
Vol. 8, No. 6, September–October 2009

Functional Programming at Work in Object-
Oriented Programming

Ph. Narbel, LaBRI, University of Bordeaux 1, France

This paper is a synthesis about why and how some functional programming (FP) can
be helpful from a program design point-of-view within mainstream object-oriented pro-
gramming (OOP). We first introduce criteria to ensure that FP-oriented features give
an effective functional/method granularity design level within OOP. Next, we list up
and discuss the general techniques and design consequences of having such FP capabil-
ities in OOP, i.e. code abstraction/factoring at a function level, generic iterator/loop
implementations, operation compositions, sequence comprehensions, partial applica-
tion and currying, reduction of the number of class definitions, name abstractions,
and function-based structural compatibilities. We also stress some of the difficul-
ties of blending FP constructs with OOP, by pointing out potential problems related
to design granularity mismatch, architecture non-uniformity and datatype incoher-
ences. Several classic OOP design patterns are analyzed, since FP techniques make
alternative implementations manageable: basic cases like Strategies, Commands and
Observers, but also Proxies (using functional-based evaluation control) and Visitors
(using functional data-driven programming). This synthesis is illustrated with C# 3.0
which offers effective FP-oriented features – based on delegates –, but also by using
comparisons with other cross-paradigm languages.

1 INTRODUCTION

Let us consider the following claim:

Adding some functional programming capabilities within an object-oriented
language leads to benefits for object-oriented programming design.

The purpose of the following pages is to provide a synthetic and practical pre-
sentation of the pros and cons about this claim. First, with regard to functional
programming (FP) mixed with object-oriented programming (OOP), several points
are worth recalling to get a picture of the situation: (1) Existence of FP+OOP lan-
guages: Successful languages allowing programmers to mix FP and OOP have been
available, some for a long time like Smalltalk and Common Lisp (CLOS), and some
more recently like Python and Ruby. Also, some modern languages with sophisti-
cated typing and modular systems are being developed offering very effective mixes
of FP and OOP (see e.g. OCaml [LDG+08] and Scala [Ode08]). (2) Existence of
FP-OOP comparisons points: in the past, FP and OOP have sometimes been com-
pared in the context of general methodological problems, like the datatype extension

Cite this article as follows: : Functional Programming at Work in Object-Oriented Program-
ming, in Journal of Object Technology, vol. 8, no. 6, September–October 2009, pages
181–209,
http://www.jot.fm/issues/issue 2009 09/article5/

http://www.jot.fm/issues/issue_2009_09/article5/

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

problem (see e.g. [Rey75, Wad98, KFF98, FF98, Bru03]). (3) Existence of FP em-
ulation techniques in OOP: Some common programming practices in OOP include
FP-like techniques when solutions are expressed at a function/method level. For in-
stance, “object functions” (functors) which encapsulate single methods into objects
are often used, e.g. by C++ programmers (see e.g. [SL95, Mey01, Ale01, JF09]).
Also, plug-in capabilities, introspection/reflexion, or anonymous class constructs
are used for the same reason, e.g. by Java programmers (see e.g. [Blo01, BGS07])
(4) FP+OOP as a modern trend: There is nowadays a tendency to propose and
include FP-oriented extensions to existing OO languages (in particular to overcome
the shortcomings of the above emulation techniques): For instance, several such
extensions for C++ were made available (see e.g. [Lau95, MS04]), and C++ stan-
dard committees are working on some of them (see e.g. [JFC08, JF09]). Discus-
sions have been held on including FP constructs in upcoming Java versions (see
e.g. [Gaf07, Goe07, BGGA08]). Eiffel has included some FP-oriented constructs
in its standard – the agents [ECM06b, DHM+99]. The C# language also offers FP
constructs – the delegates – [ECM06a], fully supported since its 3.0 version [Mic07a].

This said, there is one important point to keep in mind: FP offers at least two
facets with regard to functions: “purity” and “first-class citizenship”. Purity means
mathematical-like functions, without any possibilities of dealing with side-effects:
this leads to nice properties, like simpler testing and ready-to-use parallelism. First-
class citizenship means functions considered as any other values: this leads to better
functional granularity design and specific programming techniques. When blending
FP with OOP, one almost always speaks about the latter only, since purity does not
have much effectiveness when it is mixed with imperative features. This restricted
point-of-view of FP is also the one we take in this paper. Now, even if this kind of
paradigm combination has often been mentioned (as the references above show it),
it has mostly occurred in a scattered manner, in particular for the statically typed
OOP case (see however [Küh99, MS04, Nar05, Mei07]). Accordingly, there is still
place for some discussion and synthesis about what programmers could expect from
a design methodological viewpoint when FP and OOP are available at the same
time. This paper attempts to give such a presentation.

The first section is dedicated to introducing criteria and their consequences to
check that some language features make FP-oriented features effective within an
OOP context: first-class citizenship properties, closures, mechanisms to define in-
terrelations between FP and OOP, and FP explicit support. This section also intro-
duces one of the central design difficulty when mixing FP and OOP programming
techniques: the architectural design granularity mismatch, that is, the FP design
level, being finer, does not always easily fit with the OOP design level. One must in-
deed sometimes deal with sets of standalone functions induced by FP in one’s OOP
architecture. The second section of the paper presents and illustrates a list of general
techniques and idiomatic forms available when having FP capabilities within OOP.
This encompasses code abstractions at a function/method level, easy iterator-loop
programming, operation compositions/comprehensions, and partial applications of
functions through currying. The third section discusses the general architectural

182 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

2 EFFECTIVE FP EMBEDDING IN OO LANGUAGES

qualities and drawbacks when using FP techniques as described in the preceding
section. The two main qualities are related to a possible reduction of the number of
object/class definitions, and to name abstractions at a function/method level. The
drawbacks are essentially due to the design granularity mismatch. Common par-
tial solutions to this problem are then discussed, in particular, uses of basic modular
(C/Ada-like) components or utility classes, and uses of anonymous constructs. Next,
illustrating these facts further, the fourth section analyzes some of the classic OOP
design patterns: Strategies and Commands are recalled to be emulations of higher-
order functions; Observers, defining mutual relationships between objects through
single methods, can be accordingly simplified by FP; Virtual Proxies, being based
on an OO evaluation control technique, can be reimplemented through classic FP-
oriented laziness emulations; Visitors, dealing with functional organizations of sets
of methods, may be related to classic FP data-driven techniques. These last two
patterns allow us to demonstrate how characteristic FP techniques provide OOP
with alternative implementation choices. The overall conclusion of the paper will
be that FP-oriented features definitely add more possibilities to OOP, sometimes
offering simpler and more flexible solutions, but also sometimes at the expense of
less architectural and datatype coherence.

Note that the paper will deliberately not include discussions about performance
and compilation issues, nor comparisons between existing technical ways of inte-
grating FP into OOP. Our point-of-view will remain here mostly methodological
and is expected to be relevant to any OO language with FP capabilities. We have
chosen to mainly illustrate the text with C# 3.0 programs, but the examples would
essentially take the same form in any functional generic static OO language.

2 EFFECTIVE FP EMBEDDING IN OO LANGUAGES

2.1 Criteria and Rules for FP Embedding

This section presents criteria and properties to check that FP capabilities are truly
available in an OOP context, and provide a powerful function/method granularity
design level. In this respect, the main criterion is:

Criterion 1 (First-Class Values). Functions/methods should be first-class citizens,
i.e. they should have the same properties as simple values like integers: they can
(a) be the result of a function, (b) be passed as an argument of a function, and (c) be
stored in a data structure1.

These properties ensure that a programmer can take full advantage of easy instanti-
ating, transmitting, building, storing functions. To have first-class functions means
that one can deal with chunks of code as straightforwardly as with any value: most

1When using Properties (a) and (b), functions are said to be of higher-order.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 183

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

of the FP techniques rely on this fact. The practical consequence of Criterion 1 is
therefore:

Rule 1 When Criterion 1 holds, most FP techniques can be applied.

A natural by-product of the first-class properties is generally to allow functional
values to be defined per se, without having to name them – that is, as anonymous
functional values – making their use easier. Note also that in statically typed sys-
tems, functional expressions should enjoy some associated type inference features so
as to be more directly exploitable.

