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In recent years, dynamic component-based systems such as OSGi and its derivatives
have become very successful. This has created new challenges for verification. Assem-
blies are created and modified dynamically at runtime, but many existing techniques
such as unit testing are designed for buildtime verification. Runtime verification is
usually restricted to type checks. We propose a simple component contract language
that is powerful enough to represent different types of complex contracts between col-
laborating components, including contracts with respect to component semantics and
quality of service attributes, and contracts that refer to resources other than program-
ing language artefacts. These contracts are based on a pluggable contract vocabulary
and can then be used for runtime verification of assemblies. We present a proof
of concept implementation of the contract language proposed for the OSGi/Eclipse
component model.

1 INTRODUCTION

Component-based systems have become very popular in the last decade. While ini-
tially used mostly in desktop application, component-based software engineering is
now used in many different areas including server-side and ubiquitous computing.
This has created a number of new challenges for component models with respect
to component lifecycle and resource management. Traditionally, component models
focus on one particular aspect in order to describe the relationship between col-
laborating components - interface compatibility. This relationship is defined by a
contract that is usually expressed by means of programming language artefacts like
Java interfaces, or by using a dedicated interface definition language (IDL). However,
modern component models have to address use cases where other types of contracts
are involved. For instance, server applications often require a high level of reliability,
and applications running on mobile devices have special requirements with respect
to the (hardware) resources components can use. If components are dynamically
discovered, it might not be enough to know that these components provide the right
interface, they must also have the expected behaviour. Beugnards et al. [BJPW99]
have investigated types of component contracts and have classified contracts into
four layers:
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1. Basic syntactic contracts expressing interface compatibility.

2. Behavioural contracts specifying component semantics.

3. Synchronisation contracts describing dependencies between components.

4. Quality of service contracts describing requirements with respect to response
times, quality of results etc.

Beugnards et al. have also discussed several technologies that could be used to
express contracts for the various layers. This includes the use of IDLs for layer 1,
design by contract [Mey92] for layer 2 and TAO [SLM98] for level 4. Other types
of contracts not covered by this classification include aspects related to security,
trust and licensing. For instance, an organisation might want to prevent the use
of components with contagious licenses, or configurations where components with
incompatible licenses are linked together. In OSGi, version 4.2 of the specification
will contain features that make licensing information part of the machine readable
component meta-data and will enable applications to reason about this (RFC 125,
[OSGb]).

In some modern component frameworks even basic layer 1 contracts can be rather
complex. A good example is the successful component model used by Eclipse [Ecl].
Based on OSGi [OSGa] bundles, Eclipse plugins use extension points and extensions
to define required and provided resources. Often, these resources are Java types
- plugins define extension points using Java interfaces, and require other plugins
providing extensions to these extension points to supply classes implementing the
respective interfaces. However, in general these contracts are highly polymorphic.
An example for this is the org.eclipse.help.toc extension point. In order to
extend it, applications have to provide help resources and a table of content XML file
instantiating a given document type definition. Moreover, many extension points use
complex logical expressions. An example for this is org.eclipse.ui.actionSets.
Here, the value of the attribute class must be a name of a class that implements an
interface. Which interface this is depends on the value of another attribute (style).

In this paper, we introduce Treaty, a component contract language designed to
address these issues. The paper is organised as follows: In section 2, we introduce
the Treaty contract language. We use an Eclipse-based example application for
this purpose. This application contains polymorphic and disjunctive contracts, and
uses unit test cases for layer 2 and layer 4 contracts. We then discuss contract
instantiation and verification. In section 4 we show how contract vocabularies can
be organised in a modular manner. In section 5 we explore the use of unit test cases
in contracts in more detail. We then discuss the architectural aspects of Treaty,
focusing on the relationship between contracts and the underlying component model.
A discussion of related work and open questions concludes our contribution.
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The Treaty framework and the example used throughout this paper are both
accessible on Google code1, the code is licensed under the Apache open source license.

