
Vol. 8, No. 7, November–December 2009

A Meta-Model for Textual Use Case Descrip-
tion

Stéphane S. Somé, School of Information Technology and Engineering,
University of Ottawa, Canada

A Use Case is a specification of interactions involving a system and external actors of
that system. The capability for use case modeling has been integrated to the Unified
Modeling Language (UML) since its inception. However, use cases are only defined
at an abstract level, as the UML Specification does not discuss use case description in
text form. In this paper, we propose an abstract syntax for textual use case description
as a meta-model extension of the UML Specification. This meta-model is based on
elements commonly found in use case templates. The meta-model also includes OCL
constraints for ensuring consistency with the UML specification.

1 INTRODUCTION

The Unified Modeling Language (UML) defines a use case as “the specification of a
sequence of actions, including variants that a system (or a subsystem) can perform,
interacting with actors of the system” [12]. Use cases are used to drive the develop-
ment process from the early stages of business modeling to acceptance testing [7].
The UML defines use cases at an abstract level by only providing an external view of
use cases. The UML meta-model specifies the types of relations that a use case may
have with other use cases or actors in the environment. However, the definition of
how a use case concrete behavior (the use case sequence of actions) is specified is left
open. The UML Specification suggests the concrete behavior corresponding to a use
case, to be separately specified using various behavior description approaches such
as interactions, activities, state machines, pre/post-conditions or natural language
text.

The practical usage of use cases as advocated by software development metho-
dologies such as the Unified Process [7] start with use cases description as natural
language text. This form of behavior description is seen as better suited at the early
stages of software development when business and user requirements are captured.
One reason is that natural language is more accessible to stake-holders and therefore,
allows straightforward validation. Other description formalisms are typically used
at later development stages to refine and detail textual use cases.

Unlike formalisms such as interactions, activities and state machines, the UML
does not formally specify a meta-model for a natural language notation of use cases.
Different templates for use case description that can be considered as fulfilling this
role exist [8] [2] [3] [6] [7] [1]. These templates provide guidelines for structuring

Cite this document as follows: Stéphane S. Somé: A Meta-Model for Textual Use Case De-
scription, in Journal of Object Technology, vol. 8, no. 7, November–December 2009, pages
87–106,
http://www.jot.fm/issue/issues 2009 06/article3/

http://www.jot.fm/issue/issues_2009_06/article3/


A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

use case description. However, there is no formal connection to the UML meta-
model that would ensure that the described use cases satisfy constraints specified in
the UML Specification. For instance, a UML use case diagram shows relationships
between use cases and the actors that participate in that use case. In order to remain
consistent, a textual description formalism should therefore be able to enforce that
actors referred within the use case description text must be among the actors related
to the use case in the use case model. This type of consistency rule can be defined
as part of a meta-model.

In this paper, we present a meta-model for textual use case description. The
elements of the meta-model are based on an examination of use case templates such
as [8], [2], [3], [6] and [7]. We also specify constraints using the Object Constraint
Language (OCL) [11], aimed at aligning use case description with the UML Speci-
fication. The meta-model thus allows the definition and enforcement of consistency
constraints defined in the UML Specification on textual use cases description. Other
benefits provided by a meta-model include the potential for automated support for
use case edition and generation of other behavior models such as activity diagram
or statecharts, from use cases.

The remainder of the paper is organized as follow. We identify elements needed
for use case description in the next section. This is based on a review of some
commonly used use case description templates. In section 3, we introduce our
meta-model along with OCL constraints for use case consistency. We also out-
line a concrete natural language syntax and informal semantics. Section 4 presents
two implementations aimed at validating the meta-model. Some related works are
discussed in section 5 and finally, section 6 concludes the paper.

2 ELEMENTS OF TEXTUAL USE CASE DESCRIPTION

Several templates have been proposed for textual use case description. Most of these
are organization specific. Examples of published templates include [8], [2], [3], [6],
[7] and [1]. Tables 1 and 2 describe the elements of two prevalent templates; the
Rational Unified Process use case template[7] and Cockburn’s use case template [2].

