor is supplied the Language object as well as
an instance the LanguageExtensionClassForm. Similar to the
LanguageExtensionClassForm, the LanguageExtensionMethodForm displays ListBoxes
populated with language specific information, however these are filled with valid

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

modifiers for methods instead of those for classes. When the extended language
programmer specifies method information and clicks ‘Add Method’, the form is validated
to ensure the necessary data is provided. After validation, a method named
ReplaceSpecialChars is invoked; at which point all TextBoxes on the form are checked
for special characters which include &, >, <, and “. If any of these characters are found,
they are replaced in the TextBox with the equivalent XML representation. The XML
representation of these characters are as follows: &, >, <, and ". If the
special characters are not replaced with their XML equivalent, errors will occur when the
generated XML document is loaded for data extraction. The method CollectMethodData
is then called; followed by a call to CreateMethodXML. CreateMethodXML inserts the
provided data into XML tags, as shown in Figure 4.2. A StringBuilder object is used to
append text more rapidly than if a string were used to build the text. The value of the
Method object’s XML attribute is assigned to this generated text.

private void CreateMethodXML(
{

StringBuilder sb = new StringBuilder();
sb.Append("\t\t<METHOD _AccessModifier=\"" +
MethodAccessModifierListBox.SelectedItem.ToString() + "\" ");
sb.Append("_OtherModifier=\"" +
MethodModifierListBox.SelectedItem.ToString() + "\" ");
sb.Append("_Body=\"" + MethodBodyTextbox.Text.Trim() + "\" ");
sb.Append("_Description=\"" + MethodDescriptionTextbox.Text.Trim() + "\"
");
sb.Append("_Name=\"" + MethodNameTextbox.Text.Trim()+"\"");
sb.Append("_Precondition=\"" + PreconditionTextbox.Text.Trim() + "\" ");
sb.Append("_Postcondition=\"" + PostconditionTextbox.Text.Trim() + "\" ");
sb.Append("_ReturnType=\"" + ReturnTypeTextbox.Text.Trim() + "\" ");
sb.Append("_ParameterList=\"" + ParameterListTextbox.Text.Trim() + "\" ");
sb.Append("_Constructor=\"" + ConstructorCheckbox.Checked + "\"/>\n");
method.Xml = sb.ToString();

}

Figure 4.2 - Code to Store Methods in XML Format

The Method object is added to the List of methods in the LanguageExtensionClassForm
and subsequently appears in the ListBox containing methods for that class. In each class,
the extended language programmer must provide at least one method that is a constructor
and at least one method that is not a constructor. The Method object’s constructor
attribute is assigned to the Boolean value of the CheckBox labeled ‘This is a constructor’.
After the method has been added to the List, the LanguageExtensionMethodForm is
closed.

When a class has at least two methods, the extended language programmer can click
the ‘Add Class’ button to add this class to the program. When this button is clicked, the
AddClassButton_Click method is called. After validating the form to ensure that all

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

required information is specified, a method named ReplaceSpecialChars searches the text
in the TextBoxes for special characters. This method functions in the same manner as the
ReplaceSpecialChars method of the LanguageExtensionMethodForm.

private void CreateClassXML(ref ClassContainer newClass)
{

StringBuilder sb = new StringBuilder();
sb.Append("\t<CLASS _Name=\"" + ClassNameTextbox.Text.Trim() + "\" ");
sb.Append("_AccessModifier=\"" +
ClassAccessModifierListBox.SelectedItem.ToString() + "\" ");
sb.Append("_OtherModifier=\"" +
ClassModifierListBox.SelectedItem.ToString() + "\" ");
sb.Append("_Invariant=\"" + InvariantTextbox.Text.Trim() + "\" ");
sb.Append("_AttributeList=\"" + AttributeTextBox.Text.Trim() + "\" ");
sb.Append("_Description=\"" + ClassDescriptionTextbox.Text.Trim() +
"\">\n");

//Add all the methods for this class

 foreach (MethodContainer method in methods)
 sb.Append(method.Xml);

 sb.Append("\t</CLASS>\n");
 newClass.Xml = sb.ToString();
}

Figure 4.3 - Code to Store Classes in XML Format

When the special characters are located in the TextBoxes, they are replaced with their
valid XML equivalent. Next, the XML representation for the class is generated in the
same manner as CreateClassXML method, as shown in Figure 4.3. A StringBuilder
object is once again used to rapidly piece together the string of XML. The
CreateClassXML method contains a foreach loop in which the CreateMethodXML
method is called to append each method’s XML to the class body. Once the string of
XML is generated for the class, it is stored in the Class object’s xml attribute. This Class
object can be added to the List of classes in the LanguageExtensionMainForm because
the LanguageExtensionClassForm contains an instance of it, giving the form access to
this list of Class objects.