2 FORMALISING CONTRACTS

Components collaborate in different ways. When designing component-based sys-
tems in an object-oriented language, the most common way of collaboration is that
one component provides an abstract type, while another component provides (an
instance of) an implementation class of this abstract type. The use of abstract
types decouples the collaborating components. As mentioned in the introduction,
modern component-based systems like Eclipse also use different types of contracts.
For instance, components have to supply XML documents instantiating document
type definitions (DTDs) or XML Schemas. In general, we can consider the artefacts
provided and consumed by components as resources identified by uniform resource
identifiers (URIs). These resources are typed, examples for types are instantiable
Java classes, Java interfaces, IDL interfaces, XML instances, XML Schemas, XSL
files, DTDs, property files, and CSV files. Relationships associating resources are
defined for certain resource types only, for instance Java classes implement Java in-
terfaces, XML documents instantiate DTDs, or style sheet transformations applying
to instances of a certain XML Schema.

In [DHG07] it has been proposed to use the semantic web standards RDF, OWL
and SWRL to model component contracts in a platform-independent manner. The
resource description framework (RDF) [KC04] provides a generic standard to de-
scribe resources. In addition, the web ontology language (OWL) [MvH04] provides
language constructs to define resource types and their relationships, including sub-
classing and associations between resources of a certain type (object properties).
The formal semantics of OWL supports ontology reasoning. Finally, the Semantic
Web Rule Language (SWRL) [HPSB+04] supports the definition of derivation rules
to define predicates. In [DHG07] it has been shown how contracts can be expressed
using SWRL rules defining an “extends” predicate. While this has some obvious
advantages, including the existence of a formal semantics for SWRL, the resulting
rules are too complex and do not support a compact representation of contracts.
Furthermore, these contracts have restricted expressiveness. In particular, complex
constraints using exclusive disjunctions cannot be represented.

For this reason, we have developed a custom XML vocabulary that supports the
compact definition of component contracts. This vocabulary is part of Treaty, the
contract framework we propose. Contracts define relationships between two parties:
consumer and supplier. Treaty as a framework abstracts from the concrete nature of
these entities. For the example used here we use the proof of concept implementation

1http://code.google.com/p/treaty/, the Eclipse update site URL is
http://treaty.googlecode.com/svn/trunk/treaty-eclipse-updatesite/site.xml. The Treaty plu-
gin requires JDK 1.6 or better.
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of Treaty for the Eclipse component model. Here, the consumer and supplier roles
are mapped to extension points and extensions of Eclipse plugins.

Figure 1 shows such a contract 2. The respective example is implemented as a set
of Eclipse plugins. In this contract, the relationship between a component that prints
dates (clock view) and a component that provides a date formatting service (date
to string) is defined. The contract is attached to the Eclipse component that has
the extension point as an XML file in the component meta-data folder (META-INF).
The name of this file is defined by the following naming convention: the name
of the extension point followed by the extension .contract. This mechanism is
non-invasive - contracts can be added to plugins without modifying existing plugin
resources. Treaty does not modify the Eclipse plugin registry either - it is only
queried through public interfaces and if there are no contracts found for an extension
point it is interpreted as empty contract.

A Treaty contract has three parts:

1. In the consumer section (lines 3-19), the resources of the extension point are
defined. The resources defined are constants identified by name and type.
The types are defined in an (external) ontology and represented by URIs.
This information can be used by the component to load resources if needed,
for instance by using the component class loader.

2. In the supplier section (lines 20-27), the resources of the extension are defined.
This is where a component provides resources to be consumed by a consumer.
These resources are also typed. Resources are now variables, the ref element
is used to define a variable that can be used to query for the resource once a
concrete extension is known. This reflects the support for dynamic component
models that use late binding. Details of this mechanism are discussed further
below.

3. In the constraints part (lines 28-45), the relationships between resources of
both sides are specified. The schema supports the use of standard logical
connectives such as AND, OR and XOR to define complex conditions. In ad-
dition to relationships, value properties and existence conditions are supported
as well.

In the example shown in figure 1, the clock component that has the extension
point provides the following resources (package names for classes omitted):

1. The interface DateFormatter (id “Interface”) that describes the interface of
the date formatter service.

2. The dateformat.xsd (id “DateFormatDef”) schema that describes the inter-
face of an alternative service by means of an XML schema. Instances of this
schema define date formatting string templates.

2The package names are abbreviated
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3. The class DateFormatterFunctionalTests (id “FunctionalTests”) defines
some JUnit functional test cases. The test cases check whether the strings
produced by a date formatter contain at least the day, the month (as number
or using the English name of the month) and the last two digits of the year.
They define the minimal information content of strings rendering dates.

