
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 6, September-October 2009

John D. McGregor: “Ecosystems”, in Journal of Object Technology, vol. 8, no. 6, September-
October 2009, pp. 7-16 http://www.jot.fm/issues/issue_2009_09/column1/

Ecosystems
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Software development of almost any industrial strength product involves the
collaboration of numerous people, alliances among companies, and dependencies
among pieces of code. A successful product spawns other opportunities such as books,
videos, and consulting. These interactions form an ecosystem in which changes to one
entity can affect many others. In this issue of Strategic Software Engineering I want to
explore how we can manage relationships in software development.

1 INTRODUCTION

One of my favorite places on earth is the Blue Ridge Parkway, a unit of the United States
national park system. The parkway runs from Virginia’s Shenandoah National Park down
to the Great Smoky Mountain National Park. It is a 400 plus mile highway that runs
through the Blue Ridge mountains. No commercial vehicles are allowed on the road and
it has a 45 mile per hour top speed. It is peaceful and there are many places where all you
can see is miles of forest.

Increasingly though what you can see from the parkway is the encroachment of
industry and housing into the forest. Except for signs on trees and a few boundary
markers you can’t tell where the parkway ends and the surrounding country side begins.
Events, like acid rain, that affect the surrounding areas affect the parkway. Streams that
originate in the high altitudes of the parkway flow into civilization seamlessly. Around
cities there is more traffic on the parkway as commuters use it as a shortcut to avoid
traffic jams.

An ecosystem is a set of organisms and their interactions with the physical world. An
ecosystem is often thought of as being complete in the sense that it includes everything
for the organisms to survive and perhaps thrive. This can be a rather large number of
organisms and an even larger number of relationships among the organisms. The parkway
is an ecosystem in which the availability and quality of resources such as water and air
affect the animals, birds, and insects.

When one constituent of the ecosystem weakens the rest of the ecosystem adjusts.
Right now a particular insect, the woolly adelgid, is destroying hemlock trees along the
parkway. The insect began in the Shenandoah Park and then spread down the parkway.

ECOSYSTEMS

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

By May of 2009 it had reached the other end of the parkway. With these trees
disappearing, areas that were once in shade most of the time now receive direct sunlight.
That may cause certain plants to die but others, which previously could not survive there,
will take their place and thrive in the sunshine.

Using this phenomenon as a metaphor for software organizations is not original with
me[Messerschmitt 03][Miller 06]. I think it provides a way of thinking about the
interactions of organizations, teams, and individuals that is useful. Consider the example
of the ecosystem encompassing an operating system[Microsoft 09]. No one would use an
operating system for which there are no applications and, conversely, no one would
produce an application without understanding the operating systems with which it should
be compatible and without understanding the market for applications that use the
operating system. This symbiotic relationship extends to many areas. An excellent book
about how to program in a new language or paradigm will encourage programmers to try
it.

Software development takes place in an ecosystem of organizations that are related in
many different ways. Seldom can a development manager make any significant decision
without impacting other members of the ecosystem. Development managers need a
framework in which they can understand the relationships among the elements of the
ecosystem. Some activities such as testing need continuity across team and contractual
boundaries and managers must be able to trace these activities across these boundaries. I
will describe a technique that will allow managers to get their hands around at least some
portion of relevant ecosystems.

I avoid chasing the latest fads and concentrate on what adds value. I believe analyzing
the relationships among entities that impact your organization as an “ecosystem” is a
useful exercise that will give you a perspective that you are not likely to discover
otherwise.

• Understanding the organization’s position in the ecosystem is directly relevant to
managing the technical risks surrounding the product line. An obvious example is
the need to manage interfaces to suppliers who will supply essential components.
Their failure to deliver on time and to quality will ripple through the supply chain
in the ecosystem.

• Forecasting technical changes and analyzing markets are both more accurately
done if only the extent of the ecosystem need be considered. Defining the entities
in the ecosystem reveals trends and future directions that are essential inputs into
strategic decisions. The amplifying effect of the ecosystem can be accounted for
when making these forecasts.

• Analyzing the ecosystem gives the manager the opportunity to gain additional
understanding of the domain by providing context for reflection. Examining
relationships, whatever the reason, usually results in a deeper understanding of the
entities that are related.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 9

In this issue of Strategic Software Engineering I will discuss several aspects of strategic
decision making in an ecosystem of development organizations. I will illustrate how
using this perspective adds value to the manager’s portfolio.