Creating Source Code

Once the extended language programmer has finished adding classes to the program, the
classes are all stored in the LanguageExtensionMainForm’s List of Class objects. When
the extended language programmer clicks the ‘Generate Source Code’ button, at least one
Class object has been created. If at least one Class object exists, the list of Class objects is
iterated through to build a program string in XML format. This string is built by
appending the Xml attribute from each Class object. A StringBuilder object is used to

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

append the text as shown in the figure below. After the string is built, it is then written to
an XML file, which will be processed to add contracts when generating the source code
file.

private string BuildXMLText()
{

StringBuilder sb = new StringBuilder();
 sb.Append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 sb.Append("<PROGRAM>\n");
 sb.Append("<LIBRARIES _Text=\"" + LibrariesTextbox.Text +

"\"/>\n");
 sb.Append("<NAMESPACE _Text=\"" + NamespaceTextbox.Text + "\"/>\n");
 foreach (ClassContainer aClass in classes)

sb.Append(aClass.Xml);

sb.Append("</PROGRAM>\n");
return sb.ToString();

}

Figure 4.4 - Code to Build XML String for Extended Language Program

Next, the method CreateSourceCodeFile of the Preprocessor class is called. This
method’s parameter list includes the Language object, the path of the XML file, the
output path for the source code file, and the executable and documentation file’s output
directory. This output path is specified by the extended language programmer and is
retrieved from the GUI. The XML file is then loaded into an XMLDocument object. This
load statement is located in a try block for error handling purposes. If the document is
syntactically incorrect, a message will be displayed to the extended language
programmer. If the document loads successfully, the code selects the LIBRARIES and
NAMESPACE nodes. The _Text attribute of these nodes is extracted and appended to the
output string used for source code generation. Next, the CLASS nodes are selected and
are stored in an XMLNodeList. This list of nodes is iterated through to extract the
information necessary to create the program. Each iteration uses the ClassSyntax attribute
of the Language class to build the class in the extended language’s proper syntax. The
class name, modifiers, and attribute list are extracted from the CLASS nodes’ attributes
_Name, _AccessModifier, _OtherModifier, and _AttributeList. A replace statement is
used to place this extracted data into the correct class syntax.

The METHOD nodes are then iterated through. These nodes are children of a
CLASS node. Similar to the way the classes are built, methods are formed by extracting
information from the XML and using replace statements to put method information in the
correct syntax. Contracts are also added to the code at the time methods are built. The
method BuildMethodWithContracts is called, which inserts contracts into each method
including the precondition, postcondition, invariant check at the beginning of a method,
and the invariant check at the end of a method.

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Before assembling the contract statements, the old_ keywords are added to the
extended language program. Old_ keywords are variables added to store the values of a
method’s variables at the beginning of that method. These are used for comparison with
the value of those variables at the end of the method to verify the correctness of the
postcondition. For example, a postcondition might ensure that the value of i is one less
than its value at the beginning of the method. To perform this check, the value of i is
stored in the old_i variable at beginning of the method. The postcondition will compare i
and old_i to verify that i = old_i – 1. To store the old_ variables, the framework parses
the postcondition to locate the keyword old_. When the position of old_ is found, the
original variable name is extracted from the string at the position after the underscore to
the next empty space in the string. The old_ variable will be assigned the value of the
original variable. This framework requires the programmer to initialize the old_ variables
in the method body. The extended language programmer is also responsible for including
the comparison in the postcondition of the old_ variables to the original values. The
framework will perform the assignment of the old_ variables to their original values at
the beginning of the method. The programmer must put a comment in the extended
language that includes the keyword PostconditionCheckInit. This comment must be
located after the old_ variable initialization to represent the location where the framework
needs to insert the old_ variable value assignments.