4. The class DateFormatterPerformanceTests (id “QoSTests”) defines JUnit
quality of service tests. It checks whether a date formatter needs less than
10ms to render a date.

The extending component must provide one of two resources: a Java class or
an XML document. The contract conditions state that a valid extension must
either provide an XML instance that is valid with respect to the schema, or an
instantiable class that implements the interface and passes the additional functional
and performance tests.

Conditions in contracts can be either atomic or complex. To build complex
conditions, the usual logical connectives with their standard semantics can be used -
see table 1 for details. Three types of atomic conditions are supported: relationships
between resources, resource properties, and conditions that a resource must exist.
Relationships and properties are equivalent to object and data properties in RDF.
The mustExist constraint is weaker - this merely asserts that the respective resource
must exist and must be of the declared type. Table 2 specifies the attributes of the
atomic contract conditions. The attribute types used are the XMLSchema built-in
types defined in [XST].

condition type semantics

property comparison of a property of a resource with a literal using a
comparison operator

relationship establishes whether a typed relationship exists between two
resources

mustExist true iff the referenced resource exists
not true iff the contained condition is false
or true iff at least one of the contained conditions is true
xor true iff exactly one of the contained conditions is true
and true iff all of the contained conditions are true

Table 1: Contract condition types and their semantics

3 CONTRACT LIFECYCLE AND VERIFICATION

The sample contract is still abstract since it references resources (the resources of the
supplier) that are not yet known at the time the contract is written. The supplier
is only known later at runtime when late binding occurs. Only then the contract
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <cont rac t>
3 <consumer>
4 <r e s ou r c e id=” I n t e r f a c e ”>
5 <type>ht tp : //www. t r ea ty . org / java#AbstractType</ type>
6 <name>c l o ck . DateFormatter</name>
7 </ r e sou r c e>
8 <r e s ou r c e id=”QoSTests”>
9 <type>ht tp : //www. t r ea ty . org / j un i t#TestCase</ type>

10 <name>c l o ck . DateFormatterPerformanceTests</name>
11 </ r e sou r c e>
12 <r e s ou r c e id=” Funct iona lTest s ”>
13 <type>ht tp : //www. t r ea ty . org / j un i t#TestCase</ type>
14 <name>c l o ck . DateFormatterFunct ionalTests</name>
15 </ r e sou r c e>
16 <r e s ou r c e id=”DateFormatDef”>
17 <type>ht tp : //www. t r ea ty . org /xml#XMLSchema</ type>
18 <name>/dateformat . xsd</name></ r e sou r c e>
19 </consumer>
20 <s upp l i e r>
21 <r e s ou r c e id=”Formatter ”>
22 <type>ht tp : //www. t r ea ty . org / java#In s t an t i a b l eC l a s s</ type>
23 <r e f>/ s e r v i c e p r o v i d e r /@class</ r e f></ r e sou r c e>
24 <r e s ou r c e id=”FormatString ”>
25 <type>ht tp : //www. t r ea ty . org /xml#XMLInstance</ type>
26 <r e f>/ s e r v i c e p r o v i d e r /@formatdef</ r e f></ r e sou r c e>
27 </ supp l i e r>
28 <c on s t r a i n t s>
29 <xor>
30 <and>
31 <r e l a t i o n s h i p
32 r e sourc e1=”Formatter ” r e sourc e2=” I n t e r f a c e ”
33 type=” ht tp : //www. t r ea ty . org / java#implements ”/>
34 <r e l a t i o n s h i p
35 r e sourc e1=”Formatter ” r e sourc e2=” Funct iona lTests ”
36 type=” ht tp : //www. t r ea ty . org / j un i t#v e r i f i e s ”/>
37 <r e l a t i o n s h i p
38 r e sourc e1=”Formatter ” r e sourc e2=”QoSTests”
39 type=” ht tp : //www. t r ea ty . org / j un i t#v e r i f i e s ”/>
40 </and>
41 <r e l a t i o n s h i p
42 r e sourc e1=”FormatString ” r e source2=”DateFormatDef”
43 type=” ht tp : //www. t r ea ty . org /xml#i n s t a n t i a t e s ”/>
44 </xor>
45 </ c on s t r a i n t s>
46 </ cont rac t>