2 AN EXAMPLE

One type of software development ecosystem concerns the entities centered around an
open source development community. Open standards activities often serve as the pebble
in the oyster that stimulates the growth of an ecosystem;however, I will use a different
open source example, my favorite - Eclipse [Eclipse 09], to illustrate several technical
and business/managerial issues.

The Eclipse “project” started in 2001 as an open source project with a major
contribution of code from IBM. A consortium of software vendors gathered to support
the project and in 2004 the Eclipse Foundation was formed and houses numerous
projects. Among the tasks of the professional staff of the foundation is ecosystem
development. By promoting the Eclipse tools and projects, the staff encourages the
development of an ecosystem around the foundation. The people who contribute to
Eclipse have the opportunity to make money through writing books, giving tutorials, and
many other activities.

My university and many other organizations are members of Eclipse. Membership
does not provide special access but it does provide visibility and association with a highly
regarded organization. Joining the ecosystem either directly through membership or
indirectly through use of the assets connects the organization with others in the
ecosystem. Perhaps the biggest advantage of being in the ecosystem is influence on, and
knowledge of, future directions that might benefit your organization. This knowledge can
lower risk by allowing managers to identify assets that may be useful in developing
products or marketing campaigns.

The Eclipse ecosystem includes many groups with varying intensities of association
to the Foundation. The Eclipse Foundation has a Board of Directors and Requirements
and Architecture boards that oversee new and existing projects. The companies that
provide members for these boards are tightly tied to the Foundation and have interactions
with many of the projects and indirectly with many other companies. Companies that
contribute to one or more projects have a more limited interaction but still do interact
with other companies. The external companies that free ride still have interactions by
posting feature requests and reporting bugs.

The ecosystem of Eclipse is extensive and continues to expand. A website,
www.eclipseplugincentral.com, lists available plug-ins, some of which are commercial
and some of which are open source. In addition,

• There continue to be new projects initiated within the Eclipse foundation.
• Other open source projects, such as TopCased [Topcased 09], build on top of the

Eclipse platform.

ECOSYSTEMS

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

• Other organizations provide services, such as training and consulting. EclipseCon
is one of several events within the ecosystem.

The architecture of the Eclipse platform is explicitly extensible, which has allowed many
companies to benefit by defining plug-in tools that take advantage of the platform
capabilities. Whether the organization contributes to Eclipse or free-rides, they join the
community in relying on the reputation of Eclipse to add value to their product. They
become dependent on the periodic upgrades made to the platform to enable new
capabilities and to fix any defects.

To orchestrate the interactions among members of the ecosystem the basic platform
team has established a regular rhythm of major releases. This has allowed other
organizations outside the foundation but within the ecosystem to establish their own
rhythm. An organization such as Topcased plans an annual release a certain number of
weeks after Eclipse is due to make its release. The rhythms of the constituents of the
ecosystem must be compatible for maximum health of the ecosystem.

A healthy ecosystem builds momentum for all of the constituents of that ecosystem.
The activities of one segment contribute to growth in other segments. Of course,
disruptive activities in one segment can be amplified throughout the ecosystem. Growth,
even due to success, can be disruptive and eventually can lead to shrinkage or to the
ecosystem splitting. When Eclipse makes its annual release there is a period afterward
where some plug-ins from external companies may experience problems, even though
release candidates are available well in advance of the release date.

One responder to a blog posting recently claimed that “ecosystem implies survival of
the fitest” and that contradicts how humans work. I disagree. An ecosystem is a
sufficiently complex entity that any action taken to block the demise of a constituent may
have unexpected consequences. Some projects in an open source organization thrive and
attract committers while others languish from lack of contributions. It is survival of the
one most in synch with the rest of the ecosystem.

3 METHOD FOR MODELING INTERACTIONS

To investigate the workings of an ecosystem we need to identify the organizations that
are significant to the specific analysis and the interactions among these groups.
[Brinkkemper 07] provides one technique termed a Software Supply Network. I will use
the concept of a transaction defined by Baldwin [Baldwin 07] as the unit of interaction
for this analysis. While Baldwin used this technique to examine the boundaries between
organizations, I will use the analysis of transactions to study the dependencies among
organizations and to consider the impact of existing boundaries between teams in the
ecosystem. I believe this technique has a bit more power than Brinkkemper’s approach.
In this section I will briefly describe this approach before applying it in the next section.