After any old_ variables are added to the code, each contract is assembled in a
separate method. Figure 4.5 shows the method that builds the precondition. In each of the
contract-building methods, a string is initialized to the proper syntax for a conditional
statement in the extended language. Next, two strings are initialized with the syntax for
writing to a file. These strings store the true block and false block for the conditional
statement. The statements to write to a file allow the dynamic contract checking results to
be recorded. After these statements are in place, the FileName text is replaced with the
path of the file to where the results will be written. The text to be written to a file replaces
the TextToWrite placeholder in the true and false block strings. Next, these strings
replace the true block and false block placeholders of the conditional statements. The
conditional part of the statement is replaced with the precondition for verification. If the
precondition is met, the true block will write the appropriate results to the file. If the
precondition is not met, the false block will record that the precondition was false in the
results file.

public static string BuildPrecondition(LanguageContainer language, XmlNode
methodNode, string className, string resultsFile)
{

string preconditionString = language.ConditionalSyntax;

string methodName =
methodNode.Attributes.GetNamedItem("_Name").InnerText.ToStr
ing().Trim();

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 99

 string methodPrecondition =
methodNode.Attributes.GetNamedItem("_Precondition").InnerText.ToString().
Trim();

string preconditionTrueBlock = language.WriteToFileSyntax;
string preconditionFalseBlock =language.WriteToFileSyntax;

preconditionTrueBlock =
preconditionTrueBlock.Replace(LanguageContainer.FileName,
resultsFile);

preconditionTrueBlock =
preconditionTrueBlock.Replace(LanguageContainer.Text, "Method " +
methodName + " in Class " + className + " Precondition " +
methodPrecondition + " evaluated to true");

preconditionFalseBlock =
preconditionFalseBlock.Replace(LanguageContainer.FileName,
resultsFile);

preconditionFalseBlock =
preconditionFalseBlock.Replace(LanguageContainer.Text,
"Method " + methodName + " in Class " + className + " Precondition " +
methodPrecondition + " evaluated to false");

preconditionString =
preconditionString.Replace(LanguageContainer.Condition,
methodPrecondition);

preconditionString =
preconditionString.Replace(LanguageContainer.TrueBlock,
preconditionTrueBlock);

preconditionString =
preconditionString.Replace(LanguageContainer.FalseBlock,
preconditionFalseBlock);

 return preconditionString;

}

Figure 4.5 - Code to Build Postcondition Verification

Once all four condition checks are built, they are used in piecing together the method
source code. The precondition is appended to the start of the method body followed by
the beginning invariant check. The method body, extracted from the XML document, is
appended to the string after this invariant check. A special case that must be considered is
the possibility that methods may contain return statements, which transfer control out of a

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

method. The end invariant check and postcondition must be verified before control is
transferred. Because the syntax for a return statement is language dependent, the
programmer is responsible for inserting a comment with the keyword RetValue on the
line before the return statement. The framework will check for the RetValue keyword and
insert the check for the invariant and postcondition on the next line; before the return
statement. If there are no return statements in the method, the postcondition and end
invariant check will be appended to the string following the method body.

The method body with contracts is built for each METHOD node. Once the contract
and method body strings are combined, the method body contains contracts. The method
body is then appended to the class body. At the time the code and contracts are extracted
from the XML, the documentation for each class and method is also extracted. These
class and method descriptions along with contracts are appended to a string, which is later
written to a documentation file. After each method is created for a class, the remaining
CLASS nodes are selected from the XMLNodeList of classes and the process of
extracting information to build methods and documentation are repeated for those.

private void GenerateEXEButton_Click(object sender, System.EventArgs e)
{

string exeFile = OutputPathTextbox.Text.Trim() + "\\" + SourceFileName +
".exe";

string message = string.Empty;

 System.Diagnostics.Process.Start(language.CompilerPath, "//out:" +
OutputPathTextbox.Text.Trim() + "\\" + SourceFileName +
language.SourceFileExtension);

FileInfo fi = new FileInfo(exeFile);
if (fi.Exists){

System.Diagnostics.Process.Start(exeFile);
message = exeFile + " and " + OutputPathTextbox.Text.Trim() +
"\\Results.txt generated";

 }
 else

message = "Executable was not created. Make sure that your code has
the correct syntax.";

MessageBox.Show(message);

}

Figure 4.6 - Code to Generate and Run Executable

Once the complete program string has been built in the extended language, it is checked
for special XML characters. The ReplaceSpecialChars method of the Preprocessor class
locates the characters that were inserted into the XML to replace theinvalid XML
characters. This method restores them to their original characters. For example, any >

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 101

found in the code would be replaced with its original > symbol. After the special
characters are replaced, the string is written to a source code file with the proper file
extension for the extended language. As mentioned previously, this file is created in a
directory specified by the extended language programmer.

