
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 7, November - December 2009

J. Leslie Keedy, Gisela Menger, Christian Heinlein: “Types and Co-Types in Timor”, in
Journal of Object Technology, vol. 8, no. 7, November-December 2009, pp 37 - 57
http://www.jot.fm/issues/issue_2009_11/column4/

Types and Co-Types in Timor

J. Leslie Keedy, Monash University, Melbourne, Australia, University of Newcastle,
NSW, Australia and University of Bremen, Germany
Gisela Menger, University of Bremen, Germany
Christian Heinlein, Aalen University of Applied Sciences, Germany

Abstract
A co-type is a type with instance methods and instance data which enhance the functionality
of some other type (its "expanded" type). The instance methods of the co-type correspond
approximately to constructors, class methods and binary methods of the expanded type in
other class-based OO systems, and the instance data replaces class-based data. This
unconventional approach was motivated by the need to reconcile OO concepts with the
Timor aims of supporting both multiple implementations for a type and the use of qualifying
types.

1 INTRODUCTION

About forty years ago Doug McIlroy [20] wrote a widely quoted paper in which he
advocated that software should be built in terms of small units (e.g. a sine routine) which can
have many different implementations. He envisaged that in this way software houses could
compete in providing (small) components and that these components could be built into
many different systems. This vision (which in our view differs substantially from that of
those who see components as larger structures) is shared by the designers of Timor, and we
see the way forward as being realised in an object oriented style, with the help of the
information hiding principle, proposed at about the same time by David Parnas [3, 21].

In pursuit of these aims, and in an attempt to introduce greater orthogonality by keeping
different concerns separate, Timor has introduced a number of features not usually found in
object oriented languages. These include for example

• replacing the class construct with a type definition which can potentially have a
number of different implementations (which may be used in the same and/or different
systems and programs) [16, 14], and

• a new kind of component, known as a qualifying type [10, 11, 8, 9], which contains
bracket methods that allow instance methods of other objects to be "qualified" in a
modular way, e.g. to protect or synchronise them.

TYPES AND CO-TYPES IN TIMOR

38 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

Such features have fundamentally influenced the design of Timor, because they provide new
challenges of a structural nature (e.g. with respect to the definition of types). To solve some
of these structural issues we have introduced another new kind of type called a "co-type",
which itself also supports the aim of component orientation. The purpose of this paper is to
motivate and present the idea of co-types.

In the following discussion we make general statements about "conventional" OO
languages, without being specific about particular languages. The reader should be aware that
by this we mean class-based languages. A discussion of special cases in which attempts have
been made to separate types from implementations in class based languages (e.g. via
interfaces in Java) has been left to the section on related work.

Section 2 briefly reminds the reader of a few unusual features of Timor which have been
presented in earlier papers and which are relevant to the following discussion. Sections 3, 4
and 5 explain why hidden class objects and binary methods are problematic in a language
which supports multiple implementations of a type and qualifying types, and proposes their
elimination from languages with these features, by replacing them with co-types. In section 6
the properties of types and their co-types are summarised in a general way. Section 7
explains some consequences of co-types. Section 8 describes specific decisions about co-
types as found in Timor. Section 9 discusses related work and section 10 concludes the
paper.

2 IMPORTANT LANGUAGE DESIGN FEATURES

In this section the reader is briefly reminded of some language features of Timor already
described in earlier papers, which are not only relevant to the understanding of this paper but
which, we believe, will play an increasingly significant role in the design of future object
oriented programming languages [1].

Classification of Instance Methods as Readers or Writers

All instance methods are classified in a type definition either as enq (enquiries, i.e. reader
methods) or as op (operations, i.e. writer methods) [14]. This classification provides a basis
for achieving such features as reader-writer synchronisation, read-write protection etc. [10,
8].

Orthogonal Persistence and Orthogonal Distribution

Timor provides the programmer with the appearance of a distributed persistent virtual
memory environment [6, 7], which completely hides the existence of conventional file
systems and remote computers. We now briefly review how objects are defined and accessed
in this memory environment1.

1 The implementation is achieved either on a SPEEDOS operating system [4] or by simulating some key
features of SPEEDOS.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 39

Each implementation of a Timor type has a constructor, which always returns a value.
This can be assigned to a value variable within an object, or it can form the basis for creating
a persistent file object or a local object within a file. A file object, which corresponds to
either a persistent file or a persistent program in other languages [6], is created by applying
the create operator to a value. This causes a file object to be created as a copy of the value,
and the operator returns the first capability for the new file object. This capability can be
used to generate further capabilities for the file object. Capabilities can be assigned to
variables of the appropriate type and mode. The capability mode is indicated by the **
notation e.g. Atype**. A capability provides its holder with access to the appropriate file
regardless of its location in the distributed persistent virtual memory (assuming that it is on-
line and that the access rights in the capability permit this).

File objects contain local objects. These can be created from values by applying the new
operator, which returns the first reference for a local object. A reference is a logical pointer,
which (unlike a C pointer) cannot be manipulated freely. It is represented syntactically like a
C pointer, using the * notation. A reference can only be used in the context of the file object
in which its corresponding local object appears [6].

A value can be assigned to a variable within a local object. In this case the * notation is
not used. The values within a local object can be accessed from within that object but are
subject to the information hiding principle, and cannot be directly accessed from other local
objects within a file object.