According to Baldwin, two types of activities are of interest in evaluating the
boundaries between organizational units. One is termed a “transaction.” A transaction is a
flow across boundaries between groups and incurs costs because the flow crosses a

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 11

boundary, e.g. the preparation of contracts or additional documentation. The second type
of activity is a “transfer,” which is a flow within boundaries that incurs only incidental
costs, such as the time required for a meeting. A transaction-free zone is where all
exchanges are transfers, i.e., have only incidental costs. Baldwin states that transactions
happen across the boundaries of organizations while an organization or team is a
transaction-free zone.

Software development organizations have many boundaries because they work with
many different units. For example, a development team is within a larger development
organization. That organization is within a business unit and will at the least develop
software for other organizations within the same business unit. In some cases a
development organization cuts across multiple business units.

These multiple boundaries come with almost as many different types of relationships,
which will affect exactly what types of transactions exist. In Table 1 I provide a list of
some of the transaction types that I have identfied so far but it is by no means a complete
list.

Table 1 – Some transaction types

Transaction type Specific types Complexity Transaction costs
Business case Complexity increases

with broader scope and
additional stakeholders

Function of the
management distance
among the teams in
the product line

Concept of operations Complexity increases
with additional
organizational
boundaries within the
scope

The CONOPS is
likely to be more
formal as the
organizational
relationships become
more complex.

Supplier management Complexity increases
with the complexity of
the relationships

Preparation of
statements of work or
product specifications
and acceptance test

Organizational
communication

Partner management Complexity increases
with the complexity of
the relationships

Negotiation of costs;
preparation of
contracts; cost of
additional layer of
separation

Binary distribution Varying degrees of
complexity among
components; more
complex as more
variability supported

Documentation cost
Help desk cost

Release of software
components

Source code distribution Easy to become very
complex

Cost of documenting
associated
deliverables such as
build scripts

ECOSYSTEMS

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Software architecture
documentation; to a
standard such as 1471 or
less formal

Decreases as the
documentation is more
standardized.

Increases from
informal to standard
forms
Help desk cost

Formal model of
interfaces

Directly related to
complexity of the
product

After initial education
on notation, less cost
than informal models

Release of non-software
core assets (add
additional assets that are
important to the
production system.)

Production plan Varies with the number
and type of variation
mechanisms

Decreases as the
production process
becomes more
automated.

Release of product Executable plus
supporting material
including license texts,
manuals

Less than that of the
entire product line

Same as standard
product

Informal conversation
w/partner

Very simple Increases with level
of response required

Bug report Routine Increases with level
of response required

Feedback

Feature request Depends on the analysis Increases with level
of response required

Accepting the license
terms for a piece of
Externally Available
Software

The terms of the
agreement determine the
complexity; viral licenses
that spread to other
products introduce
complexity

Actual dollars in
some cases but at
least the cost of
including specific
information in each
product release

Legal agreement

Subcontractor
relationship

Depends on whether
fixed price or time and
materials; previous
relationship

Directly related to the
complexity of the
required deliverables

Each transaction has a cost that must be estimated by the modeler. The costs of a
particular concept of operations can be computed once those transaction costs are
determined. Various hypotheses can be investigated by reasoning about how the
transaction costs will change with different assignment of tasks to groups on different
sides of physical and legal boundaries.

4 BRIEF ANALYSIS

Lets do a brief analysis of the ecosystem for the Pedagogical Product Line (PPL) [SEI
09], developed by me for the SEI. I will omit parts to keep it a manageable size.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 13

Figure 1 - Product line ecosystem

The pedagogical product line organization is the central player in the ecosystem depicted
in Figure 1. The transactions and transfers include:

• Within the product line organization there is a transaction-free zone among the
core asset team and product teams. There is also a transfer (no-cost) between the
development teams and the configuration management system, which is
automated. The interaction between the core asset team and product development
teams was simple and no cost because there was only a minimal boundary
between the groups. The core asset team provided a production plan to the product
teams that reduced the costs of building a product.

• There is a transaction between the product line organization and the SEI. The
costs for this transaction were significant. They included the time required for the
SEI editors to give feedback and the time spent by the team to respond to those
changes. This process took almost as long as the time to develop the assets
originally.

• Eclipse [Eclipse 09] and the Eclipse Process Framework (EPF) [Eclipse 09b] are
tools that were used by the product line organization. The product line team
depended upon these tools and posted feature requests to those projects, one
arrow. The costs to the team is the time required to learn the tools and the time
required to establish the original automation, the other arrow.