The next criterion is related to what makes functional values work, i.e. clo-
sures: A closure consists of associating a function code with an environment. This
environment is made of the bindings which exist at the time of the function defi-
nition, and which are required for the future uses of the function. Thus, first-class
properties need closures2. To what extent? Pure FP is based on first-class pure func-
tions (see e.g., [FH88, Rea89]), i.e. functions which behave in a strict independent
way from their calling contexts, and whose results depend on their arguments only.
Accordingly, pure functions need complete closures which include all the bindings,
cloned if necessary, into private non-mutable environments. When pure functions
are involved, FP induces nice effective properties through referential transparency,
that is, subsequent function calls with the same arguments always yield the same
result: For instance, as already said, one may enjoy simpler testing and ready-to-
use parallelism. However, first-class properties do not need complete closures. This
is a common situation in imperative-based languages offering FP-oriented features.
There, closures are generally restricted to guarantee a good functioning, e.g. by
maintaining references without necessarily cloning them. Sometimes also, their pri-
vate environments are allowed to be mutable. But then, purity easily breaks apart.
This leads us to a second criterion to check FP capabilities:

Criterion 2 (Closures). First-class functions/methods should be implemented as clo-
sures, i.e. they should be associated with specific private environments.

Rule 2 When Criterion 2 only holds with non-complete closures, most nice properties
due to pure FP are expected to be lost. However, FP techniques can still be applied.

The above two criteria are about FP only, but one must also consider the re-
lationship between FP-oriented constructs and OOP, in particular with respect to
the following intrinsic problem: FP and OOP operate on different design granu-
larity levels. Functions/methods mostly belong to the “programming in the small”
level, whereas classes/objects/modules mostly belong to the “programming in the
large” level, inducing specific code organizations of sets of functions. As a result,
the mix of FP and OOP may generate difficulties, which can be summed up into

2The word closure is sometimes taken as a synonym for functional value.

184 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

2 EFFECTIVE FP EMBEDDING IN OO LANGUAGES

these two questions: where do we locate the sources of the individual functions in
an OOP architecture? and how do we relate individual functions to an OOP ar-
chitecture? This is what we call here the FP-OOP design granularity mismatch.
Note that this problem mainly holds in statically typed OO languages where classes
are encapsulating units, like in Java, C++, C# , etc.: function definitions due to
FP techniques must indeed be located somewhere in one’s OO architecture mostly
made of encapsulating classes dedicated to describing objects3. Taking care of this
problem can be associated with a third criterion:

Criterion 3 (FP-OOP interrelation mechanisms): Standalone functions/methods should
be explicitly relatable to the class/object level.

Rule 3 When Criterion 3 holds, it helps solving some of the FP-OOP design granu-
larity mismatch problem.

Note that a prominent counter-example to the OO “classes-are-also-encapsulating-
units” model is given by the Common Lisp Object System (CLOS) (see [GWB91]),
where methods live outside classes. For this language, Criterion 3 readily holds since
class specifications and implementations mainly rely on the functional level, but at
the expense of less modular structure (see e.g. [Kee89]).

Finally, we also add a simple pragmatic fourth criterion, important for a true
usability of FP-oriented features in OOP:

Criterion 4 (FP Support): The FP-oriented features should be reinforced by related
constructs, predefined definitions, occurrences in standard libraries, etc.

Rule 4 When Criterion 4 holds, an OOP language acknowledges the fact that FP is
one of its fully integrated tools.

2.2 An Effective FP Construct in OOP: the Delegates

We can now illustrate the above criteria in C# : this language offers a FP-oriented
construct called delegates (see e.g. [ECM06a, Mic07a, JLT98, Mic98, Ken06]). Here
is a simple example illustrating the basics:

delegate string StringFun(string s); // definition of a delegate type

string G1(string s) { // a method whose type matches StringFun

return "some string" + s;

}

StringFun f1; // declaration of a delegate variable

f1 = G1; // method value assignment

f1("some string"); // application of the delegate variable

3This fact has often been overlooked, in particular when comparing FP and OOP solutions for the datatype
extension and expression problems.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 185

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

By using delegates4 one can therefore define function types and identifiers acting
like any other functions. Note that internally, C# delegates are just represented as
a special kind of objects5 (FP-oriented constructs in OOP do not necessarily imply
deep language extensions). Thus, being objects, delegates directly satisfy the basic
first-class properties. Here are some examples demonstrating this fact (StringFun
and G1 are defined as above):

1. Delegate types can be used for method parameters, and delegates can be passed
as arguments of methods as any other values:

string Gf1(StringFun f, string s) { [...] } // delegate f as a parameter

WriteLine(Gf1(G1, "some string")); // call

2. Delegates can be returned as the result of a computation of a method. For
instance, assuming G2 is a method acting on strings and defined in the class
SomeClass:

StringFun Gf2() { // delegate as a return value

[...]

return (new SomeClass ()).G2;

}

WriteLine(Gf2()("some string")); // call

3. Delegates can occur in data structures:

var l = new LinkedList <StringFun >(); // list of delegates

l.AddFirst(G1); // insertion of a delegate in the list

WriteLine(l.First.Value("some string")); // extract and call

As expected, delegates may also become standalone values, that is, they can be
defined anonymously, and can directly instantiate variables and parameters:

delegate(string s) { return s + "some string"; };

In C#, such an anonymous delegate definition may even look more like a usual
lambda expression (or to a block with arguments in Smalltalk terminology [GR89]):

(s => { return s + "some string"});

s => s + "some string"; // equivalent syntax

4The word delegate seems to clash with the word delegation commonly used in OOP design, that is, dynamic
compositions of objects where method calls are forwarded onto other objects (see e.g. [Lie86, GHJV95]). One can
also find some similarity at a more basic level: C# delegates, representing functional values, also defer to runtime the
decision about which methods should actually be called (see also Sec. 4.2). Note that in this respect, C# delegates
are often said to be similar to C/C++ function pointers and associated with callbacks. In fact, being object-like
and type safe values, delegates are more similar to C++ functors than to function pointers (ad-hoc FP-oriented
extensions of C++ are generally based on templatized functors – see e.g. [Lau95, MS04]).

5A C#-delegate declaration implicitly defines a new class derived from the predefined class System.Delegate.
Delegates are instances of this class, and they are able to encapsulate a single method (or a sequence of methods).
For instance, StringFun f1 = G1 is the same as StringFun f1 = new StringFun(G1). The specific behavior of such
an object is then the following: given an appropriate set of arguments (with a functional syntax), its encapsulated
method is directly invoked with these arguments (see e.g. [Ric01]).

186 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

2 EFFECTIVE FP EMBEDDING IN OO LANGUAGES

C# does not define a pure FP context, and as a consequence, closures are not
complete. For instance, consider the following definitions:

StringFun f1, f2;

int counter = 1000;

f1 = s => s + counter.ToString ();

f2 = s => s + counter.ToString ();

Here, counter is shared between f1 and f2. Any modification of counter has an
effect on f1 and f2: In C# closures, only references to outer values and objects
within a delegate are preserved, so that the delegate functioning is guaranteed, but
not its independence to the calling context. When necessary, a classic technique to
overcome this weakness is to use the lexical scope semantics: One captures parts of
a local private environment while building a function. For instance:

StringFun F() {

int counter = 1000;

return s => { return s + counter.ToString (); };

}

In this example, each delegate obtained through a call to F() contains an individual
private counter. Note that this technique has been sometimes applied to emulate
classes in FP, when OOP constructs are not available (see e.g. [SF90, FWH92] for
the Scheme case).

Added to the above key FP-oriented properties (see Criteria 1 and 2), some
features of C# encourage the use of delegates, thus promoting FP (see Criterion 4):

• Basic Delegate Predefinitions. C# offers predefined functional and procedu-
ral generic delegate types (respectively under the name Func and Action –
overloading applies to generic delegate type names too):

delegate TResult Func <TResult >();

delegate TResult Func <T,TResult >(T a1);

delegate TResult Func <T1,T2,TResult >(T1 a1 , T2 a2);

delegate void Action ();

delegate void Action <T>(T a1);

etc.

• FP Uses in the Standard Library. Some of the basic functions provided by
the .NET Framework are higher-order functions, e.g., comparators, sorters,
iterators, filters, etc.