As can been seen from Tables 1 and 2, there are lots of variation regarding the
elements of a use case description. In spite of the variations, two main parts can
be distinguished in all reviewed templates: a static part and a dynamic part. The
static part includes elements pertaining to the system’s state (preconditions and
postconditions) as well as other descriptive traits (e.g. actors, description, priority,
...). The dynamic part captures the use case behavior. It consists in a trigger, a
main sequence of steps and none or several alternatives to steps.

The flow of execution of steps within a sequence of steps is governed by different
types of control flow structures. The following are the most common control flow
structures found in use case templates.

• Sequence: when steps un-conditionally follow each other. This type of flow is

88 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

Element Description
Name The name of the use case.
Brief Description A brief description of the role and purpose of the use

case.
Flow of Events A textual description of what the system does in regard

to the use case (not how specific problems are solved by
the system). The description is understandable by the
customer.

Special Requirements A textual description that collects all requirements, such
as non-functional requirements, on the use case, that are
not considered in the use-case model, but that need to
be taken care of during design or implementation.

Preconditions A textual description that defines a constraint on the
system when the use case may start.

Postconditions A textual description that defines a constraint on the
system when the use cases have terminated.

Extension points A list of locations within the flow of events of the use
case at which additional behavior can be inserted using
the extend-relationship.

Table 1: Rational Unified Process use case description template.

implicitly determined by the ordering of steps.

• Alternative: when a step execution is conditional. Alternative flow structures
are generally introduced as if like statements.

• Iteration: when a sequence of steps repeats based on a condition. Iterative
structures are generally introduced similarity to repeat/while loops in pro-
gramming languages.

• Concurrency: when different blocs of steps can execute in parallel.

The different types of steps include actions from actors or the system under consid-
eration, and directives such as use case inclusion or branching.

3 USE CASE DESCRIPTION META-MODEL

In this section, we first describe a meta-model for use case description. Then, we
briefly sketch some informal semantics, introduce a concrete natural language-based
syntax and present an example.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 89



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

Element Description
Number The use case number
Name Should be the goal as a short active verb phrase
Goal in Context Longer statement of the goal, if needed
Scope What system is being considered black-box under design
Level One of: Summary, Primary task, Subfunction
Preconditions What we expect is already the state of the world
Success End Condition The state of the world upon successful completion
Failed End Condition The state of the world if goal abandoned
Primary Actor A role name for the primary actor, or description
Trigger The action upon the system that starts the use case, may

be time event
Main Success Scenario The steps of the scenario from trigger to goal delivery,

and any cleanup after
<step #> <action description>

Extensions Extensions, each referring to the step of the main scenario
<step altered> <condition> : <action or sub.use case>

Sub-Variations Sub-variations that will cause eventual bifurcation in the
scenario
<step or variation #> <list of sub-variations>

Priority How critical to system / organization
Performance Target Amount of time this use case should take
Frequency How often it is expected to happen
Superordinate Use Case Optional name of use case that includes this one
Subordinate Use Cases Optional, depending on tools, links to sub.use cases
Channel to primary actor e.g. interactive, static files, database
Secondary Actors List of other systems needed to accomplish use case
Channel to Secondary Actors e.g. interactive, static, file, database, timeout
Open Issues Optional list of issues about this use cases awaiting deci-

sions
Due Date Date or release of deployment

Table 2: Cockburn’s template for fully dressed use cases.

90 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

Meta-model description

Our approach consists in extending the UML meta-model with elements for textual
use case description. Figure 1 shows the UML meta-model for use cases. Use cases

Figure 1: Use Case meta-model in the UML Specification

are specified at an abstract level along with actors and relationships. A use case is
a sub-class of BehavioredClassifier. As such it may own behaviors [12]-p432.

Class UseCaseDescription shown in Figure 2, captures a use case textual de-
scription. We define UseCaseDescription as a specialization of meta-class Behavior.
Therefore, instances of UseCaseDescription may be among the behaviors own by
an instance of UseCase. We allow a use case to be associated to more than one use

Figure 2: Variants of use case description

case description. In practice several textual descriptions may be maintained for a
same use case showing for instance different levels of detail. We acknowledge that

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 91



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

consistency among the different descriptions is an issue. However, this is already an
existing problem given that a BehavioredClassifier may owe several behaviors.