Figure 1: XML Contract Example
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condition property type semantics

property type URI the type of the property, the type
usually refers to an XSD built-in
datatype

resource IDREF reference to the resource that has the
property

value anySimpleType a value literal
operator URI a comparison operator, usually one

of the XPath/XQuery built-in oper-
ators

property URI a property of the respective resource
relationship resource1 IDREF a reference to the source

resource2 IDREF a reference to the target
type URI the type of the relationship

mustExist resource IDREF the resource that must exist

Table 2: Properties of contract conditions

can be instantiated. Contract instantiation is the creation of a deep copy of the
contract, and the instantiation of all resource proxies in this copy. A resource proxy
is a resource that has a ref attribute but no name attribute. The ref attribute is a
reference to the components meta-data. The Treaty framework contains an interface
ResourceManager that is used to resolve those proxies. The details of resolving are
component-model specific. In the Eclipse-based implementation of Treaty, the ref

values are XPath expressions and the ResourceManager uses them to query the
plugin meta-data (plugin.xml). In an implementation of Treaty for pure OSGi the
attribute values could just be simple strings representing keys of properties defined
in the bundle manifests.

Once an instantiated contract exists, verification can be performed. This is the
checking of conditions according to their semantics. When complex conditions are
present, this is usually done using a top-down strategy. This is a simple process:
once all resources are instantiated, contracts are essentially statements of classical
propositional logic, and usually they are not very complex. The interesting question
is how the basic conditions are checked. This requires the resources to be loaded.
For instance, to check properties of a resource of the type AbstractType, the re-
spective class must be loaded so that it can be analysed using the Java reflection
framework. This is done with a ResourceLoader. Again, on the framework level
this is an interface that must be implemented when adapting Treaty for a particular
component model. In case of Eclipse, the loader uses the OSGi bundle classloader
to load resources. Figure 2 shows the different resource states and the respective
transitions.
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Figure 2: Resource states

4 CONTRACT VOCABULARIES

Contracts reference types and properties. Both can be formally defined in a formal
ontology language, but this alone does not define their semantics [Usc01]. For in-
stance, the semantics of the (Java) implements predicate (figure 1, line 33) is the set
of pairs of concrete Java classes C and Java interfaces I such that C implements I.
In other terms, the semantics can be defined by a function that takes two resources
C and I and can compute a boolean indicating whether (C, I) ∈ implements is the
case or not. This particular function is easy to provide: if C and I can be loaded
and are available as instances of java.lang.Class, the method isAssignableFrom

can be used to check this condition. In a similar manner, a validating XML parser
can be used to check the instantiates property associating XML instances and
XML schemas.

A possible solution to this problem is to define a fixed type system that contains
a set of commonly used resource types, including some code that represent the se-
mantics of the respective properties and relationships. However, there might be very
project-specific types and relationships to be used in contracts. Consider a scenario
where a company has a product with a reporting extension point. This offers cus-
tomers the option to plug-in their own reporting templates with customised layouts
and data aggregation. The resource type to be provided by these components could
be VelocityTemplate[Vel]. Or, even better, a product-specific MyReportTemplate

type that represents velocity templates that use only a fixed set of variables which
the host component can bind. Then the component itself would make contributions
to the contract vocabulary in order to enable verification. There is a clear business
use case for this: it safeguards the company against faulty third party plugins which
would result in customers blaming the company or other plugin providers for the
malfunctioning of their software.

Therefore, the vocabulary should be kept open and extensible. This can be
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achieved by using the component model itself to build modular contract vocabular-
ies. Each vocabulary component must provide the following:

1. A list of defined types (URIs) contributed by the component.

2. A list of defined properties (URIs) contributed by the component.

3. A list of defined relationships (URIs) contributed by the component.

4. A method to load a resource given a reference and a resource type. For in-
stance, this method is used to load resources of the type Java class defined by
an attribute in plugin.xml as Java classes using the plugin’s class loader.

5. A method that can be used to check the properties and relationships con-
tributed by the component.

In the Treaty implementation for Eclipse, this functionality is defined through
the extension point net.java.treaty.eclipse.vocabulary. To extend this ex-
tension point, plugins must implement an interface that has the methods to load
resources and check conditions, and have to provide an OWL resource that de-
fines the vocabulary extensions. Figure 4 shows the contract for the vocabulary
extension point, figure 3 shows a code fragments from the Java class that pro-
vides the semantics of the XML vocabulary. This class is an implementation of the
net.java.treaty.ContractVocabulary interface. In this class, the xml#instan-

tiates relationship is checked by using a validating XML parser.