• First-Class Multiple Invocation and Multicasting. A C# delegate may itself
contain an invocation list of delegates, that is, an ordered set of delegates.
When such a delegate is called, all the delegates in its invocation list are
called in order. The result value is determined by the last method called. As a
consequence, sets of delegates may easily be composed, and still remain first-
class values. Of course, since only the last method result is taken into account,
this technique mainly applies to imperative-oriented uses with side-effects like
e.g., object multicasting (see the examples further in Sec. 5.2). Note also that

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 187

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

the syntax to manage insertions and deletions in such delegate invocation lists
is simplified by the overloading of the operators +, -,+=, and -=.

• Function Marshalling and Serialization. C# allows lambda expressions to
be represented as data structures called expression trees (see e.g. [Mic07a,
Wie08]). As such, they may be stored and transmitted.

2.3 An Interrelation FP/OOP: the Extension Methods

We defined Criterion 3 as the possibility of relating single functions/methods to the
overall OOP architecture. C# offers such a mechanism called extension methods.
It allows programmers to add methods to existing classes without creating new
derived classes. These extension methods may be invoked as if they were static
methods of the extended classes. For instance, the following extension method of
the class String counts the words separated by blanks in a string (the first parameter
of such a method specifies which class the method extends, and must be preceded
by a “this” keyword):

static int SimpleWordCount(this String str) {

return str.Split(new char[] { ’ ’ }). Length;

}

This method can then be directly used by an instance of String:

String s1 = "some chain";

s1.SimpleWordCount (); // usable as a String method

SimpleWordCount(s1); // also usable as a standalone method

An extension method can also be defined for interfaces, and therefore at the roots
of class hierarchies. Here is a C# classic instance of a generic extension method:

static IEnumerable <T> MySort <T>(this IEnumerable <T> obj)

where T : IComparable <T> {

[...]

}

List <int > l = [...]; // List is a subtype of IEnumerable

l.MySort ();

Extension methods provide a mechanism to easily extend classes and to connect
isolated methods to existing OOP architectures. This mechanism integrates some
of the “open class” concept into the language (see e.g. [CMLC06]), and increases its
“operation-centric dimension” (as defined in [GWB91] for CLOS). However, C# ex-
tension methods cannot access private data of the class they are extending, so that
they cannot serve as a mean to violate object encapsulation. Moreover, they are
not polymorphic – there is no dynamic selection over them – since they are bound
at compile-time, and they must be defined within static classes. Thus, their ability
to directly solve specific OOP architecture problems is limited (see e.g. Sec. 5.5).
Nevertheless, extension methods can be used to connect delegate implementations
to existing classes, and as such, they help building explicit bridges between FP and
OOP.

188 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

3 GENERAL FP TECHNIQUES IN OOP

Note that other kinds of such interrelation mechanisms have been proposed. One
of them is to make effective the natural relationship between single methods and
classes with only one method. For instance, closure conversions have been suggested
for Java [BGGA08]: roughly, every functional value of type t may be cast to any
class type/interface that declares a single method with type s, if t is a subtype of s.

3 GENERAL FP TECHNIQUES IN OOP

This section discusses in a general setting what are the programming techniques and
consequences of having FP capabilities in OOP, making a functional granularity fully
available within OOP.

3.1 Code Abstraction at a Function/Method Level

A first immediate consequence of first-class functions is the possibility of applying
separation of concerns at a function level [Hug89]: any specific behavior, any snippet
of code within a function/method can be abstracted out into a functional parameter.
In other words, one can easily define generic functions which act as “pattern tem-
plates” at a function/method level. For example, consider some method involving
some specific code:

float M(int y) {

int x1 = [...]; int x2 = [...];

[...]

[... code ...]; // some code using x1 , x2 , y

[...]

}

Assume that M has to be modified with respect to [...code...] and some of its local
data. Using first-class functions, these actions can be factored out into a functional
parameter f as follows:

public delegate int Fun(int x, int y, int z);

float MFun(Fun f, int x2, int y) {

int x1 = [...];

[...]

f(x1 , x2, y);

[...]

}

Next, assuming the existence of F1 and F2 which satisfy the functional type Fun,
different versions of MFun can be obtained and applied:

int z1 = MFun(F1, 1, 2);

int z2 = MFun(F2, 3, 4);

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 189

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

3.2 Generic Iterator and Loop Operations

A celebrated application of the above code abstraction technique is the generic imple-
mentation of uniform and iterated transformations of data structure (see e.g. [BW88]).
For instance, map-like functions, – usually called internal iterators – take a func-
tion f and a data structure instance D as arguments. The function f is then called
for each element of D, and returns a new instance of the same kind of data structure
as D made of the results of these calls. Here is a simple map implementation for
lists in C# (using the predefined Func delegate type):

List <T2 > Map <T1 ,T2 >(this List <T1 > data , Func <T1 , T2 > f) {

List <T2 > res = new List <T2 >();

foreach (T1 item in data) { res.Add(f(item)); }

return res;

}

With anonymous functional expressions, this method can be called as in any FP
language. For instance, here is how to square every element of a list:

someList.Map(i => i * i);

Predefined map-like functions are available in the .NET framework: Map which is
essentially defined as above, and App which iteratively applies a procedure p to every
element of a data structure D. In the same vein, fold-like or reduce-like functions
transform data structures into single values. For instance, a fold over lists takes a
binary function as an argument, called in turn for each element of the list and each
intermediate value due to the current state of the folding, and finally produces a
single value. Here are two simple examples of folds – called Aggregate in C# – to
respectively compute the sum and the product of the elements of a list:

int sum = someList.Aggregate((accum , x) => accum += x));

int prod = someList.Aggregate((accum , x) => accum *= x));

These iterator-oriented functions generally lessen the burden of managing explicit
ad-hoc iterator classes, without impairing power and flexibility (see also e.g. [Bak93,
Küh97, Gaf07, Bis08]).

3.3 Operation Compositions and Sequence Comprehensions

First-class functions/methods may also provide convenient ways of expressing se-
quences of operations as compositions of higher-order functions. Consider the fol-
lowing example (inspired from [Coc08]):

public static void PrintWordCount(string s) {

String [] words = s.Split(’ ’);

for (int i = 0; i < words.Length; i++)

words[i] = words[i]. ToLower ();

var dict = new Dictionary <string , int >();

foreach (String word in words)

if (dict.ContainsKey(word))

dict[word]++;

190 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

3 GENERAL FP TECHNIQUES IN OOP

else dict.Add(word , 1);

foreach (KeyValuePair <String , int > x in dict)

WriteLine("{0}: {1}", x.Key , x.Value.ToString ()));

}

This piece of code is nothing but a pipe over arrays of strings. In order to improve its
qualities, one can factor it out into a sequence of auxiliary methods, some naturally
becoming higher-order iterator-like operations:

public static void PrintWordCount(string s) {

String [] words = s.Split(’ ’);

String [] words2 = (String []) Map(words , w => w.ToLower ());

Dictionary <String , int > res = (Dictionary <String , int >) Count(words2);

App(res , x => WriteLine("{0}: {1}", x.Key , x.Value.ToString ())));

}

But, intermediate variables still clutter the code. One could then consider using
generic higher-order composition functions like:

Func <T1 , T3> Compos <T1 , T2 , T3 >(Func <T1 , T2> f, Func <T2, T3> g) {

return t => g(f(t)); }

However, by defining the above auxiliary methods as extension methods, there is a
simpler FP-oriented way in C# of expressing the same idea:

public static void PrintWordCount(string s) {

s.Split(’ ’)

.Map(w => w.ToLower ())

.Count()

.App(x => WriteLine("{0}: {1}", x.Key , x.Value.ToString ()))); }

The operation composition is now obtained as a sequence of method calls (the dot “.”
becomes the composition operator), and the pipe-like form of the process clearly
appears. Moreover, because of its streaming-like evaluation tactics in C#, this tech-
nique can be related to list comprehensions as they are available in Haskell. This
idea has been exploited further in the Language Integrated Query (LINQ) where a
set of higher-order functions are defined to easily express “query comprehensions”.
This library simplifies the relationships between OOP and relational data, and ac-
cordingly reduces the classic “OO-relational impedance mismatch” problem [Mei07].
For instance, here is how may look such a query:

var query = giraffes

.Where(g => g.Age > 5)

.OrderByDescending(g => g.Age)

.GroupBy(g => g.NeckLength > 10);