ECOSYSTEMS

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

• The students who are learning from the PPL use Eclipse to assemble core assets
into products. The Eclipse ecosystem has produced many resources to help
students learn to use Eclipse and this makes a class much easier to teach. The
transaction of the students using the core assets is expensive. There is the cost of
developing the production plan and the attached processes in the components.
Since the PPL was deployed, a number of people have emailed with questions.
These questions must be answered by the development team but the questions
serve as the impetus to make changes to the materials.

• Finally, the Java micro-edition [Sun 09] and graphics libraries were used and the
associated cost of that transaction was learning their capabilities. The Java micro-
edition can be used in Eclipse by loading the correct jar files and setting Java
Development Tools parameters in the IDE. In some cases, using externally
available software such as this may impose licensing constraints.

Consider the ecosystem implications of one piece in this example. I used the EPF to
capture the product line processes used to create the PPL. Readers who examine the PPl
see references to the EPF, see a practical application of it and they in turn download the
EPF and begin to use it. The PPL team makes feature requests to the EPF team and these
lead to a better product (EPF) which attracts more users. EPF is an implementation of the
Software Process Engineering Meta-model (SPEM) [OMG 08]. The EPF team
participates in defining the standard and are guided in part by requests from users of EPF.
New versions of SPEM drive new versions of the EPF. As more people adopt the
standard they will use the tool.

5 TO BE CONTINUED

Most large software development organizations form some type of ecosystem that
reaches beyond the boundaries of their unit in the organization and even beyond the
limits of their corporate organization. Managers need to understand the architecture of
that ecosystem to have some idea of the impact their strategic decisions will have on the
ecosystem and the impact the evolution of the ecosytem will have on their unit. Using
transaction theory we are able to help the manager develop that understanding by
capturing the transactions among entities in the ecosystem.

A software product line organization has many of the characteristics of an ecosystem
within itself but it also participates in other larger ecosystems. In the next issue of
Strategic Software Engineering I will apply the ideas presented here to a software product
line organization and will analyze several variations. I will also consider the implications
for each of the practice areas in the SEI’s Framework for Product Line Practice [SEI
09b].

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 15

6 ACKNOWLEDGEMENT

Thanks to Dr. Lawrence G. Jones of the Software Engineering Institute for valuable
comments that allowed me to greatly improve this column.

REFERENCES

[Baldwin 07] Carliss Y. Baldwin. Modularity, Transactions, and the Boundaries of Firms:
A Synthesis. Harvard Research Report 08-013, 2007.

[Brinkkemper 07] S. Brinkkemper, I. van Soest, and S. Jansen. Modeling of product
software businesses: Investigation into industry product and channel
typologies. In proceedings of the Sixteenth International Conference on
Information Systems Development, pages 677–686. Springer-Verlag, 2007.

[Eclipse 09] Eclipse Foundation, www.eclipse.org.

[Eclipse 09b] Eclipse Foundation, Eclipse Process Framework,
http://www.eclipse.org/epf, 2009.

[Messerschmitt 03] David G. Messerschmitt, Clemens Szyperski, Charles D. Ameringer.
Software Ecosystem: Understanding an Indispensable Technology and
Industry, MIT Press 2003.

[Microsoft 09] Welcome to the Windows Ecosystem Readiness Program,
http://www.microsoft.com/whdc/Win7/default.mspx, 2009.

[Miller 06] Jeremey D. Miller. Creating a Maintainable Software Ecosystem,
http://codebetter.com/blogs/jeremy.miller/archive/2006/08/13/148258.aspx.

[OMG 08] Object Management Group, Software & Systems Process Engineering
Metamodel specification (SPEM), Version 2.0,
http://www.omg.org/spec/SPEM/2.0/ 2008.

[SEI 09] Software Engineering Institute, Pedagogical Product Line (PPL),
www.sei.cmu.edu/productlines/ppl, 2009.

[SEI 09b] Software Engineering Institute, A Framework for Software Product Line
Practice, Version 5.0, http://www.sei.cmu.edu/productlines/framework.html,
2009.

[Sun 09] Sun, Java Micro Edition, http://java.sun.com/javame/index.jsp, 2009.

[Topcased 09] Topcased, www.topcased.org.

ECOSYSTEMS

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a visiting scientist at the Software Engineering Institute, and a partner in
Luminary Software, a software engineering consulting firm. His research interests
include software product lines and component-base software engineering. His latest book
is A Practical Guide to Testing Object-Oriented Software (Addison-Wesley 2001).
Contact him at johnmc@lumsoft.com.