Treaty merges the ontology contributions into a central merged ontology. This
ontology contains all contributed types, properties and relationships, plus annotation
indicating which component contributed the respective artifacts. Figure 5 depicts
the merged ontology that is used by Treaty for Eclipse with on-board vocabulary
contributions only. The graph is visualised using the W3C style, in addition, shaded
areas represent the components that contribute the respective vocabulary elements.
In the RDF graph, this information is represented using annotations. Italic type is
used to highlight resources representing object properties.

The reporting template example also shows the benefit of using formal ontologies.
For instance, assume that the reporting template type MyReportTemplate subclasses
VelocityTemplate, and that the contract requires only the existence of a reporting
template. Using the semantics of rdfs:subClassOf, the verifier could then first
check whether the resource is of the type VelocityTemplate by using the Velocity
parser. If this fails, the resource cannot be an instance of MyReportTemplate either.
That is, the formal semantics of OWL can be used to optimise verification. Another
ontology feature that is useful here is are rdfs:subPropertyOf relationships be-
tween properties and relationships.

For this reason, in the proof of concept implementation all components making
vocabulary contributions have access to a central singleton Vocabulary that main-
tains the virtual merged ontology. This allows them to use ontology reasoning when
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1 import java . i o . InputStream ;
2 import java . net .URL;
3 import javax . xml . XMLConstants ;
4 import javax . xml . trans form . Source ;
5 import javax . xml . trans form . stream . StreamSource ;
6 import javax . xml . v a l i d a t i o n . ∗ ;
7 import net . java . t r ea ty . ∗ ;
8 public class XMLVocabulary implements ContractVocabulary {
9 . . .

10 public void check ( Re la t ionsh ipCond i t i on cond i t i on )
11 throws Ver i f i c a t i onExcep t i on {
12 St r ing r e l = cond i t i on . g e tRe l a t i on sh ip ( ) . t oS t r i ng ( ) ;
13 i f ( ” http ://www. t r ea ty . org /xml#i n s t a n t i a t e s ” . equa l s ( r e l ) ) {
14 try {
15 URL schemaURL = (URL) cond i t i on . getResource2 ( ) . getValue ( ) ;
16 URL instanceURL = (URL) cond i t i on . getResource1 ( ) . getValue ( ) ;
17 SchemaFactory f a c t o ry =
18 SchemaFactory . newInstance (XMLConstants .W3C XML SCHEMA NS URI) ;
19 Schema schema = fa c t o ry . newSchema(schemaURL ) ;
20 Va l idator v a l i d a t o r = schema . newValidator ( ) ;
21 InputStream in = instanceURL . openStream ( ) ;
22 Source source = new StreamSource ( in ) ;
23 va l i d a t o r . v a l i d a t e ( source ) ;
24 in . c l o s e ( ) ;
25 } catch ( Exception x ) {
26 throw new Ver i f i c a t i onExcep t i on ( ” va l i d a t i o n f a i l e d ” , x ) ;
27 }
28 }
29 else
30 throw new Ver i f i c a t i onExcep t i on ( ” p r ed i c a t e not supported ” ) ;
31 }
32 . . .
33 }

Figure 3: Class providing the semantics for relationhips contributed by the XML
vocabulary (simplified)
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <cont rac t>
3 <consumer>
4 <r e s ou r c e id=”VocabularyDef ”>
5 <type>ht tp : //www. t r ea ty . org / java#AbstractType</ type>
6 <name>net . java . t r ea ty . ContractVocabulary</name>
7 </ r e sou r c e>
8 </consumer>
9 <s upp l i e r>