This FP-oriented composition technique definitely increases readability and code
compactness. In the general case, however, there may be some inconveniences: First,
composing higher-order functions in such a dense way within a non-pure FP context
– i.e. with side-effects – may be subject to difficult testing and bug tracking (in this
respect, note that LINQ has been designed to limit these risks by integrating pure
FP into it as much as possible – see e.g. [Mei07]). Also, since this technique is here
based on extension methods, if it is applied to too many ad-hoc situations, it may
wildly multiply the links between classes, and thus the OO architecture complexity.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 191

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

3.4 Function Partial Applications and Currying

There is another general programming technique available along with basic FP ca-
pabilities: function partial application. Indeed, with higher-order functions, every
n-ary function can be transformed into a composition of n unary functions, that
is, into a curried function (see e.g. [FH88, Rea89]). For instance, consider in C# a
simple function in its lambda expression form which adds two integers:

Func <int , int , int > lam1 = (x, y) => x + y;

A call to this functional value can be for instance lam1(3, 4). The equivalent
curried form of lam1 is then the following:

Func <int , Func <int , int >> lam2 = x => (y => x + y);

The same call as above becomes (lam2(3))(4) (which can even be simplified into
lam2(3)(4)). The advantage of such a curried form is that one can fix the first
parameter and still obtain a value which is a function over only one parameter:

Func <int , int > lam3 = lam2 (3); // partial application

The functional value lam3 is now equivalent to the unary function “y => 3 + y”.
Such function partial applications are quite handy since they allow one to delay the
instantiations of some of the parameters of a function: one may thus take advantage
of specific environments to specialize a function in an ad-hoc manner, or to reduce its
number of parameters to comply to existing function types. In typed FP languages
like Haskell and ML, but also in cross-paradigm languages like Scala and OCaml,
one may directly express functions in their curried form (this is not the case in C#).

A classic FP exercise is to obtain higher-order functions able to transform non-
curried functions into curried ones. For instance, here is a generic C# implementa-
tion for binary functions (defined as an extension method of Func so that its calls
become available with a class notation, i.e. it becomes composable with the dot “.”
notation):

public static Func <T1, Func <T2, TRes >>

Curry<T1, T2, TRes > (this Func <T1, T2, TRes > f) {

return (x => (y => f(x, y)));

}

Func <int , int > lam4 = lam1.Curry ()(3); // partial application

4 FUNCTIONAL GRANULARITY DESIGN IN OOP

In the preceding section, we have listed up the main techniques that basic FP makes
possible in OOP. These were essentially “programming in the small” techniques,
mostly relying on functional code abstraction. We now develop what are their
qualities and drawbacks when they are used within some OOP architectural design.

192 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

4 FUNCTIONAL GRANULARITY DESIGN IN OOP

4.1 Reduction of the Number of Object/Class Definitions

An important consequence of having FP capabilities is that one can avoid some
class definitions. Indeed, reconsider the method M of Sec. 3.1 and its transformation
into MFun: In a pure OOP approach, the same situation is generally solved by using
an object-based abstraction, often called function object or even functionoid (see
e.g. [SL95, Küh97, Mey01]). First, an interface – call it IFun – is needed to describe
the type of the objects dedicated to encapsulate the abstracted method f. Second,
distinct classes derived from IFun are needed for every distinct implementation of f,
e.g., F1, F2. Finally, instances of IFun can be transmitted as regular objects:

interface IFun{

int F(int x, int y, int z);

}

class F1 : IFun {

public int F(int x, int y, int z) { [...] }

}

class F2 : IFun {

public int F(int x, int y, int z) { [...] }

}

float MObjFun(IFun funobj , int x2, int y) {

int x1 = [...];

[...]

funobj.F(x1, x2 , y);

[...]

}

int z1 = MObjFun(new F1(), 1, 2);

int z2 = MObjFun(new F2(), 3, 4);

In comparison, the FP solution only requires a new delegate type definition, which
may belong to the class where it is used: it clearly avoids cluttering the global
architecture with new classes (see also e.g., [Bec97]).

Note however that an OOP solution with function objects as above makes possible
more than just method encapsulation, since function objects may also include their
own data, methods, etc. Here is an example using function objects including their
own constructors. Consider the following class also satisfying the interface IFun:

class F3 : IFun {

int state;

public F3(int a) { state = a; }

public int F(int x, int y, int z) { [... state ...] }

}

int z3 = MObjFun(new F3(10), 3, 4);

Here, F3 has an attribute state which is used in the body of F, and which is set
by the constructor F3(int a). The parameter “a” can then be considered as a
parameter of F too: the difference with the other parameters of F is that “a” is fixed
when instantiating F3. As a consequence, we obtain a kind of partial application
of the method F. Note also that F may now be considered as a function having a
different signature than the ones defined by F1 and F2, while still satisfying IFun

and still preserving type-safety. This technique of partial application and variability

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 193

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

of function types has been described e.g. in [Küh94, Cli06], and it is the OOP
counterpart of the currying functional technique introduced in Sec. 3.4.

4.2 Name Abstraction at a Function/Method Level

Whenever a variable occurs in one’s code, the origin and the initial name of what it
denotes does not matter. With FP, this rule applies to functions too (see e.g. [Hud00]).
For instance, consider the following C# code:

delegate string StringFun(string s);

StringFun f1;

[...] f1 [...];

Here, f1 is just a placeholder for any method of type StringFun whatever its origin
and initial name are. On the contrary, in OOP, denoting a single method is obtained
by calling it through some object: As a consequence, name abstraction is effective
only at the object level, not at the function/method level (see also [Küh94]). For
instance, consider the above code rewritten in OOP style:

interface IStringFun{ string F1(string s); }

IStringFun obj1 = [...];

[...] obj1.F1 [...]

Here, obj1 is a placeholder for any object obtained through a class derived from
IStringFun, but F1 is a name which must be used.

Let us illustrate this name abstraction effect with a less formal example. Con-
sider the case of an object composition-delegation in a classic OO Bridge design
pattern [GHJV95]:

public class Window {

private WindowSys _imp;

void DrawFigure ([...]) {

_imp.DeviceFigure ([...]);

}

}

The above code is flexible from the point-of-view of the object denoted by _imp, but
it must stick to the fact that the object _imp has a method DeviceFigure declared
in the class WindowSys. When method names do not fit, the usual OOP solution is
to implement Adapter classes like:

class Adapt : WindowSys {

[...]

void DeviceFigure ([...]) {

adaptee.SomeOtherMethodName ([...]);

}

}

Objects of class Adapt may now instantiate the attribute _imp in Window. This
kind of adapters often occurs in pure OOP as instantiations of inner anonymous
classes to directly assign compatible objects (see e.g. the idiomatic uses of the

194 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

4 FUNCTIONAL GRANULARITY DESIGN IN OOP

ActionListener class in Java). It can also be generalized by reflection/introspection-
based solutions (similar to the Pluggable Selector Smalltalk pattern [Bec97, BGS07]).
But using the function/method granularity level simplifies the situation and reduces
the syntactic overhead:

public delegate void DeviceFigureFun ([...]);

public class Window {

private DeviceFigureFun _devfigure;

void DrawFigure ([...]) {

_devfig ([...]);

}

Here, any method satisfying DeviceFigureFun is entitled to instantiate _devfigure.

Such name abstraction at a function level can also be related to the distinction
between nominal and structural compatibilities (see e.g. [Bru02, Ost08]). Recall that
in the nominal case, type compatibilities depend on explicit declarations, generally
by explicit class inheritances and subtyping definitions. In the structural case, only
the types of the objects/values are considered to induce compatibilities. Structural
relationships make unanticipated reuses possible, and limit multiplication of similar
type definitions, whereas nominal relationships allow one to explicit design intents
and to express tighter contracts. Most of the mainstream OOP languages are nom-
inal at their object/class design level6. Nevertheless, typed first-class functions can
be seen to provide some structural flavor within the nominal case: name abstraction
at a function level indeed means that as soon as a function satisfies the declared
type of a parameter or a variable, it can instantiate it whatever its origin is.