We distinguish two subclasses to UseCaseDescription: NormalDescription

and ExtendDescription. A NormalDescription specifies a “traditional” use case,
while an ExtendDescription is used for an extension use case. The distinction is
needed as the UML Specification mentions that an “extending use case defines a set
of modular behavior increments that augment an execution of the extended use case
under specific conditions” [12]-p589. In order to be consistent with this statement,
an ExtendDescription shall be able to be associated with a set of independent
behavior definitions whereas a NormalDescription specifies a single behavior chunk.

The distinction between normal and extend description introduces the following
constraints.

OCL1 A textual description of an included use case (a use case target of an <<include>>
relation) must be an instance of NormalDescription.

This corresponds to the following OCL statement.

context UML::UseCases::Include inv:
self.addition.description->forall(d | d.oclIsTypeOf(NormalDescription))

OCL2 A textual description of an extending use case (a use case source of an <<extend>>
relation) must be an instance of ExtendDescription.

context UML::UseCases::UseCase inv:
self.extend->size() > 0 implies

self.description->forall(d | d.oclIsTypeOf(ExtendDescription))

Figure 3 shows a description of meta-class NormalDescription. In light of our
review of use case templates summarized in section 2, a NormalDescription includes
a static part and a dynamic part. The static part includes descriptive traits. The
actors involved in a use case are denoted using traits primary actor and participants.
Since actors are specified at the use case model level, the actors referred to in the
primary actor and participants traits must correspond to actors related to the use
case.

OCL3 A use case primary actor must be among the actors related to that use case.

context UseCase inv:
self.description.oclIsTypeOf(NormalDescription) implies

self.description.oclAsType(NormalDescription).primaryActor.actor.
ownedAttribute->exists(a | a.opposite.class = self)

92 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

Figure 3: Description of meta-class NormalDescription

OCL4 All use cases secondary actors must be among the actors related to that use
case.

context UseCase inv:
self.description.oclIsTypeOf(NormalDescription) implies

self.description.oclAsType(NormalDescription).particitants->
forall(p | p.actor.ownedAttribute->

exists(a | a.opposite.class = self))

Meta-class UML::CommonBehaviors::BasicBehaviors::Behavior of which Normal-

Description is a subclass, has two associations named precondition and postcon-
dition to members of type UML::Classes::Kernel::Constraint [12]-p430. These
two associations are used for normal use cases description elements pertaining to
the system’s state. The set of preconditions describes the state in which the system
needs to be before the use case can be executed, while the set of postconditions
describes the state of the system at the successful completion of a use case. Precon-
ditions and postconditions must be specified for a normal use case. On the other
hand, since an extension use case defines behavior chunks that are typically indepen-
dent and not necessarily meaningful on their own, preconditions and postconditions
should not be specified for an extend description.

OCL5 The preconditions and postconditions of a normal description must not be
empty.

context UseCase inv:

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 93



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

self.description.oclIsTypeOf(NormalDescription)
implies

self.precondition->size() > 0 and self.postcondition->size() > 0

OCL6 The preconditions and postconditions of an extend description must be empty.

context UseCase inv:
self.description.oclIsTypeOf(ExtendDescription)
implies

self.precondition->size() = 0 and self.postcondition->size() = 0

Because of the large variability of traits used in a use case description, the remaining
description traits of a use case are captured as instances of SimpleTrait. This
allows flexibility in customizing a use case description with particular traits, at the
expense of the possibility for a more formal treatment of these traits. For instance,
elements such as Goal, Scope, or Level from Cockburn’s template in Table 2, would
correspond to simple traits with appropriate values for attributes name and value.

The dynamic part of a normal use case description includes a trigger (instance
of ActionStep) and a StepsSequence that represents the main sequence of steps.
We distinguish different types of steps as shown in Figure 4. Each step may be con-

Figure 4: Use Case steps

strained by a guard and may be the location of an extension point. An ActionStep

is a basic use case step corresponding to an action (an instance of UML::Classes::-
BasicActions::Action). An action is associated to a context ; a classifier that owes
the behavior of which the action is a part [12]-p237. In addition to action steps, a

94 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

use case may specify directives and compound steps. Directives include branching
(Branching) and use case inclusion (UseCaseInclusion). A branching is used to
redirect a sequence of execution flow, while a use case inclusion expresses the realiza-
tion of an <<include>> relation within a use case description. Compound steps are
grouping of steps according to specific control flow structures. In accordance with
our review of use case templates, we distinguish repeat blocks (RepeatBlock) for
iterative steps controlled by a constraint (repeatCondition), and concurrent blocks
(ConcurrentBlock) for blocs of steps which execute in parallel.