10 <r e s ou r c e id=”ContributedVocabulary ”>
11 <type>ht tp : //www. t r ea ty . org / java#In s t an t i a b l eC l a s s</ type>
12 <r e f>/ vocabulary /@class</ r e f>
13 </ r e sou r c e>
14 <r e s ou r c e id=”Ontology”>
15 <type>ht tp : //www. t r ea ty . org /owl#Ontology</ type>
16 <r e f>/ vocabulary /@ontology</ r e f>
17 </ r e sou r c e>
18 </ supp l i e r>
19 <c on s t r a i n t s>
20 <and>
21 <r e l a t i o n s h i p
22 r e sourc e1=”ContributedVocabulary ” r e sourc e2=”VocabularyDef ”
23 type=” ht tp : //www. t r ea ty . org / java#implements ”/>
24 <mustExist r e s ou r c e=”Ontology”/>
25 </and>
26 </ c on s t r a i n t s>
27 </ cont rac t>

Figure 4: Contract for vocabulary extensions
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Figure 5: Merged contract vocabulary used in the example program

checking contributed properties and relationships. The ontology can be accessed
as unparsed stream or as instance of org.semanticweb.owl.model.OWLOntology

[BVL03].

5 UNIT TESTING AT RUNTIME

The example contract (figure 1) uses the verifies property to express minimum
requirements with respect to functionality and performance for classes implementing
the DateFormatter interface. This relationship is based on JUnit, that is, the test
resources are JUnit 4 test cases, and the semantics of the relationship is defined by
means of a JUnit test runner. JUnit test cases are defined in the same component
that defines the date formatter interface. These tests check whether date formatter
implementations can convert dates in less than 10ms, and whether the generated
strings contain at least tokens representing date, month and year.

Unit testing is particularly useful here as it stands in the tradition of design
by contract - describing the semantics of methods through a description of the
state changing effects of the methods expressed by pre- and post conditions. The
main weakness of unit testing when compared to other verification methods is that
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verification is based on selected specimen objects. Tests are not sufficient to prove
or ensure correctness, they can only be used to approximate it. The main advantage
of unit tests is that they are widely acceptance by programmers. Also, it is easy to
assess the degree of approximation (coverage metrics), and there are well-established
development processes to improve test cases when it is necessary to improve the
approximation.

Unfortunately, JUnit has been built for design and build time verification. As
a consequence of this it is assumed that the classes to be tested are known when
the test cases are written and can be directly referenced by test cases. On the
other hand, our approach supports late binding at composition time, that is, test
cases can only reference abstract types and the actual objects have to be injected
if the respective classes become available at runtime. Therefore, JUnit needs to
be modified to fit into Treaty. More precisely, support for dependency injection
mechanism must be added to JUnit. This is achieved by designing test cases that
have constructors with parameters that can be used to inject the tested objects
before the test case life cycle starts, and a special test runner that can instantiate
test cases using this constructor. Such a test runner is part of the Treaty component
that makes the JUnit vocabulary contributions.

6 THE BIGGER PICTURE - ADDING CONTRACTS TO COMPO-
NENT MODELS

Treaty is implemented in Java and provides support for contract definition and
verification for the Java-based Eclipse component model. However, Treaty is largely
independent of the underlying component model and could also be used to describe
contracts in other component models even if they are not Java-based. In this respect,
Treaty is more similar to a scripting language such as JavaScript or a composition
language as proposed in [LSNA97]. Treaty itself can be seen as a combination of
three separate subsystems:

1. The Contract Definition Language (CDL), a formal language used to define
contracts in a platform-independent manner. In this paper we have proposed
to use XML (constraint by the treaty.xsd schema) for this purpose, a possible
alternative is the use of a general-purpose rule language such as SWRL.

2. The Contract Execution Environment (CEE), a system that reads contracts
defined in the CDL and can instantiate and verify the contracts against com-
ponents of a host component model. The CEE proposed here is implemented
in Java and consists of two parts - an abstract contract framework and an im-
plementation of the abstract concepts in the framework for the OSGi/Eclipse
component model.

3. The Contract Vocabulary (CV), an ontology that defines the types and prop-
erties that are used in contracts.
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Figure 6 shows the subsystems, their internal relationships and the relationships
to the host component model (CM). In particular, the CEE must reference the CM to
instantiate resource references using the reflective features of the CM (such as access
to meta-data). It also uses the CM to load resources needed to verify constraints.
Finally, the CEE provides the semantics for the (data and object) properties used
in the vocabulary. The CEE has access to the merged ontology (see figure 5) and
can use it for ontology reasoning.