4.3 Design Granularity Mismatch

According to the preceding sections, FP capabilities appear quite effective for OOP.
However, the discussion must also include the design granularity mismatch (see
Sec. 2.1). For instance, consider again the formal higher-order function MFun in
Sec. 3.1 (developed further in OOP in Sec. 4.1), that is:

public delegate int Fun(int x, int y, int z);

float MFun(Fun f ,...) { [...] }

For every F1, F2,... satisfying the type Fun, the method MFun can be called.
But questions arise: Where do we locate the implementations of the Fi’s in one’s
architecture which happens to be mostly OO? and how do we relate the Fi’s to this
OO architecture? Moreover, the set of the Fi’s is expected to change and grow:
according to the idea of function abstraction, the Fi’s are indeed a variable part
of the code. Therefore, one may also ask: how do we organize and collect the
implementations of the Fi’s?. Of course, if the Fi’s are methods already belonging
to some classes or objects, or if they are the results of some computation, there is
no architectural problem; if not, programmers must certainly find answers to the

6Nominal compatibility is however not intrinsic to OOP (see e.g., the object system of OCaml [LDG+08]).

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 195

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

above questions. We have already seen that explicit interrelation mechanisms like
extension methods give some answers to the second question (see Sec. 2.3). However,
nothing has been said yet about how and where to put the Fi’s codes. There exist
two main general solutions to this problem, both showing some inconveniences:

- Solution with Basic Modules or Utility Classes: One may place the Fi’s im-
plementations as static methods in some plain module or some utility class. This
technique amounts to including or emulating basic (C/Ada-like) modular compo-
nents into an OOP architecture, for instance in the following form in C#:

class U {

static [...] F1 [...];

static [...] F2 [...];

[...]

}

From an organization point-of-view, this technique means collecting the different
functional cases – the Fi’s – into single modular components, whereas in the usual
OOP style, they are spread out over different existing classes depending on a same
root class (see e.g. [Rey75, FF98, KFF98]). Accordingly, these two different function
organizations are sometimes respectively called functional decomposition and OO
decomposition. Mixing these two techniques may be acceptable, but it certainly
increases the complexity of one’s architecture: modular units describing objects (the
classes) are associated with others only describing plain sets of functions. Moreover,
basic modules or utility classes are difficult to evolve. In particular, adding some
new functions to the existing Fi’s may induce awkward refactoring moves: either by
directly adding them to the module/class containing the Fi’s, or by using inheritance
or generics, generating cumbersome and not so justified class hierarchies (see also
the discussion further about Visitors in Sec. 5.5).

- Solution with Anonymous Constructs: Alternatively, one may use anonymous
constructs, that is, one may directly provide the needed implementations along with
the calls to the higher-order elements. These calls become then self-sufficient. For
instance, the different calls to MFun in Sec. 3.1 can be expressed as:

int z1 = MFun((x1, x2, x3) => [...F1 code ...], 1, 2);

int z2 = MFun((x1, x2, x3) => [...F2 code ...], 3, 4);

instead of:

int z1 = MFun(F1, 1, 2);

int z2 = MFun(F2, 3, 4);

Such anonymous constructs clearly solve the problems generated by the solution
using basic modules, since one spares the trouble of explicitly inserting new compo-
nents into one’s architecture (see e.g [HT06, JF09]). Moreover, having both anony-
mous classes and functions allows programmers to choose the right granularity design
level for each call (see e.g. [JLT98, Mic98, Gaf07]). However, even if this technique
may sometimes work well, anonymous constructs induce a spread of the code over
all the calls including them, and this code happens to be not directly reusable or
extensible (anonymous constructs are generally associated with a unique use).

196 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

Let us sum up the situation: when FP techniques are mixed with OOP, defini-
tions and implementations of individual functions must take their place somewhere
in the architecture. This may not be easy in OO languages like Java, C++, C# ,
where almost everything is defined into classes being encapsulating units and defin-
ing object types. Functions definitely belong to a finer level. One may apply the
above solutions, but one may also sometimes expect some shortcomings. Of course,
in OO languages where methods are not necessarily contained in classes, the design
granularity mismatch does not occur in the same proportion, but as already said,
at the expense of the modular structure quality.

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

In the preceding pages, we sometimes mentioned classic OO design patterns [GHJV95]
to illustrate FP techniques in OOP. In fact, some of these patterns happen to be
themselves closely related to FP techniques (see e.g. [Küh99, MS04, Nar07]).

5.1 Strategy

The intent of a Strategy pattern is to let an algorithm vary independently of clients
that use it7. This flexibility is based on object delegation and it is expected to be
dynamic (on the contrary, the Template pattern is based on inheritance). In other
words, a Strategy relies on abstractions at a function level, and on passing around
single function objects at runtime. A classic OO Strategy implementation therefore
requires some object encapsulation of functions, as well as some interface to describe
their type (see the example in Sec. 4.1). FP and its higher-order functions make
this pattern immediate and spare the effort of developing new class hierarchies.
Moreover, one can also exploit the functional name flexibility (see Sec. 4.2): any
function with the right type may serve in a Strategy, notwithstanding its origin.

The benefits of the FP-oriented Strategy were discovered a long time ago, being
directly related to functional abstraction. For instance, Smalltalk programmers are
used to exploiting it (see e.g., the Pluggable Block pattern [Bec97]). Also, since
C# 3.0 integrates FP as one of its acknowledged tool, one finds collections of pre-
defined FP-oriented Strategies in its standard library. For example:

public delegate int Comparison <T>(T x, T y)

public void Sort(Comparison <T> comparison)

Note that the State pattern which allows an object to alter its behavior when its
internal state changes can be seen as a generalized version of a Strategy. Accordingly,
when a State is reduced to single methods, it may also take advantage of such
a FP-oriented implementation (see e.g. [Bis08]). Of course, one must not forget
here about the drawbacks of a FP granularity design embedded into OOP (see

7In this section, pattern intents are taken from [GHJV95].

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 197

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

Sec. 4.3): organizing sets of standalone functional Strategy instances within one’s
overall architecture may be difficult.

5.2 Command

The Command pattern encapsulates requests – method calls – as objects so that they
can easily be transmitted, stored, and applied. This is just an OO way of speaking
about encapsulated callbacks. From an OO architecture design point-of-view, Com-
mands are similar to Strategies except that their purpose is to carry autonomous
procedures instead of functions. Accordingly, using first-class procedures may also
simplify the implementation of Commands (see e.g. [SM00, Met04, Bis08]).

A classic example of the usefulness of FP-oriented Commands applies to the
development of flexible interactive programs like menus. Menus must be able to
easily evolve, and they must be able to fire up actions without having to depend on
the initial names or origin of these actions. A function/method design level with
FP capabilities directly provides these properties. The C# standard library offers
classes to help building such interactive programs based on FP-oriented Commands.
In particular, there is a predefined delegate type for Command-like values:

public delegate void EventHandler(Object sender , EventArgs e)

For instance, the predefined class MenuItem contains an attribute Click of type
EventHandler, and Click is called whenever the menu item is clicked or selected
using a shortcut or an access key. One can then associate a click behavior simply
by method assignment. For instance (see [Mic07b]):

private void MenuBehavior_Click(object sender , System.EventArgs e) {

OpenFileDialog fd = new OpenFileDialog ();

[...]

}

public void CreateMyMenu () {

MenuItem menuItem1 = new MenuItem ();

[...]

menuItem1.Click = MenuBehavior_Click; // method value assignment

}

Such a delegate assignment is in fact commonly expressed by using anonymous
delegates (see also Sec. 4.3):

menuItem1.Click = (sender , e) => {

OpenFileDialog fd = new OpenFileDialog ();

[...]

}

Also, built-in multicasting (see Sec. 2.2) is frequently used in this context, and the
exact C# idiomatic form of this kind of assignments is the following:

menuItem1.Click += (sender , e) => {[...]};

Note that even if FP-oriented first-class Commands lead to a quite effective pro-
gramming technique – and as such, it is commonly adopted by the C# programmers
–, it is far from the pure FP world, being essentially of imperative nature.