After the source code file is created, the programmer can click the ‘Generate EXE
file’ button. The code for this event handler is shown in Figure 4.6. When this button is
clicked, the compiler provided by the language designer compiles the source code. If the
code compiles properly, an executable will be created in the same directory where the
source code file is located. If the executable is created successfully, it will run
automatically. This executable writes the results of contract checking to a file in the same
directory, but its name is specified by the programmer. This results file can be used by
the extended language programmer to analyze the contract checking results.

XML Representation

XML representation is valuable to this framework because it is used to store and access
data efficiently. When the language specific data is collected from the language designer,
it is stored in XML format for use by the extended language GUI. The language
information is extracted from this XML file to create the GUI using the syntactic
information for that language. As shown in Figure 4.7, the LANGUAGE tag has the
following attributes: _CompilerPath, _ConditionalSyntax, _MethodSyntax,
_SourceFileExtension, _WriteToFileSyntax, _ProgramSyntax, and _ClassSyntax. These
language values are stored as attributes because for each of these items, there can only be
one value per language.

<?xml version="1.0" encoding="UTF-8"?>
<LANGUAGE _Name="C#"
_CompilerPath="C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\csc.exe"
_ConditionalSyntax="if(Condition){TrueBlock}else{FalseBlock}"
_MethodSyntax="AccessModifier OtherModifier ReturnType
MethodName(ParameterList)
{MethodBody}"
_SourceFileExtension=".cs"
_WriteToFileSyntax="StreamWriter txtWriter =
File.AppendText("FileName");
txtWriter.Write("TextToWrite\n");
txtWriter.Close();" _AssignmentSyntax="LeftHandValue = RightHandValue;"
_ProgramSyntax="Namespace{LibrariesClass}"
_ClassSyntax="AccessModifier OtherModifier class ClassName{AttributeList
ClassBody}">
<ClassAccessModifier _Value="public"/>
<ClassAccessModifier _Value=""/>
<ClassModifier _Value="static"/>
<ClassModifier _Value="abstract"/>
<ClassModifier _Value=""/>
<MethodAccessModifier _Value="public"/>

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

<MethodAccessModifier _Value="private"/>
<MethodAccessModifier _Value=""/>
<MethodModifier _Value="static"/>
<MethodModifier _Value=""/>
</LANGUAGE>

Figure 4.7 - C# Language Specific Information in XML Format

The ClassAccessModifier, ClassModifier, MethodAccessModifier, and MethodModifier
nodes are children of the LANGUAGE node because for each language, there can be
multiple values for each type of modifier. The language specific data is extracted from
this file to create the extended language GUI.

Once the extended language code and contracts have been provided, another XML
file is generated. As shown in Figure 4.8, this file contains all code and contracts in XML
representation for the extended language. The PROGRAM node contains program
information such as libraries and namespaces. Within the NAMESPACE node there can
be multiple CLASS nodes. The CLASS nodes have various attributes, which are as
follows: _Name, _AccessModifier, _OtherModifier, _Invariant, _AttributeList, and
_Description. METHOD nodes are contained within a CLASS node, but are stored as
child nodes because a class can contain multiple methods. METHOD nodes have method
information containing the following attributes: _AccessModifier, _OtherModifier,
_Body, _Description, _Name, _Precondition, _Postcondition, _ReturnType,
_ParameterList, and _Constructor. The XML stored for the program is extracted and
placed into the appropriate locations according to the language syntax. At this point, a
source code file is built with contracts from the data extracted from the XML.