Figure 6: Contract languages and component models

Our Eclipse-based implementation adds two more relationships: both the CV
and the CEE take advantage of the CM to define both the vocabulary and the parts
of the CEE providing the semantics for the vocabulary in a modular fashion. In
figure 6, these relationships are represented by dashed lines.

7 DISCUSSION

We have presented Treaty, a component framework that supports the easy defini-
tion of complex and polymorphic contracts. Our main contribution is the contract
language, and the modular design of the contract vocabulary. We believe that using
such a language adds value to environments that use late binding, such as ubiqui-
tous or mobile computing applications where new components are discovered and
integrated at runtime. The types of requirements that need to be expressed in en-
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vironments like this are somehow unpredictable. We therefore think that using any
fixed contract language is not appropriate. Instead, what is needed in an extensible
contract language based on a platform-independent description of resource types
and their relationships. This allows components to plugin vocabulary extensions
that can then be used by verification tools.

There are several related proposals to integrate explicit contracts into compo-
nent models. Palladio[BKR07] is a performance prediction model. It’s main goal
is quality of service predictions of architectures based on design models. During
the early design stages components are conceived and contracts are defined between
components that determine how they perform. These contracts are defined at dif-
ferent stages of the development cycle from different domains such as a component
developer and system architect. These contracts are domain specific and provide the
basis when testing the overall system performance. Palladio contracts are restricted
to layer 1 and 4 contract types. SOFA[PBJ98] is a hierarchical component model
designed to provide a platform for software components, coupled with DCUP it
supports dynamic evolution of components. SOFA version 2.0[BHP06] is the most
recent version and adds additional support for contracts. The component model
initially supported interface contracts, behaviour contracts with validation during
development, and deployment contracts through connectors. Sofa 2.0 has added
the formal modelling of non-functional aspects and greater behaviour validation
[Kof07]. The Fractal component model [BCL+06], like SOFA, is a hierarchical com-
ponent model which mainly focuses on dynamic reconfiguration of complex software
systems. Dynamic reconfiguration is achieved through introspection, the discovery
of the internal application structure, and intercession. This reconfiguration to be
safe verification of the component systems consistency is needed, for this problem a
contracting system was developed, ConFract [CRCR05]. This system supports the
annotation of interfaces with pre- and post-conditions, and the checking of these
conditions at runtime.

Treaty is still rather simple as simplicity was one of the major design goals.
One reason for Treaty’s simplicity is the fact that much of the work is delegated
to the vocabulary contributions. However, in many cases it is rather easy to write
these contributions, and the level of reuse for vocabulary elements would be much
higher than the level of reuse of the actual application components. The main
advantage is that such an open framework supports a consistent representation of
different contract types by using a common meta-model (OWL). To the best of our
knowledge, no existing (academic or industrial) component models or architectural
description language achieves this.

In the prototype we have presented, verification is used as a central service
that checks the integrity of the entire system. It might be more useful in many
circumstances to check only contracts between certain components, for instance in
response to lifecycle events such as component activation or upgrade. As verification
also needs resources such as classes that must be loaded and instances that must be
created, mechanisms to switch it on and off or contract prioritising (runtime levels)

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 145



COMPONENTS, CONTRACTS AND VOCABULARIES - MAKING DYNAMIC COMPONENT ASSEMBLIES MORE
PREDICTABLE

might be useful. Integrating verification closer with the component lifecycle also
creates new challenges. In the Eclipse based implementation, verification triggers
class loading. This of course is unwanted in a framework like Eclipse that is based on
lazy initialisation. There are several possible strategies to deal with with problem,
including reseting the plugins after verification, or running verification only if the
system is in check or safe mode.

An interesting issue is whether contracts should be attached to components con-
suming resources (as we have done this), to components providing resources or
should be detached from either (“contracts as entities in the middle”, as proposed
in [Szy00]. On the framework level, Treaty does support contracts on both sides
and in the middle, and the aggregation of multiple contracts. The proof of concept
implementation based on Eclipse however only support contracts on the consumer
side at the moment.

An obvious limitation of Treaty is that verification is strict. That is, verifica-
tion either succeeds or fails. Sometimes it would be more desirable to have soft
verification that computes a value indicating to what extent a component assembly
satisfies the contract. We believe that is would be possible to add support for soft
verification to Treaty by annotating the contract conditions with ratings, and to use
Zadeh operators [Zad65] to compute ratings for complex constraints.
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