A triple asterisk *** notation indicates that the mode of a variable is a handle for a type.
This characterises a supertype variable or parameter to which a value, reference or capability
of the appropriate type can be assigned. See [6, 7] for a further discussion of persistence and
of these concepts.

Values, references and capabilities can be declared as abstract variables in type
definitions. These are automatically implemented as pairs of setter and getter methods (an
enq and an op) which simply allow the value, reference or capability to be read or written.

If a reference or capability is embedded in an object of the same type (e.g. a reference
from an object of type Person to another Person object) its setter and getter methods are
not considered to be binary methods in the following discussion.

Separation of Concerns via Qualifying Types

One important way of achieving separation of concerns in Timor is by the use of qualifying
types [10], which have aims similar to those of aspect oriented programming [17, 18, 23], but
in a fully integrated manner.

A qualifying type can be instantiated like any other type, and we call objects created from
such types qualifiers. In addition to having normal instance methods, qualifiers have a
number of bracket methods. These methods can "catch" a normal method invocation from
one object (the client) to another (the target). The result is that the code of the bracket
method is executed in place of (or before) the intended target method, thus allowing the
qualifier for example to synchronise or to protect the target. To make this possible a qualifier
has its own state variables, which might for example be used to store synchronisation

TYPES AND CO-TYPES IN TIMOR

40 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

variables (e.g. semaphores) or protection information (e.g. an access list or a password). The
bracket method can use this information to decide whether to invoke the target method (by
means of a special keyword body) or to refuse access (typically, though not necessarily, by
raising an exception).

Different categories of bracket methods can be associated with a qualifier, and these are
automatically activated in accordance with the nature of the target method in question. For
example the instance methods of a target marked as enq or op methods can be bracketed by
different brackets of the same qualifier, thus enabling reader-writer synchronisation, read-
write protection etc. to be achieved. Individual qualification of methods (e.g. on the basis of
their method names) is also possible.

The action of a bracket method is invisible to both the client and the target (except in so
far as it might raise an exception). Individual target objects can be separately qualified by the
same or different qualifiers. Qualifying types are described in more detail in [10] and
illustrated in Figure 1:

body

method
return

method
invocation Target

object

Figure 1: A Bracket Method in Action

bracket
return

prelude
body

postlude

Client
object

Qualifying
object

i

3 INITIAL MOTIVATION FOR CO-TYPES

In conventional OO languages such as Java, there is a hidden "class object" for each class
used in a program. This object can be used to store "class data" (e.g. "static" variables in
Java) and is primarily accessed by constructors (e.g. to count the number of instances created
for the class or to hold and increment a serial number for each of the objects in the class) and
by class methods (e.g. "static" methods).

In the following discussion we shall see that supporting hidden class objects along the
same lines would create some special issues for a language such as Timor, particularly with
respect to the possibility of supporting multiple implementations for a type and also the
facility to qualify objects.

Binary methods, which we here define as methods that access at least two instances of the
class in question, potentially raise some special issues for multiple implementations and for
qualifying types, regardless whether they are defined as binary instance methods or binary
class methods.

This section explains some of the special issues raised by hidden class objects and by
binary methods for a language such as Timor. In some cases these issues could in fact be
avoided by simply sharpening the rules compared with languages such as Java and C++, but
others require a more radical solution. The solution which we have in fact adopted is to

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 41

remove all class methods, binary methods, application-oriented constructors2 and class data
from the basic type description and treat them as instance methods and data of some other
type. In principle such a type need not have a special role at the language level, but we will
show later that there are some advantages of providing a few special constructs to support
such types, which we call co-types.

Issues with Multiple Implementations

In our view it makes sense to support multiple implementations of the same type, even for
apparently very small types, such as a type Date, allowing individual dates to be represented
in different ways in different systems (or even within a single system). A type List provides
another example where multiple implementations can be particularly useful. For example
lists of varying lengths which hold quite different types of objects and with different usage
patterns might usefully co-exist in a single program, implemented in some cases as arrays, in
others as linked lists and/or as hash tables, etc. Furthermore one implementation of a type
should never need to take into account the existence of other implementations of the same
type.

The introduction of multiple implementations within a program raises at least the
following questions:

• Should each implementation of the type also implement all the "class" properties? If
so, and if for each of these a hidden object is automatically created along the lines of
conventional OO languages, the result will for example be multiple counters and
serial numbers, one for each implementation of the type.

• However, the application might require a single counter or serial number for use
across all instances of the type, regardless of their implementation details. But if only
one hidden object is required for the type, in which of the multiple implementations
should this be programmed, and how do the other implementations gain access to
this?

• Why should it not be possible for the class or type methods themselves to have
different implementations, in accordance with the principles of the language?

• How can implementation-oriented parameters be defined for constructors in a type
definition? For example, a basic constructor for a list implemented as an array might
require a single parameter to indicate how many elements the array should cater for,
but a linked list implementation may not require parameters, while for a hash table
the basic constructor might require a seed value and a hash table length.

• How can extensive code duplication be avoided in different implementations of the
same constructor if the constructor is defined to initialise objects on the basis of
application oriented parameters? (Notice that this issue cannot be eliminated simply
by defining the initialisation code in a subroutine; this would also have to appear in
each implementation.)

2 i.e. constructors which have application oriented parameters that allow each instance to be initialised
differently.