<?xml version="1.0" encoding="UTF-8"?>
<PROGRAM>
<LIBRARIES _Text="using System.IO; using System.Text;"/>
<NAMESPACE _Text="namespace NumericOperations"/>
<CLASS _Name="Increment" _AccessModifier="public" _OtherModifier=""
_Invariant="i > 0" _AttributeList="int i;" _Description="Class description">

<METHOD _AccessModifier="" _OtherModifier="" _Body="i =1;"
_Description="Increment constructor description" _Name="Increment"
_Precondition="" _Postcondition="" _ReturnType="" _ParameterList=""
_Constructor="True"/>

<METHOD _AccessModifier="public" _OtherModifier="" _Body="int old_i;
//PostconditionCheckInit
i += 5;
//RetValue" _Description="IncrementByFive description"
_Name="IncrementByFive" _Precondition="i > 0" _Postcondition="i == old_i
+ 5" _ReturnType="int" _ParameterList="" _Constructor="False"/>

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 103

<METHOD _AccessModifier="" _OtherModifier="" _Body="Increment inc = new
Increment();
int s = inc.IncrementByFive();" _Description="Main description" _Name="Main"
_Precondition="" _Postcondition="" _ReturnType="void" _ParameterList=""
_Constructor="False"/>

</CLASS>
</PROGRAM>

Figure 4.8 - XML Representation of C# Code and Contracts

5 EXTENSION OF C# AND VB.NET TO INCLUDE DBC

This chapter illustrates how to use the framework for the extension of two .NET object-
oriented programming languages to include DBC support: C# and VB.NET. The
specifications provided for each language extension are shown as well as the use of the
GUI generated by the framework to write a program in each language that includes
contracts.

Extension of C# to Support DBC

The language designer must supply the language dependent information specific to the
C# language. As shown in Figure 5.1, the ‘General’ tab is used to collect information for
the C# programming language. This information includes the language name, path to the
compiler, source code file extension, assignment syntax, conditional statement syntax,
and the syntax to write to a file. Next, the syntax for a C# program is provided on the
‘Program’ tab. The program syntax must include the proper locations in a source code file
for libraries and namespaces. In C#, the syntax for a valid program is: Namespace{
Libraries Class}.

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Figure 5.1 - Language Extension of C#

On the ‘Class’ tab, the C# class syntax specification is input, which is as follows:
AccessModifier OtherModifier class ClassName{AttributeList ClassBody}. There are
numerous modifiers in C#, but some examples of access modifiers are: private, protected,
and public. Other modifiers in C# include abstract and static.

The method syntax for C# is supplied on the ‘Method’ tab, as shown in Figure 5.2.
Method access modifiers and other modifiers for C# are also provided using this tab.
Once the necessary language specification has been supplied, the language designer can
select ‘File’ > ‘Generate GUI for Extended Language’. At this point, the C# language
information is written to an XML file. Once the programmer runs the extended language
GUI and selects the XML file containing C# information, the language has been extended
to include DBC support. C# programmers can add code and contracts using this
dynamically generated GUI. Figure 5.3 shows the GUI for program specification in the
C# language. The C# programmer can add library and namespace information. A
programmer can also add classes and methods to the C# program. If the programmer
clicks the ‘Add’ button, the form for class specification will appear, as shown in Figure
5.4.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 105

Figure 5.2 - Method Syntax of C#

Figure 5.3 - Program Specification in C#

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Figure 5.4 - Class Specification in C#

Figure 5.5 - Method Specification in C#

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 107

On the form for class specification, the C# programmer supplies the class name,
description, attribute list, and chooses modifiers from ListBoxes populated with valid C#
modifiers. When the ‘Add New’ button is clicked, a form to specify C# methods is
displayed and is shown in Figure 5.5. The programmer can choose the constructor
CheckBox to indicate if the method being specified is a constructor for the class. The
programmer also uses this form to give the method name, return type, precondition,
postcondition, description, method body, and parameter list. The programmer must also
select modifiers from list boxes that are populated with the valid method modifiers in C#.

As shown in Figure 5.5, the C# programmer must initialize the old_ variables in the
method body. The PostconditionCheckInit comment is used to indicate where the
assignment of the old_ variables should occur. The programmer is also responsible for
comparing the old_ variable values in the postcondition. Another special comment shown
in Figure 5.5 is RetValue, which is used to signify a return statement. Since there is a
return statement in the method shown in the figure, the postcondition and end class
invariant checks are inserted after the RetValue comment. Because the framework
searches for the RetValue comment, the contracts can be verified before control is
transferred out of the method. Once all methods and classes have been added to the
program, the programmer can select the ‘Generate Source Code’ button to generate
source code with contracts in the C# language.