198 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

5.3 Observer

The Observer pattern intent is also a very general one: it defines a one-to-many
dependency between objects so that when one object changes state, all its depen-
dents are notified and updated automatically. In its simplest form, this pattern
involves a subject (an “observable” component) and multiple observers of this sub-
ject. Observers are considered as attached to the subject: when the subject changes
its state, it notifies its observers such that they can be updated. FP capabili-
ties can simplify this pattern with respect to the way notifications and updatings
are managed: these can indeed be represented by lists of first-class methods (see
also [SM00, Met04, HT06, Bis08]). For instance, consider first the core implemen-
tation of a simple generic OO Observer:

public interface Observer <S> {

void Update(S s);

}

public abstract class Subject <S> {

private List <Observer <S>> _observ = new List <Observer <S>>();

public void Attach(Observer <S> obs) {

_observ.Add(obs);

}

public void Notify(S s) {

foreach (Observer <S> obs in _observ) {

obs.Update(s);

}

}

}

Here, each instance of Subject maintains a list of its linked observers in order to
be able to call the respective Update methods of each of these observers. Using
FP, this implementation can be simplified by just maintaining a list of the updating
methods. In C#, one may also exploit built-in multicasting for this purpose:

public delegate void UpdateFun <S>(S s);

public abstract class Subject <S> {

private UpdateFun <S> _updateHandler;

public void Attach(UpdateFun f) {

_updateHandler += f;

}

public void Notify(S s) {

_updateHandler(s);

}

}

As expected, one of the architectural consequences of this FP-oriented version is
that observers do not need any specific method called Update(): they just make use
of the functional name abstraction technique (see Sec. 4.2). The interface Observer

is not even necessary any longer. Thus, like for the previously discussed design
patterns, the FP-oriented implementation relaxes some of the architectural overload
induced by a strict OOP implementation. Again, however, there may be problems
to organize and include individual update functions in the overall architecture.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 199

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

5.4 Virtual Proxies and Laziness

There are programming situations where a general optimization technique can be
fruitfully applied: delaying the evaluation of function calls until their results are
actually needed. This technique can be summed up by the motto “don’t compute
anything unless you have to”, and it is related to the classic evaluation tactics
named call-by-need or lazy evaluation (see e.g. [FH88, FWH92]). In OOP, this
idea may be implemented through Virtual Proxies, which are objects that provide
surrogates or placeholders for other objects so that their data are created/computed
only when needed. Generally, laziness is also associated with memoization, that is,
capturing/storing computed data so that they are computed only once. Virtual
Proxies often include this idea too.

Lazy evaluation is one of the distinctive features of pure FP, being directly ap-
plicable because of pure functions, and more generally because of referential trans-
parency (see Sec. 2.1). In non-pure FP, when eager evaluation holds, emulation
of lazy evaluation is possible and is based on the following interpretation (see
e.g. [Rea89, FWH92, Pau97]): a function encapsulates an expression – its body
–, which is evaluated only when the function is called. Thus, when functions are
first-class values, expressions can be transformed into first-class values whose results
are obtained only when needed, i.e. when they are called. In typed FP, the signature
of such lazy functional values is commonly “() => T”, that is, a function without
any argument and a result of type T (the type of the lazy value). In C#, this type
is predefined as Func<T>, and lazy values with memoization can be implemented as
follows (see also [Pet07]):

public class Lazy <T> {

private Func <T> _lazyExpr;

private T _value;

private bool _immediateValue; // explicit flag for memoization

public Lazy(Func <T> e) {

this._lazyExpr = e;

_immediateValue = false;

}

public T Value {

get { if (! _immediateValue) {

_value = _lazyExpr (); // evaluation

_immediateValue = true;

}

return _value;

}

}

}

Objects obtained from this class are then used as follows:

var lazyval1 = new Lazy <int >(() => { return [...]});

int i = lazyval1.Value;

Emulated laziness can also be more directly implemented at a FP level. For this
purpose, one uses a function to transform a plain expression of type “() => T” into
a lazy value associated with a memoization tactics. Here is such a function based

200 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

on the closure capturing technique (as seen in Sec. 2.2):

public static Func <T> LazyF <T>(this Func <T> e) {

T _value = default(T);

bool _immediateValue = false;

return () => {

if (! _immediateValue) {

_value = e(); // evaluation

_immediateValue = true;

}

return _value;

};

}

Evaluation control can now be applied without using any classes:

var lazyval1 = LazyF <int >(() => { return [...]});

int i = lazyval1 ();

These laziness emulations can be exploited whenever evaluation control is needed
(see e.g. [Rea89, Pau97]), e.g. to build lazy data structures, to implement sequence
comprehensions, and also to help implementing Virtual Proxies. For instance, here
is a simple situation where “large computations” are assumed to be involved when
objects are instantiated:

public interface IProc { void Process (); }

public class Simple : IProc {

private int _state;

public Simple(int i) {

_state = SomeClass.LargeComputation(i);

}

public void Process () { [...] }

}

A classic OO Virtual Proxy implementation delaying this large computation until
the associated instances are actually needed is the following:

public class SimpleProxy : IProc {

private Simple _simple = null;

private int _arg;

public SimpleProxy(int i) {

_arg = i;

}

protected Simple GetSimple () {

if (_simple == null)

_simple = new Simple(_arg);

return _simple;

}

public void Process () {

GetSimple ().Process ();

}

}

Using emulated laziness, the implementation of such a Virtual Proxy can be simpli-
fied. The evaluation control mechanism of the Virtual Proxy can indeed be factored
out by emulated laziness, and can be uniformly applied in the whole architecture:

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 201

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

public class SimpleLazyProxy : IProc {

private Func <Simple > _simpleLazy;

public SimpleLazyProxy(int i) {

_simpleLazy = LazyF <Simple >(() => new Simple(i));

}

public void Process () {

_simpleLazy ().Process ();

}

}

Note that emulated laziness has some drawbacks too: for instance, its lazy values
are not directly available, and they must always be explicitly applied. Note also that
all the elementary operations over them must be reimplemented accordingly.

5.5 Visitor and Data-Driven Programming

Let {Ci}i=1,..,k be a set of classes which must be extended by some new method,
inducing k distinct implementations (one for each Ci). Consider the situation where
this kind of extension occurs N times, so that we end up with k · N different
method implementations, denoted by mi,j; the jth extension of the Ci’s is denoted by
Extendj = {mi,j|i = 1, .., k)}. A priori, each Ci must be derived N times, leading to
k ·N different classes (one for each mi,j), and therefore, to a wild OOP architecture.
The Visitor pattern offers a solution to this problem as it makes a class hierarchy
more easily extensible, in particular when classes are strict encapsulating units8: A
Visitor lets you define new operations without changing the classes of the elements
on which they operate. Recall indeed that the classic OOP way of implementing
Visitors is the following:

1. One creates a Visitor interface IV isitor including k signatures Mi which cor-
respond to the generic methods assumed to extend each class in {Ci}i=1,..,k.

2. For each extension set Extendj, one creates a concrete visitor class V isitorj

deriving from IV isitor. This class contains the implementations mi,j of the
Mi’s, for i = 1, ..., k.

3. One makes the classes Ci able to use Visitor instances of the classes V isitorj’s,
and able to select the right implementation mi,j from these instances. This
last step is generally implemented by explicit double-dispatch over the mi,j’s
with methods called Accept.

Mk (implemented by mk,N)

IC

M1 (implemented by m1,N)M1 (implemented by m1,1)

Mk

M1

Accept Accept

Accept

CkC1

Mk (implemented by mk,1)

IV isitor

V isitor1 V isitorN

8The Visitor pattern loses some of its relevance in languages in which open classes are available.

202 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

Now, even if the Visitor design pattern is a quite powerful idea, it also brings several
well-known drawbacks. Among them:

• Refactoring Resistance. A Visitor definition depends on the visited classes Ci

on which it operates. When refactoring/extension moves are applied to the
Ci’s, the whole Visitor class hierarchy must be edited – for instance, when a
new class is added to the Ci’s.

• Staticness. A Visitor has an important static part since the concrete visitors
V isitorj rely on class derivation. This is an advantage in terms of type-safety,
but it also limits flexibility – for instance, the mi,j’s are fixed at compile time.

• Invasiveness. A Visitor requires that the visited classes Ci anticipate and/or
participate in making the selection of the right method mi,j – for instance, by
using Accept methods and double-dispatch tactics.

• Naming Inflexibility. A Visitor requires that all the different implementations
of mi,j be uniformly named Mi so that they can be uniformly invoked by the
visited classes Ci. This constraint may limit flexibility and induce code dupli-
cation problems (see also the discussion about name abstraction in Sec. 4.2).