TYPES AND CO-TYPES IN TIMOR

42 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

• In the implementations of binary methods it would be necessary to take account of the
fact that the two or more objects of the type which the binary method manipulates
might have different implementations. This would at least mean that the facility
provided in languages such as Java for directly accessing the implementation features
of both objects would have to be abandoned, and the code of the binary method could
only effectively be written by strictly adhering to the information hiding principle, i.e.
by accessing each of the objects only via its interface methods.

These issues, while they do not lead inevitably to the conclusion that hidden objects could
not be taken over into a language which supports multiple implementations and/or bracket
methods, have led us to the decision that hidden objects should not be supported. Instead
Timor provides the facility to have explicitly supported objects which serve a function
similar to that of class objects.

Issues with Qualifying Types

As we saw in section 2, qualifying types operate by "catching" method invocations and
substituting bracket methods for these. The latter may then choose to call the intended target
by using the body keyword. Here are some of the special issues which this raises in
connection with the idea of hidden class objects and binary methods:

• Qualifiers can be associated dynamically with target objects, or, in the case of
"callout" brackets (see [9]) with client objects. This mechanism relies on the fact that
objects can be explicitly constructed, which is not the case with hidden class or type
objects. Special conventions would therefore have to be introduced which make
hidden objects at least partly explicit.

• The bracketing of conventional constructors is also further hindered by the fact that
no object exists at the time a constructor is invoked; it comes into existence as a result
of the constructor invocation.

• If binary methods are allowed direct access to the implementation of the objects in
question, then this mechanism would allow the effects of qualifiers associated with
the individual methods to be by-passed. This could for example lead to incorrect
statistics, incorrect synchronisation and to protection breaches. As in the case of
multiple implementations a solution to this would at least require that binary methods
could not access the internals of their parameters, but would have to invoke their
methods in the normal way.

The above points further support our decision to provide co-types as separate types.

4 ELIMINATING HIDDEN OBJECTS

A clean solution to the problems associated with hidden objects can be achieved by
eliminating such objects entirely from the language. This is possible because almost all the

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 43

activities which we have discussed can in fact be placed into the code of methods of other
types, as the following discussion shows3.

Class/Type Methods

Class/type methods can always be implemented outside the basic type simply by placing
them, and the class data, as instance methods (and data) in some other type. The application
programmer can determine whether methods are made available to support either
implementation-oriented or type-oriented data or both. Furthermore, since these are normal
instance methods associated with explicitly constructed objects, qualifiers can then be
associated with them in the normal way.

Constructors

Although constructors cannot simply be placed in another type, our solution in this case is to
separate the functionality of a conventional constructor into two parts: a basic constructor
and a maker.

In this organisation each implementation of a type has only one basic constructor. Its
function is to allocate space for a new object and to initialise its variables to standard values
(typically consisting of null and zero values).

Instance methods (which we call makers) are defined in some other type as a replacement
for each application-oriented constructor. A maker has two basic functions. First it
determines what implementation should be used and invokes the appropriate basic
constructor. It then uses instance methods of the newly created object to initialise it, as
illustrated in Figure 5:

Object being
constructed

Figure 5: A Maker Method Invoking a Basic Constructor
and Instance Methods

Invocation of
basic constructor

Client
object

Invocations of
instance methods

In this organisation the code for the construction phase appears once in each constructor,
while the code for the initialisation phase appears once in each maker, thus eliminating the
duplications which would occur if constructors were implemented in the standard way, but in
each implementation of a type.
This proposal has some further advantages:

a) The arrangement recalls the organisation of factory patterns [5]. As with factory
patterns the initialising method can for example choose which implementation to use
and can (but need not) hide the existence of multiple implementations.

3 It is assumed that the basic type has a "complete" set of methods in the sense described in section 6
("Properties of a Type")

TYPES AND CO-TYPES IN TIMOR

44 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

b) Whereas basic constructors are intended to provide only implementation-oriented
parameters, makers need only provide application-oriented initialisation parameters.
(Whether implementation-oriented constructor parameters are made visible to the
application programmer in direct or indirect form then becomes a decision for the
designers of makers.)

c) Makers can be qualified by bracket methods in the same way as other instance
methods. (Conventional constructors cannot be bracketed, because at the time they
are invoked no object exists which can be qualified!)

d) After invoking a physical constructor a maker can organise that the new instance is
qualified by bracket methods if appropriate, before the instance becomes accessible to
the application.

5 ELIMINATING BINARY METHODS

Binary methods, both in the form of binary instance and binary class methods, have long
been known to create problems for conventional OO languages (see e.g. [2]). As we have
seen above they also raise some new issues in connection with multiple implementations and
qualifiers.

In our view the most effective way of eliminating these problems is to eliminate binary
methods completely, i.e. to treat them in the way proposed above for the methods associated
with hidden objects, i.e. as normal methods of some other type.

One potential problem might appear to be the case where references to other objects of
the same type need to be set or read (e.g. to create a linked list, tree or network of nodes, cf. a
genealogical tree of objects of the type Person). Although such methods are conventionally
classified as binary methods, they have a quite different character from binary methods
which actually manipulate or read the contents of two objects of the same type. This
difference has enabled us to separate the two cases. In Timor the setter and getter methods
for abstract references (see section 2) are treated as an exception to the normal Timor rule
that an instance method may not have parameters of its own type. The issue of eliminating
binary methods is further discussed in the section on related work.