Figure 5.6 shows the C# source code file generated as a result of using the
framework to specify the code and contracts. The proper program syntax was specified
by the language designer during the language extension. Library and namespace
information provided by the programmer are inserted into their locations in the program.
Method and class syntax information provided by the language designer are used to
generate the classes and methods in the C# language. The precondition and beginning
invariant checks are inserted at the start of the methods. The method bodies are checked
for the PreconditionCheckInit and RetValue comments to insert old_ variables and
contracts at the appropriate locations in the code. At the time the source code file is
generated, a documentation file is also created that contains all contracts, class, and
method descriptions. Next, the source code is compiled using the C# compiler and an
executable is created in the same directory as the source code. This executable runs
automatically to verify contracts. The contract verification results are written to a file for
review by the extended language programmer.

Extension of VB.NET to Support DBC

In order to extend VB.NET to include DBC support, the steps that must be taken are
similar to the extension of any other object-oriented programming language. Like the
extension of C#, the language specific information must be provided for VB.NET. As
shown in Figure 5.7, the path to the VB.NET compiler, source code file extension,
conditional statement syntax, assignment syntax, and the syntax to write to a file must be
provided. After specification of the general language information, the program syntax is
supplied for VB.NET, which is as follows: Libraries Namespace Class End Namespace.

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

Next, the class syntax for VB.NET is provided as well as some of the valid VB.NET class
access modifiers.

namespace NumericOperations
{

using System.IO;
using System.Text;
public class Increment
{

int i;
Increment(){

i = 1;
}

public int IncrementByFive(){

if(i > 0){
StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Method IncrementByFive in Class Increment
Precondition i > 0 evaluated to true");
txtWriter.Close();

}
else{

StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Method IncrementByFive in Class Increment
Precondition i > 0 evaluated to false");
txtWriter.Close();

}

if(i > 0){
StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Invariant i > 0 in Class Increment evaluated to
true at the start of Method IncrementByFive");txtWriter.Close();

}
else{

StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Invariant i > 0 in Class Increment evaluated to
false at the start of Method IncrementByFive");
txtWriter.Close();

}
int old_i;
//PostconditionCheckInit
old_i = i;

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

i += 5;
//RetValue
if(i > 0){

StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Invariant i > 0 in Class Increment evaluated to
true at the end of Method IncrementByFive");
txtWriter.Close();

}
else{

StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Invariant i > 0 in Class Increment evaluated to
false at the end of Method IncrementByFive");
txtWriter.Close();

}

if(i == old_i + 5){
StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Method IncrementByFive in Class Increment
Postcondition i == old_i + 5 evaluated to true");
txtWriter.Close();

}
else{

StreamWriter txtWriter =
File.AppendText("C:\\Documents and
Settings\\Owner\\Desktop\\ProjectStuff\\Test3\\Results.txt");
txtWriter.Write("Method IncrementByFive in Class Increment
Postcondition i == old_i + 5 evaluated to false");
txtWriter.Close();

}
return i;

}
static void Main(){

Increment inc = new Increment();
int s = inc.IncrementByFive();

}
}

}

Figure 5.6 - Generated C# Source Code and Contracts

Other valid class modifiers are also given. The method syntax is supplied on the
‘Method’ tab along with some method access modifiers and a few other method modifiers
that are valid for VB.NET. After theVB.NET data is given and the language designer
selects ‘File’ > ‘Generate GUI for Extended Language’, the language information is

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

written to an XML file. Once a VB.NET programmer runs the extended language GUI
and selects the VB.NET XML file, the language extension is complete.

Figure 5.7 - Language Extension of VB.NET

Figure 5.8 - Method and Contract Definition in VB.NET

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

At this point, the programmer can supply code and contracts for a program in VB.NET.
Library and namespace information is provided and classes are added when the
programmer clicks the ‘Add’ button. Once ‘Add’ is clicked, the GUI to add classes to the
program is displayed to the programmer, who specifies the class name and invariant,
written in VB.NET syntax. A class description and attribute list must also be supplied.
The programmer selects class access modifiers and other class modifiers from ListBoxes
populated with the class modifiers that are valid in VB.NET.