Alternatives may be attached to action steps as shown in Figure 5. An alternative

Figure 5: Action steps

specifies a variation in the course of execution of a use case. Alternatives typically
correspond to exceptional/error situations or other ways to achieve a use case goal.
An alternative is based on a given condition that is set according to the outcome of
the action steps to which it is attached.

Figure 6 shows the meta-model for extension use case description (ExtendDes-
cription). An extension use case specifies a set of fragments each consisting of

Figure 6: Meta-model for Extend Description

a steps sequence. Additionally, different descriptive traits may be attached to the
description.

Following are other constraints related to use case descriptions.

OCL7 A normal use case trigger must belong to the use case primary actor.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 95



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

context UseCase inv:
self.description.oclIsTypeOf(NormalDescription) implies

self.description.oclAsType(NormalDescription).trigger.action =

self.description.oclAsType(NormalDescription).
primaryActor.actor

This constraint is motivated by the fact that according to the UML specifica-
tion, a (normal) use case specifies a unit of functionality which is initiated by
an actor [12]-p594 (the primary actor).

OCL8 The extension points specified within a use case description must correspond
to extension points defined at the use case model level.

context UseCase inv:
self.allSteps()->forall(s |

s.oclIsTypeOf(ActionStep) and not s.extensionPoint.oclIsUndefined()
implies self.extensionPoint->includes(s.extensionPoint))

Query allSteps() returns all the steps of a use case by flattening steps sequences.

UseCaseDescription::allSteps():Set(Step)
if self.description.oclIsTypeOf(NormalDescription)

then
self.oclAsType(NormalDescription).mainSequence.allSteps()

else
if self.description.oclIsTypeOf(ExtendDescription)

then
self.oclAsType(ExtendDescription).parts->collect(p

| p.sequence.allSteps())->flatten()
endif

endif

StepsSequence::allSteps():Set(Step)
if steps->isEmpty()

then Set{}
else

steps->collect(s |

if s.oclIsTypeOf(ActionStep)
then
s.oclAsType(ActionStep).altSequence.allSteps()->

including(s)
else

if s.oclIsTypeOf(RepeatBlock)
then s.oclAsType(RepeatBlock).sequence.

96 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

allSteps()->including(s)
else

if s.oclIsTypeOf(ConcurrentBlock)
then
Set{}->including(s)->union(s.oclAsType(ConcurrentBlock).

sequences->collect(s | s.allSteps()))

else
Set{}->including(s)

endif
endif

endif
endif)->flatten()

endif

OCL9 An included use case referred by a use case inclusion directive within an in-
cluding use case description, and that including use case must be related by
an <<include>> relation at the use case model level.

context UseCase inv:
self.description.allSteps()->forall(s |

s.oclIsTypeOf(UseCaseInclusion) implies
self.include->includes(s.oclAsType(

UseCaseInclusion).includedUseCase))

OCL10 The number of fragments of an extension use case description should be at
least equal to the number of extension points referred in each <<extend>>
relation from that extension use case.

context UseCase inv:
self.description.oclIsTypeOf(ExtendDescription) implies

self.extend->forall(e | e.extensionLocation->size() <=

self.description.oclAsType(ExtendDescription).fragment->size())

This constraint is needed to remain consistent with the UML Specification. An
<<extend>> relation refers to “an ordered list of extension points belonging
to the extended use case, specifying where the respective behavioral fragments of
the extending use case are to be inserted. The first fragment in the extending
use case is associated with the first extension point in the list, the second
fragment with the second point, and so on” [12]-p590. The number of fragments
defined in the extending use case must therefore be at least equal to the number
of extension points referred to by the relation. Notice that the reverse is not
required as “extra” fragments would just be ignored.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 97



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

Informal Semantics

According to the UML specification, “a UseCase is a kind of behaviored classifier
that represents a declaration of an offered behavior” [12]-p594. A textual represen-
tation of a normal use case captures that behavior through a trigger followed by a
mainSequence of steps. The Actions associated to instances of ActionSteps are
the basic elements of a use case behavior. The ordering of steps within steps se-
quences determines actions sequencing. The basic flow scheme is that if step i is
followed by step i+1, then an action corresponding to step i+1 would follow the
successful completion of an action corresponding to step i. Compound steps and
directives introduce some alteration to this basic scheme.