6 SOME PROPERTIES OF TYPES AND THEIR CO-TYPES

We have shown in the previous section that there are good reasons, at least in languages
which support qualifying types and/or multiple implementations of a type, for separating the
instance methods of a type from other methods, in particular from binary methods, makers
(logical constructors) and class methods, which in OO languages are conventionally defined
in the same type. This raises the question where should such methods be defined.

In principle they can appear in any other type(s). For example they can be embedded in
the code of individual applications, but that is not particularly modular and can quickly lead
to similar code being repeated in different application systems. It would also be possible to

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 45

define types for this purpose in a relatively ad hoc manner, as the idea of factories containing
makers [5] shows.

However we believe that it can be helpful to programmers if the language provides a
framework for bundling such related methods together into types which are explicitly
associated with the types that they expand. This viewpoint has led us to introduce the concept
of a co-type. In the following discussion we refer to the type which a co-type expands as its
expanded type.

Properties of a Type

It follows from the discussion in earlier sections that a type definition consists of a set of
instance methods (with a single basic constructor in each implementation), and that these
methods must include all the basic functionality needed to allow not only the types but also
their co-types to function correctly. For example it is possible in conventional object oriented
languages to define constants and initialise them only in constructors. However, with the
arrangement suggested above a method must be available to allow makers to initialise each
such constant. Similarly sufficient instance methods must be available to allow binary
methods to compare instances, etc., cf. the example in section 8 ("Protecting Methods ..."). In
this sense one can say that a type consists of a complete set of instance methods needed to
manipulate instances of the type, and that an implementation of a type consists of a
rudimentary constructor and an implementation of each instance method, together with the
appropriate data structures.

Basic Properties of a Co-Type

Wherever it is reasonable to do so, the number of concepts in a language should be
minimised. It therefore seems appropriate to consider a co-type itself as a type in the sense
just described above. All the methods which it supports should be bundled together into a
single type definition, and an implementation should have a basic constructor together with
an implementation of each instance method and the instance data needed to support the
implementation.

This approach has a number of advantages. Apart from being able to have multiple
implementations, a co-type instance can for example be bracketed by qualifiers; it can inherit
and be inherited, and so on. All this comes at no extra cost.

Nevertheless it raises some issues which require further discussion.

7 SOME CONSEQUENCES OF CO-TYPES

In this section we discuss some interesting issues raised by the concept of co-types.

TYPES AND CO-TYPES IN TIMOR

46 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

Modularity

We envisage that type definitions and their implementations can (and hopefully will) be
programmed for use as components which can be incorporated with minimum effort into
different application systems (e.g. by a new generation of software houses, which we refer to
as "component software houses").

In this context we see an immediate advantage of separating types (and their
implementations) from co-types (and their implementations). It becomes possible to develop
(i.e. define and implement) more than one co-type to expand the same type. This implies that
a type can be expanded in different ways by several co-types. This point will be discussed in
more detail below.

Factories

We have defined makers as methods designed to invoke a basic constructor and then carry
out the application-oriented initialisation phase of conventional constructors, and we have
suggested that they can play a role similar to that envisaged for factory methods in creational
patterns [5]. Hence the basic functionality of makers can be viewed as providing a
convenient interface which

• allows application programs to create new instances of expanded types, and
• can be used (where appropriate) to control such creational activities centrally.

Creation of new instances:
To create a new instance a maker normally invokes an appropriate constructor of an
implementation of its expanded type. This implies that decisions regarding the choice of
implementation can be hidden in makers. Assuming that several implementations are
available in a program and that instances can only be created by makers, this means that
implementation choices can be confined to a single module (and therefore that such decisions
are relatively easy to change). For example the introduction of new implementations for an
expanded type into an existing system needs changes to be made only to the makers for that
type.

What criteria should be used to select an implementation when creating a new instance of
an expanded type? An important decision for designers/programmers of makers is whether
(and to what extent) implementation dependent information is exposed to the application
programmer.

At the one extreme all implementation details can be hidden in the maker, so that for
example maker implementations select which implementations of the expanded type are to be
invoked and determine all the parameter values needed by their constructors. This need not
simply be based on fixed values programmed into a maker, but for example decisions might
be based on which process is invoking the maker, or on the basis of statistics previously
gathered by the co-type, etc. In this case the repeated code problem mentioned in section 3 is
completely avoided.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 47

At the other extreme all implementation parameters may be made visible by makers (in
which case the code repetition problem is not automatically eliminated). Or intermediate
solutions are possible, e.g. by providing maker parameters to indicate the expected logical
size of an object such as a list, helping the maker to choose between say an array or a linked
list implementation, without the application programmer having to make an explicit decision,
or even being aware which implementations are available. Hence the distinction between
implementation-oriented constructors and separate makers allows a wide range of flexible
design decisions to be made.
Central Control:
So far it has been assumed that co-types have no special privileges. This implies that
programs need not use co-types and, if co-types containing makers exist, application
programmers can ignore them, e.g. by directly calling the constructor of an implementation.
For ad hoc systems and one-off programs this is probably the best solution, so that a
programming language should certainly not be designed with a built-in decision that only
makers can directly call constructors. (This would also lead to the recursive situation that
each co-type must have a co-type!)

However, in professional systems and programs (e.g. involving many programmers) a
good case can be made out for controlling this situation. Only in this way can it be
guaranteed, for example, that makers can maintain and use correct statistics about the
frequency of use of particular implementations when a new instance is created for an
expanded type. As another example, only by the compulsory use of makers can it be
guaranteed that each instance is, for example, initialised with a unique serial number (e.g. a
passport number or student matriculation number) and/or with appropriate bracket methods.