Refactoring resistance is considered as the main problem of the Visitor pattern (see
e.g. [GHJV95, Ale01]). In fact, this problem may be related to the discussion about
the design granularity mismatch in Sec. 4.3, and its solution using basic modules
and utility classes to collect implementations of functions. Indeed, a concrete visitor
V isitorj collects the implementations of one single extension of all the Ci’s: this is
a functional-like organization. Concrete visitors are often utility classes. More
generally, Visitors are indeed a way of mixing OO decompositions with functional
decompositions. This question has been also more generally discussed with respect
to datatypes (see e.g. [Wad98, KFF98, Bru03]).

Now, since functional decomposition inherently exists in a Visitor, FP can be
expected to induce alternative ways of implementing this design pattern. First,
note that when staticness and type-safety can be relaxed, some FP-oriented OOP
solutions of the Visitor have been designed to alleviate the refactoring resistance
(see e.g. the acyclic Visitor [VMR98, Mar03] for OO solutions using mostly sets of
function-objects, and see [PJ98] for OO solutions using class introspection/reflection
techniques). Also, language constructs like extension methods (see Sec. 2.3) can
provide straightforward solutions: one just externally adds the methods mi,j’s to
the Ci classes by defining them as extension methods. This technique corresponds
to what is possible in OO languages offering open classes like CLOS [GWB91], or
MultiJava [CMLC06], but at the expense of the quality of the modular architecture
structure. Note that two things prevent such technique to be effective in C#: exten-
sion methods in this language rely on static binding only, and they may occur only in
static classes which cannot derive from interfaces or any other classes (see Sec. 2.3).
Now, from a more functional point-of-view, the mechanism behind a Visitor can be

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 203

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

seen as a multiple case function triggered by different object types. In other words,
a concrete visitor can be represented as a functional value. A possible FP-oriented
Visitor implementation is therefore to let Accept methods be of higher-order and
take a concrete visitor as a functional argument. For instance, consider a classic
implementation of a Visitor associated with a Composite over graphic figures (here,
{Ci} = {SimpleFigure, CompositeFigure}):

public delegate T VisitorFun <V, T>(V f);

public interface IFigureF {

String GetName ();

T Accept <T>(VisitorFun <IFigureF , T> v);

}

public class SimpleFigureF : IFigureF {

private String _name;

public SimpleFigureF(String name) { _name = name; }

public String GetName () { return _name; }

public T Accept <T>(VisitorFun <IFigureF , T> v) {

return v(this);

}

}

public class CompositeFigureF : IFigureF {

private String _name;

private IFigureF [] _figureArray;

public CompositeFigureF(String name , IFigureF [] s) {

_name = name; _figureArray = s;

}

public String GetName () { return name; }

public T Accept <T>(VisitorFun <IFigureF , T> v) {

foreach (IFigureF f in _figureArray) {

f.Accept(v);

}

return v(this);

}

}

Note here that a call to Accept yields a result: such a “functional Visitor” does not
provide any method to its access internal states, if any, as it is usually the case for
classic Visitors (see e.g. [OWG08]). A first solution to exploit this architecture con-
sists of building methods of type VisitorFun which associate a function code with
each visited figure type, dynamically checking type information. Such a constructor
– corresponding to one concrete visitor V isitj – can be the following (here we again
use the closure technique introduced in Sec 2.2):

public static VisitorFun <IFigureF , String >

MakeNameFigureVisitorFun () {

string _state = "";

return obj => { if (obj is SimpleFigureF) _state += obj.GetName () + " "; else

if (obj is CompositeFigureF) _state += obj.GetName () + "/";

return _state; };

}

This solution shows similarities to pattern matching filtering over datatypes as in ML
or Haskell (but without type safety). However, duplicated explicit type switching
for function selection is not in the spirit of the Visitor pattern, and this solution is as
hard to extend and adapt as the classic OOP implementation. A more sophisticated,
but still simple, FP-oriented solution consists of using a data-driven (or table-driven)

204 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

5 SOME OO CLASSIC DESIGN PATTERNS WITH FP

approach in order to obtain generic selection processes (see e.g. [ASS85]). In FP,
this classic and easily implemented technique is based: (1) on building dictionaries
of pairs (key, function); (2) on implementing generic functions able to exploit these
dictionaries. Accordingly, a FP-oriented Visitor using this technique is made of:
(1) dictionaries of pairs in the form (type, method), for which there is one entry
for each visited class Ci (one dictionary corresponds to one concrete visitor V isitj);
(2) generic visitor methods able to exploit these dictionaries, that is, able to call
the right method corresponding to a given type. In C#, such dictionaries can be
implemented by using the predefined container type Dictionary and the dynamic
typing capabilities of the language (System.Type is the predefined general type of
types, obj.GetType() yields the type of an object obj, and typeof(c) yields the
type of the objects of class c). Here is first a generic function which builds methods
of type VisitorFun from specific dictionaries, and which associates the data-driven
method selection process with them:

public delegate T VisitFun <V, T>(V unaryFun , T currentState);

public static VisitorFun <V, T>

MakeVisitorFun <V, T>(Dictionary <System.Type , VisitFun <V, T>> Dict) {

T state = default(T);

return obj => { state = Dict[obj.GetType ()](obj , state);

return state; };

}

Next, the following definitions correspond to the same functional concrete visitor
example as above:

var dict1 = new Dictionary <System.Type , VisitFun <IFigureF , String >>();

dict1.Add(typeof(SimpleFigureF), (f, s) => s + f.GetName () + " ");

dict1.Add(typeof(CompositeFigureF), (f, s) => s + f.GetName () + "/");

var nameFigureFunVisitor1 = MakeVisitorFun <IFigureF , String >(dict1);

Extending such a Visitor with a new class satisfying the interface IFigureF, i.e.
extending the set of the visited classes Ci, is not a problem any longer: one just has
to extend the dictionaries Moreover, such dictionaries may evolve at runtime, and
any method with the expected type may be inserted into them (cf. Sec. 4.2).

We have illustrated that using FP techniques may provide solutions to some of
the drawbacks of the classic Visitor implementation, mainly, refactoring resistance,
staticness and naming inflexibility. FP data-driven techniques indeed allow one to
easily get ad-hoc selection processes, which can then be mixed with an OO archi-
tecture. However, these properties are often obtained at the expense of type safety
(e.g., exceptions are raised if a method definition is not present) and possible type
incoherences (e.g., combinations of unrelated methods, multiple definitions for the
same case): the completeness and the validity of a given dictionary may remain a
responsibility of the programmers.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 205

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

6 CONCLUSION

In order to write powerful and flexible code at a function/method granularity design
level within classic OOP, there exist essentially two ways:

1. Single function/method encapsulation into objects: this technique leads to ho-
mogeneous architecture design, only based on OOP concepts9. However, it also
leads to syntactic overhead and architecture needless complexity, in particular
by bloating the sets of classes and the inheritance graphs10.

2. Single function/method management by introspection/reflection and plug-in
capabilities: these techniques lead to sophisticated and ad-hoc solutions, but
they also lead to insufficient safety and bug intractability, by being external
to the language itself.

A possible answer to the inconveniences of these techniques is to include a typed
first-class function/method granularity level, that is, to offer some FP capabilities
to OOP. We have indeed seen that this paradigm combination provides some sim-
plifications and increased flexibility in OOP in terms of:

• Code abstractions at a function/method level.

• Easy generic iterator/loop implementations.

• Easy operation compositions, sequence/query comprehensions.

• Function partial applications.

• Reductions of the number of object/class definitions.

• Name abstractions at a function/method level.

We have also seen that some characteristic FP techniques may enrich OOP with
alternative solutions, in particular with respect to:

• Laziness emulations (e.g., in Virtual Proxies).

• Data-driven or table-driven programming (e.g., in Visitors).

However, we have stressed that the quality of these solutions could be impaired
by problems mainly induced by the design granularity mismatch, particularly when
classes are encapsulating units, like in Java, C++, or C# . Several aspects of these
problems have been shown to be partially solved by specific modular organizations,

9For instance, in [JLT98], one reads “[...] bound method references [delegates] are harmful because they detract
from the simplicity of the Java programming language and the pervasively object-oriented character of the APIs.
Bound method references also introduce irregularity into the language syntax and scoping rules.”.

10For instance, in [Bec97], one reads “Managing a namespace across many classes is expensive. You would like
to invoke the costs of a new class only when there is a reasonable payoff. A large family of classes with only a
single method each is unlikely to be valuable”.