• The last step of a RepeatBlock steps sequence is followed by the first step
when the repeatCondition holds, and is followed by the step right after the
RepeatBlock if the repeatCondition does not hold.

• The behaviors captured by the different step sequences of a ConcurrentBlock

are interleaved. Actions from a same step sequence are sequentially ordered as
usual, but actions from different sequences are not strictly ordered.

• The step following a branching directive is the target of that directive. As a
consequence, all steps after a branching directive in a same steps sequence are
unreachable.

The UML semantics for use case inclusion and extension are preserved as such.

An example of concrete syntax

We present elements of a concrete syntax corresponding to the use case description
meta-model. The interested reader is referred to [15] for a more complete descrip-
tion of this concrete syntax. We should stress that the notation discuss here is an
example. One of the motivations of the meta-model being to allow development of
customized concrete syntaxes, different conforming use case description notations
are possible.

The presentation is illustrated with a use case model for a Broker System. A
use case diagram for this system is shown in Figure 7. The goal of the Broker
System is to allow customers to find the best supplier for a given order. A customer
fills up an online order form and after submission, the system broadcasts it to
suppliers. Each supplier after examining the order may decide to decline or submit
a bid. Submitted bids are sent back to the broker to be shown to the customer, who
eventually asks the system to proceed with a bid. The elements of the use case model
in Figure 7 are instances of the UML meta-model for use cases shown in Figure 1.
For instance, the system under design Broker System, is a Classifier. All use
cases are instances of meta-class UseCase owned by Broker System. The model also

98 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

Figure 7: Broker System use case model

comprises an <<include>> relation from use case Process Bids to Handle Payment
and an <<extend>> relation from Register Customer to Submit Order. The later
relation depends on condition Customer is not registered and refers to extension
point login page loaded that belongs to use case Submit Order.

Figures 8 and 9 show the textual description of two of the Broker System use
cases. The description is based on a concrete notation defined using a restricted
form of natural language. Use case Submit Order is a normal use case which de-
scription is an instance of meta-class NormalDescription (Figure 3). The different
elements of a use case are identified by a corresponding section heading. Section
titled Description corresponds to a SimpleTrait. The value of that trait is an
unconstrained text.

We use condition sentences as concrete representation of constraints such as
preconditions, postconditions or guards. A condition sentence describes a situation
prevailing within a system and environment. It may be a simple condition sentence,
a negation of a condition sentence, or a combination of condition sentences using
conjunctions/disjunctions. A simple condition sentence adheres to the format

“name of entity” “verb” “possible value of entity”
with “verb” a conjugated form of a limited number of verbs including to be and
to have. A domain model that enumerates all the entities in the application and
their possible values is needed for parsing. A substantial part of this model is
obtained by pre-processing use cases [10]. For instance the preconditions of use case
Submit Order “The Broker System is online and the Broker System welcome page
is being displayed” is a condition sentence consisting in a conjunction of two simple
conditions. The first simple condition involves entity “Broker System”, verb “is” (a
conjugated from of “to be”) and possible value “online”.

The main sequence of a normal use case is specified in section titled STEPS. The
optional guard of a step is introduced with keywords IF ... THEN as in step 4 of use

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 99



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

Title: Submit Order

Description: This use case describes a process through which

a Customer using the Broker System, create an Order consisting

in a set of Items, and broadcast it to potential Bidders.