A mechanism which ensures central control can also be used to enforce alternative design
decisions, e.g. the creation of new instances of a type by prototyping, the enforcement of
singleton instances, etc.

These points suggest that language designers should consider how to provide a
mechanism which can (but need not) be used to enforce the use of makers.

A similar issue arises as a result of the need for an expanded type to provide a "complete"
set of instance methods, as described in section 6 ("Properties of a Type"). If an instance
method is provided which is intended only for use by a co-type to initialise constants, how
can the use of this method be restricted?

These are questions which may have different answers in different languages. We will
describe the Timor solutions in section 8.

Invocation of Co-Type Methods

Conventional OO languages need a special syntax for invoking constructors and class
methods (including binary class methods). The standard way of doing this is to use the class
name instead of the instance name.

However for co-types no additional syntax is in principle necessary, because the methods
are instance methods, and so can be invoked directly via an instance in the normal manner. It

TYPES AND CO-TYPES IN TIMOR

48 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

therefore becomes a matter of taste whether language designers imitate the conventional
style.

Co-Type Instances

In a language such as Java, there is one hidden class object per class. Are similar restrictions
necessary for co-types? Here we must distinguish between three different issues.
May a co-type have several implementations?
Here the answer must be positive if we support the idea of components, especially for use in
different systems.
May a co-type have several instances in a single program or system?
The answer to this question depends largely on what functionality the co-type contains. For
example if its purpose is to provide an alternative for static data and this is on a once per type
basis, e.g. to count the number of instances of an expanded type, then only one instance will
be necessary. On the other hand a co-type for Person if used in a government registry office
system could provide makers which create Person objects to reflect births, binary methods
such as marry and divorce corresponding to relationship records concerning marriages and
methods which record deaths. It could then be appropriate to have different instances of the
co-type for different marriage registry offices. So in the general case there appears to be no
strong reason to forbid multiple instances of a co-type.
May several different co-types co-exist for a type?
In the interests of modularity and extensibility of systems the existence of multiple co-types
for a type can scarcely be rejected. On the contrary this allows co-types with different
functionality to be programmed separately (e.g. for a type Person binary methods handling
marriages can be separated from those for carrying out comparisons), and new co-types can
be later added to a system without requiring any re-write of existing code.

Enhancing Qualifying Types

As indicated earlier, qualifying types support bracket methods which can modify different
categories of methods (e.g. op and enq methods) in different ways. Despite the fact that they
are considered in this paper to be instance methods, it can be quite useful to place makers and
binary methods into special categories from the viewpoint of bracketing.

By recognising special categories for makers and for binary methods, code which would
otherwise have to be programmed individually in each such method can sometimes usefully
be delegated to a qualifying type. As a simple example, statistics about the number of times
makers are successfully invoked can be coded once, instead of in several makers4. In fact
such a qualifying type could be associated with all makers in all co-types, thus indicating
how many instances have been created in the entire system. Similar considerations apply to
binary methods.

4 Bracket methods can recognise whether or not a maker invocation is successful by checking if the
returned value is null.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 49

In another scenario a protection qualifier (e.g. which uses an access control list or a
revocation list, see [10]) can prevent certain processes from calling the makers of a particular
type (or makers of any type) and thus prevent certain users from creating objects. In such
cases it would be tedious for a programmer to have to define and implement separate bracket
methods for each maker in the target type. In fact component software houses would not need
to be aware of the names of methods in a target when developing such a co-type.

These examples suggest that makers and binary methods should be identifiable as
separate categories from the viewpoint of bracketing.

Additional Compile Time Checks

If binary methods and makers are recognised as separate categories of instance methods
within a co-type, this is not only useful for developing qualifying types, but can also be used
to provide additional compile time checks.

For example, the result returned by a maker should always be defined to have the type
which the co-type expands. Similarly a binary method will always have at least two
parameters of the expanded type. If co-types are explicitly designated then such details can
be checked at compile time.

Inheritance of Co-Types

Co-types can have subtypes, because they are themselves (almost) normal types. However,
because of the special relationship between a co-type and its expanded type a subtype of a
co-type must expand the same type as that of its supertype.

Notice that this does not lead to parallel hierarchies between the subtypes of a co-type
and the sub-types of the expanded type. For example a co-type Persons, which expands a
type Person, might have a subtype Persons2. This is also a co-type for Person, but it is
not a co-type for Student (a subtype of Person).

Summary

The above discussion suggests that co-types can provide a useful contribution to an object-
oriented approach to component development. Although some features of co-types could
(like factories) be achieved without any additions to a language, we have also seen that
recognising co-types explicitly in a language can add further benefits which enhance the
work of a software developer and/or an application programmer. In the next section we
illustrate how co-types have been integrated into Timor.