Imports System.IO
Imports System.Text
Namespace NumericOperations

Public class Increment
Dim i as Integer

Public Sub New()

i = 1
End Sub

Public Sub IncrementByFive()

If i > 0 Then
Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Method IncrementByFive in Class
Increment Precondition i > 0 evaluated to true")
objWriter.Close()

Else
Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Method IncrementByFive in Class
Increment Precondition i > 0 evaluated to false")
objWriter.Close()

End If
If i > 0 Then

Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Invariant i > 0 in Class Increment
evaluated to true at the start of Method IncrementByFive")
objWriter.Close()

Else
Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

objWriter.WriteLine("Invariant i > 0 in Class Increment
evaluated to false at the start of Method IncrementByFive")
objWriter.Close()

End If
Dim old_i As Integer 'PostconditionCheckInit
old_i = i
i = i + 5
If i = old_i + 5 Then

Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Method IncrementByFive in Class
Increment Postcondition i = old_i + 5 evaluated to true")
objWriter.Close()

Else
Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Method IncrementByFive in Class
Increment Postcondition i = old_i + 5 evaluated to false")
objWriter.Close()

End If
If i > 0 Then

Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Invariant i > 0 in Class Increment
evaluated to true at the end of Method IncrementByFive")
objWriter.Close()

Else
Dim objWriter As New System.IO.StreamWriter("C:\Documents
and Settings\Owner\Desktop\Results.txt",
File.Exists("C:\Documents and
Settings\Owner\Desktop\Results.txt"))
objWriter.WriteLine("Invariant i > 0 in Class Increment
evaluated to false at the end of Method IncrementByFive")
objWriter.Close()

End If
End Sub

Shared Sub Main()

Dim inc As New Increment()
inc.IncrementByFive()

End Sub
End Class

End Namespace

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

Figure 5.9 - Generated VB.NET Source Code and Contracts

The programmer adds methods by clicking the ‘Add New’ button.
As shown in Figure 5.8, the programmer specifies method information written in

VB.NET. The programmer inputs the method name, return type, parameter list,
description, and whether the method is a constructor. Method access modifiers and other
modifiers are selected from the ListBoxes, which are populated with valid VB.NET
method modifiers. Method contracts are provided in VB.NET, which include the
precondition and postcondition. The postcondition supplied by the programmer may
contain a comparison of the old_ variables with their new value. As shown Figure 5.8, the
body can contain the declaration of the old_ variables and the PostconditionCheckInit
comment. As explained previously, this comment signifies the location of the old_
variable declarations. The framework inserts the assignment of the old_ variables to their
original value after this comment. The values of the old_ variables are verified in the
postcondition at the end of the method. Another comment in the method body with
special meaning to the framework is the RetValue comment. As explained in the C#
language extension, this comment signifies a return statement. The framework inserts the
postcondition and end invariant before the return statement for contract verification.
Inserting the conditions at this location ensures they are verified before control is
transferred out of the method.

After the programmer provides code and contracts for the VB.NET program, the
‘Generate Source Code’ button can be clicked. When this occurs, the preprocessor builds
the code file by inserting namespace and library information into VB.NET syntax.
Contracts written in VB.NET are inserted at the appropriate positions in each method.
The precondition and beginning invariant check are inserted before the method body. The
method body is then searched for the RetValue comment. If the RetValue comment
appears in the method body, the preprocessor will insert the end invariant check and
postcondition before the return statement. If the RetValue comment is not found, the
preprocessor will insert the end invariant check and postcondition after the method body.
The preprocessor also checks the method body for the PostconditionCheckInit comment.
If this comment is found, the old_ variables found in the postcondition are initialized and
are then assigned to their original value at the beginning of the method. At the time the
source code file is built, the contracts, class, and method descriptions are extracted from
the XML. These contracts and descriptions are appended to a string, which is written to a
documentation file. Classes and methods with all contracts are then added to the source
code file. The source code generated by this example is shown in Figure 5.9. After the
code is compiled and the resulting executable runs, the contract verification results are
written to a text file.