Primary Actor: Customer

Preconditions: The Broker System is online and the Broker System

welcome page is being displayed

Postconditions: An Order has been broadcasted

Trigger: The Customer loads the login page

STEPS
1. The Broker System asks for the Customer’s login information

2. The Customer enters her login information

3. The Broker System checks the provided login information

4. IF The Customer login information is accurate

THEN The Broker System displays an order page

5. The Customer creates a new Order

6. Repeat while the Customer has more items to add

to the Order

6.1. The Customer selects an item

6.2. The Broker System adds the selected item to the order

7. The Customer submits the Order

8. The Broker System broadcast the Order to the Suppliers

ALTERNATIVES
3a. The Customer login information is not accurate

3a1. GOTO Step 1.

7a. The Order is empty

7a1. The Broker System displays an error page

EXTENSION POINTS
STEP 1. login page loaded

Figure 8: Description of use case “Submit order” in the Online Broker System.

100 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



3 USE CASE DESCRIPTION META-MODEL

Title: Register Customer

Description: This use case describes additional behavior

triggered when registration is needed for a new Customer.

FRAGMENT 1.
1.1. Customer selects registration operation

1.2. Broker System asks for Customer name, date of birth and address

1.3. Customer enters registration information

1.4. Broker System validates Customer information

1.5. Broker System generate login information for Customer

ALTERNATIVES
1.4.a. Customer registration information is not valid

1.4.a.1. Broker System displays registration failure page

Figure 9: Extension use case “Register Customer”.

case Submit Order.

The trigger and all steps except step 6 in use case Submit Order are action steps
instances of meta-class ActionStep. An action step denotes the execution of an
operation triggered by an actor in the environment of the system, or the execution
of an operation initiated by system in reaction to an actor’s action. For instance,
the trigger of use case Submit Order is an action step denoting the execution of an
operation triggered by actor Customer (the context of the action). On the other
hand, step 1 corresponds to an action executed in the context of the Broker System
in reaction to the use case trigger. Our concrete syntax [15] for action steps is
based on the declaration of operations in the domain model according to the format
“action verb [action object]”1. Where the action verb is a verb in infinitive and the
action object refers to an entity. As an example, “load login page” is an operation
name where the action verb is “load” and the action object is “login page”. Given
this naming convention, an action step has the following form:

“name of concept” “action specification” [“preposition” “action participant”]

The “action specification” has the form

“conjugated action verb” [“action object”]

The “conjugated action verb” is the “action verb” used in the concept operation dec-
laration in the present tense.

The alternatives to actions steps are detailed in the section titled ALTERNA-
TIVES. In use case Submit Order, only steps 3 and 7 have associated alternatives.
Each of the alternatives includes a condition (e.g. “The Customer login information
is not accurate”) and a sequence of steps. Action steps may also be associated to

1Elements between “[]” are optional.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 101



A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

extension points. For instance, step 1 is associated to an extension point labeled
“login page loaded”. The label is used for matching in <<extend>> relations in
accordance with constraint OCL8.

Step 6 of use case Submit Order is a repeat block instance of meta-class Repeat-
Block. We introduce repeat blocks with keywords Repeat while followed by the repeat
condition. The iterated step sequence consists in steps 6.1 and 6.2. A concurrent
block is introduced with keywords In Parallel as follow.

X. In Parallel
X.1.1. ...

X.1.2. ...

...

AND
X.2.1. ...

X.2.2. ...

...

AND
...

Directives are similarly introduced using keywords. For instance, step 3a1. is a
branching directive representing an instance of meta-class Branching specified with
keyword GOTO. The target of that branching directive is step 1. A use case in-
clusion directive is specified using keyword include in accordance to format “include
use case name”.

Figure 9 shows an extension use case. This use case includes a simple trait
titled Description and a single fragment (instance of meta-class Fragment). The
fragment specifies a step sequence intended to extend the behavior of extended use
cases according to <<extend>> relations.

4 IMPLEMENTATION

The meta-model described in this paper has been used as basis for two use case
modeling tools. The first tool is an Eclipse plugin developed using the Eclipse Mod-
eling Framework (EMF)2 and the Eclipse Model Development Tools (MDT)3. EMF
automates the generation of editors from models while the MDT includes a reusable
EMF-based implementation of the UML meta-model as well as an implementation
of the OCL for EMF models. The resulting tool is a very basic use case editor
with limited usability. However, this implementation allowed us to connect our
meta-model to the UML meta-model and validate the OCL constraints.