8 DEFINING CO-TYPES IN TIMOR

In accordance with the usual Timor style used in similar cases (e.g. qualifying types) a co-
type has the following structure:

TYPES AND CO-TYPES IN TIMOR

50 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

type C expands T {

 // the keyword expands indicates a co-type relationship

instance: // basic instance methods for the type C,

 // which can (but need not) be used as type methods for T

maker: // makers for type T

binary: // binary type methods for type T

}

The order of sections is not important, and multiple sections of the same kind can appear in a
type definition. Here is an example which we will elaborate in later sections:

type Persons expands Person {

instance:

 enq int instances();

 // returns the count of Person instances

maker:

 op Person* init(String name, address; Gender gender;

 Date dateOfBirth) throws InvalidParams;

 // carries out consistency checks and where appropriate

 // creates a Person value, converts this to a local object,

 // initialises name, address, gender and date of birth,

 // adds an automatically generated identification number

 // and increments the count of Person instances

binary:

 enq boolean equal(Person*** p1, p2) throws NullPtr;

 // compares two Person instances using their unique

 // identification numbers

 enq Person*** older(Person*** p1, p2) throws NullPtr;

 // returns the older of two Person instances

}

Defining and Implementing Makers

In Timor, if makers are defined for a type, then these are the only methods which can invoke
constructors of the implementations of the expanded type. If a type has no makers in any of
its co-types the basic constructors for its implementations can be invoked without restriction.
Thus the (optional) existence of makers always implies control of a type. We therefore refer
to a co-type which contains makers as a controlling co-type.

Makers must return an instance of the expanded type. Any of the modes of the type,
including handles (see section 2), can be used. If an attempt is made to define a result of a
different type, a compile-time error occurs.

If a maker exists for an expanded type which is defined to contain "constants", then only
the makers and other methods of the co-type (e.g. co-type instance methods designed to
allow controlled changes) can invoke the op method for setting the constant. (How this is

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 51

achieved is described in the subsection below on "Protecting Methods ..."). However, a
controlling co-type is not restricted to doing this only once, which means that it can for
example make controlled changes to "constants" after the initialisation phase, e.g. to correct
errors, or to change a surname after marriage. (In this sense Timor does not support genuine
constants, except where the type has no controlling co-type.)

Defining and Implementing Instance Methods

Instance methods follow the same rules in co-types as in other types. In the context of a co-
type they usually access instance data structures which typically serve a function similar to
class data in conventional object oriented languages. In this case they will typically not have
parameters of the expanded type.

However instance methods can be used to provide other useful co-type functions, in
which case they may have a parameter of the expanded type. For example a method which
allows a final abstract value of the expanded type to be modified for a particular instance
(see the previous subsection on makers) needs an actual parameter indicating to which
instance the new value applies.

Defining and Implementing Binary Methods

A binary method must have at least two parameters of the expanded type, or a compile time
error occurs. It is recommended that these be declared as handles for the expanded type, thus
ensuring that separate binary methods do not have to be written for accessing instances of the
type which have different (or even mixed) modes.

Two examples are shown above, in the definition of the type Persons. Although it will
generally not be necessary, an implementation of a binary method (like any other method)
can if necessary use a cast statement to determine the actual modes of the parameters passed
to it. Although in the above example it may appear that only objects of type Person can
exist (because the maker is defined to return an instance of the type Person*), instances
which are values appear in the code of the maker itself (before they are converted into
objects), and so the use of handles ensures that in this maker code the binary methods can be
invoked to carry out comparisons (e.g. between a new value and an existing object) before
the maker commits to the creation of a further object.

Singletons

As was indicated in the discussion of co-type instances in section 7 there are examples where
several instances of the same co-type can make sense within a single program, while in many
cases (especially where the state data provides a functionality similar to that of class data in
conventional OO languages) a singleton instance will often be more appropriate.

In any type definition (not just for a co-type) a programmer can designate a type as a
singleton by placing the keyword singleton at the beginning of the definition. This has the
effect that only one instance of this type can be instantiated in each persistent file object (see
[6]) – hereafter referred to simply as a "file", including a program file.

TYPES AND CO-TYPES IN TIMOR

52 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

Protecting Methods of an Expanded Type Accessible Only to Co-Types

In section 6 ("Properties of a Type") we indicated that a type definition should include all the
methods needed to allow their co-types to function correctly. This is not always the case with
definitions of types designed purely for the normal client. For example, a stack type is often
defined as simply having methods such as push, pop, top, and isEmpty. However a binary
method of a co-type which compares two stacks can be much more efficiently implemented
if it can access each element in the stack in turn. This can be achieved via a method, e.g.

protected enq ELEM getEntryAtPos(int position);

The keyword protected is used in this context to give a co-type access to protected
methods of its expanded type.

9 RELATED WORK

The work most closely related to the present paper is contained in the Ph.D. dissertation of
Schmolitzky [22], who was previously a member of our research group in Ulm. This was one
of the foundations upon which Timor has been designed. It provides a thorough discussion of
the idea that an object oriented programming language should distinguish between a type and
potentially multiple implementations. However, it envisaged a construction which differs
considerably from a co-type. This is not a different type, but corresponds to an explicit
version of a "type object" which cannot have multiple implementations and which is closely
bound with the basic type. This has "type operations", which include binary methods and
methods corresponding to class methods. Although there is no direct equivalent to makers,
"abstract constructors" can be defined in a type definition. These define only application-
oriented parameters, and an implementation for an object, together with implementation
parameters, can be selected by means of pragmas.

Removing Constructors/Makers from Type Definitions

In the context of the Theta language Barbara Liskov [19] drew attention to the problem of
including constructors with type definitions. The Theta solution was to place them outside
type definitions, but not in related types equivalent to Timor co-types. This solution does not
distinguish between application- and implementation-oriented parameters.