6 FUTURE WORK

As presented, the framework to add DBC support to object-oriented programming
languages is by no means perfect. However, it is a strong beginning to eliminate the

A FRAMEWORK FOR ADDING DESIGN BY CONTRACTTM TO THE .NET OBJECT-ORIENTED

PROGRAMMING LANGUAGES

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 1

redundant effort to add contract checking to each object-oriented language. Language
designers can use this framework to extend their language by allowing programmers to
build a software artifact in the extended language containing both code and dynamically
checkable contracts. A documentation file is also generated at this time, which includes a
description of each class, method, class invariant, method precondition, and method
postcondition in the program. When the extended language programmer clicks the
‘Generate EXE file’ button, the source code file containing contracts is compiled, which
generates an executable. The framework runs this executable automatically creating a text
file that contains contract checking results. Therefore, the effort needed to extend an
object-oriented programming language to include DBC has been greatly reduced with the
construction of this framework. Using C# and VB.NET, Chapter 5 illustrated the
simplification of these language extensions. With the guidance of the help menus, only a
few language specific items must be supplied and the language has been extended to
include the support for DBC.

In addition to testing the extension of more languages using this framework, various
features can be added to increase the framework’s power and usability. Even though the
framework functions for object-oriented programming languages, the current version
does not support contract inheritance. Similar to the inheritance of attributes and
methods, contracts from a parent class are also inherited. In order for parent contracts to
be verified logically, language designers will need to specify the syntax for inheritance in
the language that is being extended.

The researchers extending this framework will need to add code that will logically
OR the precondition of the current class with the precondition of the parent class. This
logical OR weakens the precondition. The extended language programmer also needs to
add code that will logically AND the postcondition of the current class with the
postcondition of the parent class. Therefore, inheritance strengthens the postcondition.
Inheritance of class invariants functions in the same manner as the inheritance of
postconditions. The researchers extending this framework will also need to logically
AND the current class invariant with the parent class invariant. The current framework
inserts conditional statements to check the specified contracts. These conditional
statements will need to be modified to include the contracts for the parent class.

Another function that can be added to the framework is the ability to specify the
level of dynamic contract checking. This feature gives the programmer the option to
choose the combination of contracts to be checked for the program. The framework
currently checks and reports the result of all preconditions, postconditions, and invariants.
Allowing the extended language programmer to choose the checking level will increase
the flexibility of the contract checking mechanism.

VOL. 9, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

REFERENCES

[Eiffel07] Eiffel Software. Eiffel in a Nutshell. [Online]. 1985-2007. Available:
http://archive.eiffel.com/eiffel/nutshell.html

[Henne-Wu04] Henne-Wu, Rachel, William Mitchell, and Cui Zhang: “Support for
Design By Contract™ in the C# Programming Language”, Journal of Object
Technology vol. 4, no. 7, September-October 2004, pp. 65-82.

[Sorceforge03] Sourceforge. What is jContractor? [Online]. 2003 Available:
http://jcontractor.sourceforge.net/

[Wikipedia08] Wikipedia. (2008, Aug.). Software Framework. [Online]. Available:
http://en.wikipedia.org/wiki/Software_framework#_note-7

[Koskela04] Koskela, L. Introduction to Code Coverage. Accenture Technology
Solutions. [Online]. 2004, Jan. Available
http://www.javaranch.com/journal/2004/01/IntroToCodeCoverage.html

[Grassman96] Grassman, W. and J. Tremblay. Logic and Discrete Mathematics. New
Jersey: Prentice Hall, Inc., 1996, pp. 482-489.

[Markiewicz01] Markiewicz, M. and C. Lucena. Object Oriented Framework

Development. [Online]. 2001 Available: http://www.acm.org/crossroads/xrds7-
4/frameworks.html

About the authors
Jennifer Pandolfo earned her Master's Degree in Computer Science from California
State University, Sacramento, in 2008 and her Bachelor’s Degree in Computer Science
from California State University, Sacramento in 2004. She is currently employed by Old
Republic Title Information Concepts, in Roseville,California, as Ecommerce Manager.
She can be contacted at pandolfojennifer@gmail.com.

Dr. Cui Zhang is a full professor in the Department of Computer Science, California
State University Sacramento. Her research and teaching interests include software
engineering, programming language theories and paradigms, and formal methods for
software engineering and for information assurance and security. She can be reached at
zhangc@ecs.csus.edu.