The Use Case Editor (UCEd) is a more elaborate use case modeling tool based

2http://www.eclipse.org/modeling/emf/
3http://www.eclipse.org/modeling/mdt/?project=uml2

102 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/mdt/?project=uml2


5 RELATED WORK

on the meta-model4. UCEd provides use case modeling and editing facilities as
well UML StateChart [12] generation and use case simulation. Figure 10 shows
a view of UCEd use case editing tool. UCEd accepts use cases in the concrete

Figure 10: Use Case edition in UCEd

syntax outlined in this paper, parses them and generates a StateChart equivalent
of the modeled behavior. The use cases are parsed using a domain model and the
generated StateChart can be used as prototypes to animate and validate the use
cases.

5 RELATED WORK

Meta-models for textual use case description have been proposed in various works.
In [5], an approach for the generation of UML Activity diagrams [12] from textual
use cases is presented. The generation is formulated as a set of transformation
rules defined at use cases and activity diagrams meta-model levels. Attributes of
a use case (referred as an instance of a meta-class called FunctionalRequirement)
include elements such as preconditions, postconditions, description in addition to a
main sequence of actors’ actions. Each action may be associated to exceptional steps.
A significant distinction between our meta-model and the one in [5], lies in the fact
that our meta-model is formally defined as an extension to the UML specification.
We provide a connection between use case description and UML use case models by
introducing a set of constraints that serve to ensure consistency between use case
descriptions and use case models. The degree of expressiveness offered can be seen as

4http://www.site.uottawa.ca/ ssome/Use Case Editor UCEd.html

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 103

http://www.site.uottawa.ca/~ssome/Use_Case_Editor_UCEd.html


A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

another difference as our meta-model introduces control flow structures (iteration,
concurrency) and allows the definition of variable custom traits.

A use case meta-model is introduced in [4] as part of an XML-based approach for
requirements verification. The meta-model distinguishes the following as attributes
of a use case: triggering event, precondition, postcondition and frequency. A use
case also includes a sequence of steps. Each step refers to an action, a set of excep-
tions and an optional condition. The meta-model distinguishes actor’s actions, the
system’s actions and use case actions such as use case inclusion. The differences
between [4] and our work are similar to those with [5]; lack of connection to the
UML Specification, limitation to expressiveness.

An approach for refactoring use case models based on a use case meta-model
is discussed in [14]. The meta-model distinguishes three levels: an environmental
level where the concept of use cases is defined and related to external elements such
as actors, goals and users ; a structure level that defines the internal structure of
use cases in terms of preconditions, postconditions, scenarios and episodes ; and an
event level where the different types of events (stimuli, responses, internal actions)
making up an episode are distinguished. It is not clear from [14] if the proposed
meta-model is intended for textual use cases. Beside that, the meta-model in [14] is
not related to the UML Specification and is limited in term of expressiveness.

In [18], a use case meta-model consistent with version 1.3 of the UML Specifica-
tion is presented. This work does not specifically deals with textual use cases, but
rather provides a more formal treatment of use case meta-model than the one in the
UML Specification, with the improvement of the testability of use case models as
objective. The Object Constraint Language is used to specify well-formedness rules
on the meta-model.

Another work on use case meta-modeling is discussed in [9]. This work presents a
requirements description meta-model that integrates the UML activity graph meta-
model and the UML use case meta-model. Activity graphs are used for use cases
description. The meta-model thus formally connects use case descriptions to use
case models, which constitutes a similarity between our work and [9].

6 CONCLUSIONS

According to [17], the lack of well defined semantics is one of the limitations to a
wider adoption of use cases in industry. In this paper, we presented a meta-model
for textual use case description that could serve as a definition of static semantics.
Our meta-model is defined as an extension to the UML Specification. Although
textual use case description is not discussed in the current version of the UML, the
ubiquity of that formalism for use case description contributes to the significance of
our work. The constraints associated to the meta-model would allow ensuring the
consistency between textual use cases and use case models.

104 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7



6 CONCLUSIONS

We only provided an informal overview of dynamic semantics here. A more
formal treatment of the dynamic semantics of textual use cases based on Petri nets
[13], is discussed in [16]. We also outlined a concrete natural language-based use case
description syntax built on top of the meta-model. In our future work, we intend to
further extend our notation in order to improve use case authoring flexibility.