If we ignore the fact that in Java classes are themselves types and instead view a Java
interface as a type definition and a class as an implementation, then one can argue that Java
(like Timor) has entirely removed constructors from types. However, interfaces are not
compulsory and in many programs the only types which are used are classes, which have
constructors that mix logical and implementation parameters. The special Java solutions for
avoiding code duplication in constructors (via initialisation blocks and or nested constructor
calls) are limited to the implementation of multiple constructors in a single class and
therefore do not apply to Timor, which avoids these special mechanisms.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 53

Creational Design Patterns

A key aim of factory design patterns [5] is to place within a single module the decision to use
a particular implementation (e.g. deciding which kind of implementation is appropriate in a
particular application context, or which of several implementations should be used for
particular objects), thus separating application modules from implementation decisions. In
Timor applications the realisation of this aim is ideally suited to co-types. The designer of
makers for a co-type can choose to hide the implementation related parameters of
constructors and can force all parts of an application to use a particular implementation, for
example on the basis of the configuration environment in which the application runs. Or he
can enforce the use of different implementations for different purposes.

In contrast with other languages, Timor guarantees that application programmers must
call the factory methods in order to create new objects, which is especially important in a
large system involving many programmers.

Avoiding Binary Methods

In their detailed discussion of binary methods (by which they primarily had in mind binary
instance methods) Bruce et al. [2] emphasized in particular the difficult issues which arise
when attempting to reconcile subtype polymorphism, code re-use and covariant adjustment
of parameters. Among the potential solutions which they explored was to avoid binary
instance methods completely. This is in fact the solution adopted in Timor, where binary
methods are removed from the type definition into a co-type. However, in contrast with the
solutions which Bruce et al. explore, Timor co-types maintain a close relationship with their
expanded types.

A significant outcome of this approach, as we illustrate in detail in a companion paper
[13] is that via the use of co-types the kind of automatic covariant adjustment of parameters
which Bruce et al. sought to achieve can be fully realised for both makers and binary
methods. At the same time neither subtype polymorphism nor code re-use for co-types and
their expanded types needs to be sacrificed.

10 CONCLUSION

Initially motivated by problems which potentially arise in a language that supports multiple
implementations of a type and qualifying types with bracket methods, the paper presents a
new concept, co-types. These allow other types to be expanded by adding makers, binary
methods and the equivalent of class methods. These additional methods are in fact instance
methods of the co-type and can therefore be treated as such for many purposes. Hence other
Timor techniques, such as multiple implementations for a type [14], code re-use [16, 12, 15]
and bracketing by qualifying types [10], can be applied to co-types without additional
overhead or language complications, except of course in so far as the co-type mechanism
itself adds to the tasks which a Timor compiler has to carry out. Recognizing the differences

TYPES AND CO-TYPES IN TIMOR

54 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

between makers, binary methods and instance methods at the syntax level also allows
improvements to bracket methods and facilitates further compile-time checks.

At the same time co-types provide a convenient structure for implementing factory
methods, and they do so in such a form that applications are forced to use a factory method,
if one exists.

Separating makers from constructors allows implementation parameters in constructors to
be separated from logical initialisation parameters and gives maker designers the freedom to
hide implementation parameters, and thus avoid potential code repetition problems which
might otherwise occasionally arise, freeing application programmers from the need to be
aware of the existence of different implementations for a type.

Instance methods of co-types can be used to provide the equivalent of class methods in
other languages. State data of co-type instances can conveniently store both what would
conventionally be class data and also additional information about instances of the expanded
type. The decision to have only one instance of a co-type can be determined by declaring this
as a singleton.

By providing for binary type methods in co-types both binary instance methods and
binary static (type) methods can be eliminated from types, thus eliminating a number of
problems which conventional binary methods can create. In co-types they do not raise these
problems because they are simply instance methods of a different type.

Despite the fact that we were initially motivated by a need to solve problems which arise
from special features in Timor (multiple implementations of a type, qualification of types)
the result appears to be much more generally applicable. Future OO language designs
without these special features could also greatly benefit by incorporating co-types, since
these provide a structured approach which eliminates some weaknesses of current OO
programming languages, for example, in the areas of creational patterns, binary methods and
class data.

Finally we have indicated in this paper that a subtype for a co-type becomes an additional
co-type for the expanded type of its ancestor. However we left open the issue whether some
other relationship might exist between co-types and subtype hierarchies for their expanded
types. In a companion paper [13] we discuss this possibility and show that a technique
similar to, but not identical with, inheritance and subtyping can usefully be applied to co-
types to produce co-types for the subtypes of expanded types. This technique, which we call
"adjustment", can covariantly adjust the parameters of co-types safely, for example to
produce a co-type for a type Student, based on a co-type Persons which expands Person,
a supertype of Student.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 55

REFERENCES

[1]. J. Brauer, C. Crasemann and H. Krasemann, Auf dem Weg zu idealen Werkzeugen -
Bestandsaufnahme und Ausblick, Informatik Spektrum (2008), pp. 580-590.

[2] K. B. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. T. Leavens and B.
Pierce, On Binary Methods, Theory and Practice of Object Systems, 1 (1995), pp.
221-242.

[3] P. J. Courtois, F. Heymans and D. L. Parnas, Concurrent Control with Readers and
Writers, Communications of the ACM, 14 (1971), pp. 667-668.

[4] K. Espenlaub, Design of the SPEEDOS Operating System Kernel, Ph.D.Thesis, Dept. of
Computer Structures, University of Ulm, 2005, pp. http://vts.uni-
ulm.de/query/longview.meta.asp?document_id=5333.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[6] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, Persistent Objects and
Capabilities in Timor, Journal of Object Technology, 6 (2007), pp. 103-123
http://www.jot.fm/issues/issue_2007_05/article3.

[7] J. L. Keedy, K. Espenlaub, C. Heinlein and G. Menger, Persistent Processes and
Distribution in Timor, Journal of Object Technology, 6 (2007), pp. 91-109,
http://www.jot.fm/issues/issue_2007_07/article2.

[8] J. L. Keedy, K. Espenlaub, C. Heinlein, G. Menger, F. Henskens and M. Hannaford,
Support for Object Oriented Transactions in Timor, Journal of Object
Technology, 5 (2006), pp. 103-124
http://www.jot.fm/issues/issue_2006_03/article1.

[9] J. L. Keedy, K. Espenlaub, G. Menger and C. Heinlein, Call-out Bracket Methods in
Timor, Journal of Object Technology, 5 (2006), pp. 51-67,
http://www.jot.fm/issues/issue_2006_01/article1.

[10] J. L. Keedy, K. Espenlaub, G. Menger and C. Heinlein, Qualifying Types with Bracket
Methods in Timor, Journal of Object Technology, 3 (2004), pp. 101-121,
http://www.jot.fm/issues/issue_2004_01/article1.

[11] J. L. Keedy, K. Espenlaub, G. Menger, C. Heinlein and M. Evered, Statically Qualified
Types in Timor, Journal of Object Technology, 4 (2005), pp. 115-137,
http://www.jot.fm/issues/issue_2005_09/article5.

[12] J. L. Keedy, C. Heinlein and G. Menger, Reuse Variables: Reusing Code and State in
Timor, 8th International Conference on Software Reuse, Springer Verlag, Berlin,
Madrid, 2004, pp. 205-214,

TYPES AND CO-TYPES IN TIMOR

56 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 7.

http://www.springerlink.com/content/vh35l5ulhhmyk39x/?p=bac45e4a92a2433f9
a6bb13aad40781b&pi=12.

[13] J. L. Keedy, G. Menger and C. Heinlein, Covariantly Adjusting Co-Types in Timor,
(2009), pp. (to appear in th next edition of JOT Vol 9. No. 1, January-February
2010).

[14] J. L. Keedy, G. Menger and C. Heinlein, Inheriting from a Common Abstract Ancestor
in Timor, Journal of Object Technology, 1 (2002), pp. 81-106,
www.jot.fm/issues/issue_2002_05/article2.

[15] J. L. Keedy, G. Menger and C. Heinlein, Inheriting Multiple and Repeated Parts in
Timor, Journal of Object Technology, 3 (2004), pp. 99-120,
http://www.jot.fm/issues/issue_2004_11/article1.

[16] J. L. Keedy, G. Menger and C. Heinlein, Support for Subtyping and Code Re-use in
Timor, in J. Noble and J. Potter, eds., 40th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002),
Conferences in Research and Practice in Information Technology, Sydney,
Australia, 2002, pp. 35-43.

[17] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm and W. G. Griswold, An
Overview of AspectJ, ECOOP 2001 - Object-Oriented Programming, Springer
Verlag, LNCS, 2001, pp. 327-353.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier and J.
Irwin, Aspect-Oriented Programming, ECOOP '97, 1997, pp. 220-242.

[19] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson and A. C. Myers,
Theta Reference Manual, MIT Laboratory for Computer Science, Cambridge,
MA, 1994.

[20] M. D. McIlroy, Mass Produced Software Components, in P. Naur, Randell B. and
Buxton, J.N., ed., NATO Conference on Software Engineering, NATO Science
Committee, Petrocelli-Charter, Garmisch, Germany, 1968, pp. 88-98.

[21] D. L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules,
Communications of the ACM, 15 (1972), pp. 1053-1058.

[22] A. Schmolitzky, Ein Modell zur Trennung von Vererbung und Typabstraktion in
objektorientierten Sprachen (A Model for Separating Inheritance and Type
Abstraction in Object Oriented Languages), Ph.D. Thesis, Dept. of Computer
Structures, University of Ulm, Germany, 1999.

[23] D. Schweisguth, Second-generation aspect-oriented programming, Javaworld,
http://www.javaworld.com/javaworld/jw-07-2004/jw-0705-aop-p3.html, July,
2004.

VOL. 8, NO. 7. JOURNAL OF OBJECT TECHNOLOGY 57

About the authors
J. Leslie Keedy retired from the position of Professor and Head,
Department of Computer Structures, University of Ulm, Germany in 2005,
where he previously led the Timor language design and the Speedos
operating system design groups. His email address is keedy@jlkeedy.net.
His biography can be visited at http://www.jlkeedy.net/biography_short.php

Christian Heinlein is Professor for Fundamentals of Computer Science
and Software Engineering at Aalen University, Germany. In his research,
he has developed "Advanced Procedural Programming Languages", which
are both conceptually simpler and more flexible than standard object-
oriented languages. More information about him and his work can be found
at www.htw-aalen.de/personal/christian.heinlein.
Gisela Menger received a Ph.D. in Computer Science from the University
of Ulm in 2000. She recently retired from the Department of Computer
Structures at the University of Ulm. Her research interests include
programming language design and software engineering.