REFERENCES

[1] Kurt Bittner and Ian Spence. Use Case Modeling. Addison-Wesley, 2003.

[2] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2001.

[3] Derek Coleman. A Use Case Template: Draft for discussion. Fusion Newletter,
http://www.bredemeyer.com/pdf files/use case.pdf, April 1998.

[4] Amador Durán, Antonio Ruiz-Cortés, Rafael Corchuelo, and Miguel Toro. Sup-
porting requirements verification using xslt. IEEE International Conference on
Requirements Engineering, 0:165, 2002.

[5] Javier J. Gutiérrez, Clémentine Nebut, Maŕıa J. Escalona, Manuel Mej́ıas, and
Isabel M. Ramos. Visualization of use cases through automatically generated
activity diagrams. In MoDELS ’08: Proceedings of the 11th international con-
ference on Model Driven Engineering Languages and Systems, pages 83–96,
Berlin, Heidelberg, 2008. Springer-Verlag.

[6] ITU-T. Management interface specification methodology. International
Telecommunication Union, Recommendation M.3020, July 2007.

[7] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1998.

[8] Ruth Malan and Dana Bredemeyer. Functional Requirements and Use Cases.
http://www.bredemeyer.com/pdf files/functreq.pdf, June 1999.

[9] Takako Nakatani, Tetsuya Urai, Sou Ohmura, and Tetsuo Tamai. A require-
ments description metamodel for use cases. In APSEC ’01: Proceedings of the
Eighth Asia-Pacific on Software Engineering Conference, page 251, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[10] S. Nayanamana and S. Somé. Generating a Domain Model from a Use Case
Model. In 14th International Conference on Intelligent and Adaptive Systems
and Software Engineering (IASSE-2005), july 2005.

[11] OMG. Object Constraint Language Version 2.0. http://www.omg.org, May
2006.

[12] OMG. UML Superstructure Specification, v2.1.2. http://www.omg.org,
November 2007.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 105

http://www.bredemeyer.com/pdf_files/use_case.pdf
http://www.bredemeyer.com/pdf_files/functreq.pdf, June 1999
http://www.omg.org
http://www.omg.org


A META-MODEL FOR TEXTUAL USE CASE DESCRIPTION

[13] Carl A. Petri. Communication with Automata. PhD thesis, Technische Univer-
sitat Darmstadt, 1962.

[14] Kexing Rui and Greg Butler. Refactoring Use Case Models: The Metamodel.
In Proceedings of the 25 th Australasian Computer Society Conference (ACSC
2003, pages 301–308, 2003.

[15] S. Somé. Supporting Use Cases based Requirements Engineering. Information
and Software Technology, 48(1):43–58, 2006.

[16] S. Somé. Petri Nets Based Formalization of Textual Use Cases.
Technical Report TR-2007-11, SITE, University of Ottawa, 2007.
http://www.site.uottawa.ca/eng/school/publications/techrep/2007/TR-
2007-11.pdf.

[17] Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar. Toward
Engineered, Useful Use Cases. Journal of Object Technology, 4(6):45–57, August
2005.

[18] Clay E. Williams. Towards a test-ready meta-model for use cases. In Andy
Evans, Robert B. France, Ana M. D. Moreira, and Bernhard Rumpe, editors,
pUML, volume 7 of LNI, pages 270–287. GI, 2001.

ABOUT THE AUTHORS

Stéphane S. Somé is an assistant professor at the School of In-
formation Technology and Engineering (SITE), University of Ot-
tawa, Canada. Dr. Somé obtained his Ph.D. from the University of
Montréal in Canada. He currently teaches various courses related
to software engineering. His research interests include requirements
modeling, software validation, Web engineering and program com-
prehension. He can be reached at ssome@site.uottawa.ca.

106 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

http://www.site.uottawa.ca/eng/school/publications/techrep/2007/TR-2007-11.pdf
http://www.site.uottawa.ca/eng/school/publications/techrep/2007/TR-2007-11.pdf
mailto:ssome@site.uottawa.ca