206 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

6 CONCLUSION

anonymous constructs, and interrelation mechanisms like extension methods. Still,
homogeneity of one’s architectural structure, reusability, extensibility, datatype co-
herence may remain difficult to deal with when some FP design level is mixed with
OOP. As a conclusion, the claim at the beginning of the paper saying that “adding
some functional programming capabilities within an object-oriented language leads to
benefits for object-oriented programming design” is certainly true, but unsurprisingly
without providing any silver bullet.

Acknowledgement: I thank G. Eyrolles for many fruitful discussions.

References

[Ale01] A. Alexandrescu. Modern C++ Design. Generic Programming and Design Patterns Applied. Addison-
Wesley, 2001.

[ASS85] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. MIT
Press, 1985.

[Bak93] Henry G. Baker. Iterators: signs of weakness in object-oriented languages. OOPS Messenger, 4(3):18–
25, 1993.

[Bec97] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[BGGA08] G. Bracha, N. Gafter, J. Gosling, and P. Von der Ahé. Closures for the Java programming language
(v0.5), 2008. (last seen in: http://www.javac.info/closures-v05.html).

[BGS07] K. Beck, E. Gamma, and D. Saff. Junit documentation – a cook’s tour, July 2007.

[Bis08] J. M. Bishop. C# 3.0 Design Patterns. O’Reilly, 2008.

[Blo01] J. Bloch. Effective Java (Programming Language Guide). The Java Series. Addison-Wesley, 2001.

[Bru02] K. Bruce. Foundations of Object-Oriented Programming Languages: Types and Semantics. MIT Press,
2002.

[Bru03] K. Bruce. Some challenging typing issues in object-oriented languages. Electronic notes in Theoretical
Computer Science, 82(8), 2003.

[BW88] R. Bird and Ph. Wadler. Introduction to Functional Programming. Prentice Hall, 1988.

[Cli06] M. Cline. C++ FAQ Lite, 2006. (last seen in: http://www.parashift.com/c++-faq-lite).

[CMLC06] C. Clifton, T. Millstein, G.T. Leavens, and C. Chambers. Multijava: Design rationale, compiler imple-
mentation, and applications. ACM Trans. Program. Lang. Syst., 28(3):517–575, 2006.

[Coc08] M. Cochran. Introduction to functional programming in C#. C# Corner, January 2008. (last seen in:
http://www.c-sharpcorner.com).

[DHM+99] P. Dubois, M. Howard, B. Meyer, M. Schweitzer, and E. Stapf. From calls to agents. Journal of
Object-Oriented Programming, 12(6), 1999.

[ECM06a] Standard ECMA. C# language specification, June 2006. Number-334.

[ECM06b] Standard ECMA. Eiffel: Analysis, design and programming language, June 2006. Number-367.

[FF98] R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. In Proceedings
of the ACM SIGPLAN Intl. Conference on Functional Prog. (ICFP ’98), volume 34(1), pages 94–104,
1998.

[FH88] A. J. Field and P. G. Harrison. Functional Programming. Addison-Wesley, 1988.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 207

FUNCTIONAL PROGRAMMING AT WORK IN OBJECT-ORIENTED PROGRAMMING

[FWH92] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming Languages. MIT Press, 1992.

[Gaf07] N. Gafter. JSR proposal: Closures for Java, 2007. (last seen in:
http://www.javac.info/consensus-closures-jsr.html).

[GHJV95] E. Gamma, R. Helm, R. Jonhnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.

[Goe07] B. Goetz. Java theory and practice: The closures debate. Technical report, IBM, April 2007. (last seen
in: http://www.ibm.com/developerworks/java/library/j-jtp04247.html).

[GR89] A. Goldberg and D. Robson. Smalltalk-80 – the language. Addison-Wesley, 1989.

[GWB91] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. CLOS: integrating object-oriented and
functional programming. Commun. ACM, 34(9):29–38, 1991.

[HT06] Jay Hilyard and Stephen Teilhet. C# Cookbook. O’Reilly, 2006.

[Hud00] P. Hudak. The Haskell School of Expression (Learning Functional Programming Through Multimedia).
Cambridge University Press, 2000.

[Hug89] J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98–107, 1989.

[JF09] J. Jarvi and J. Freeman. C++ lambda expressions and closures. Science of Computer Programming,
2009. (in press).

[JFC08] J. Jarvi, J. Freeman, and L. Crowl. Lambda expressions and closures: Wording for monomorphic
lambdas. Technical Report N2550=08-0060, ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming Language C++, February 2008.

[JLT98] The Java Language Team. About Microsoft’s ”delegates” (whitepaper). Technical report, JavaSoft,
Sun Microsystems, Inc., 1998. (last seen in: http://java.sun.com/docs/white/delegates.html).

[Kee89] S. E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley, 1989.

[Ken06] A. Kennedy. C# is a functional programming language. Fun in Oxford Meeting, November 2006.

[KFF98] S. Krishnamurthi, M. Felleisen, and D.P. Friedman. Synthesizing object-oriented and functional design
to promote re-use. In ECCOP ’98: Proceedings of the 12th European Conference on Object-Oriented
Programming, pages 91–113, London, UK, 1998. Springer-Verlag. LNCS 1445.

[Küh94] Th. Kühne. Higher order objects in pure object-oriented languages. SIGPLAN Notices, 29(7):15–20,
1994.

[Küh97] Th. Kühne. The function object pattern. C++ Report, 9(9):32–42, 1997.

[Küh99] Th. Kühne. A Functional Pattern System for Object-Oriented Design. Verlag Kovac, 1999.

[Lau95] K. Laufer. A framework for higher-order functions in C++. In Proc. Conf. Object Oriented Technologies
(COOTS), pages 103–116, June 1995.

[LDG+08] X. Leroy, Doligez D., J. Garrigue, Rémy D., and Vouillon J. The Objective Caml System. Documentation
and User’s Manual. INRIA, February 2008.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared behavior in object-oriented systems.
SIGPLAN Not., 21(11):214–223, 1986.

[Mar03] R. C. Martin. Agile Software Development (Principles, Patterns and Practices). Prentice Hall, 2003.

[Mei07] Erik Meijer. Confessions of a used programming language salesman. In OOPSLA ’07: Proceedings of
the 22nd annual ACM SIGPLAN conference on Object oriented programming systems and applications,
pages 677–694, 2007.

[Met04] S.J. Metsker. Design Patterns in C#. Addison Wesley, 2004.

[Mey01] S. Meyers. Effective STL. Addison-Wesley, 2001.

[Mic98] Microsoft. The truth about delegates. Technical report, MSDN Newsletter, September 1998.

208 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 6

6 CONCLUSION

[Mic07a] Microsoft. C# Language Specification (Version 3.0), 2007.

[Mic07b] Microsoft. C# Programming Guide. Visual Studio 2008 Documentation, 2007.

[MS04] B. McNamara and Y. Smaragdakis. Functional programming with the FC++ library. J. Funct. Pro-
gram., 14(4):429–472, 2004.

[Nar05] Ph. Narbel. Programmation fonctionnelle, générique et objet (Une introduction avec le langage OCaml).
Vuibert, Paris, 2005.

[Nar07] Ph. Narbel. A multiparadigmatic study of the object-oriented design patterns. In MPOOL’07, European
Conference on Object-Oriented Programming, Berlin, July 2007.

[Ode08] M. Odersky. The Scala Language Specification. Programming Methods Laboratory, EPFL, 2008.

[Ost08] Klaus Ostermann. Nominal and structural subtyping in component-based programming. Journal of
Object Technology, 7(1):121–145, 2008.

[OWG08] B. Oliveira, M. Wang, and J. Gibbons. The visitor pattern as a reusable, generic, type-safe compo-
nent. In OOPSLA ’08: Proc. of the 23nd conference on Object oriented programming systems and
applications, pages 439–456, 2008.

[Pau97] L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1997.

[Pet07] Th. Petricek. Lazy computation in C#. Technical report, Microsoft, Visual C# Developer Center,
October 2007.

[PJ98] J. Palsberg and C. B. Jay. The essence of the visitor pattern. In Computer Software and Applications
Conf., 1998. COMPSAC ’98, pages 9–15, 1998.

[Rea89] Ch. Reade. Elements of Functional Programming. Addison-Wesley, 1989.

[Rey75] J. C. Reynolds. User-defined types and procedural data structures as complementary approaches to
data abstraction. In New Directions in Algorithmic Languages, pages 157–168. INRIA, IFIP Working
Group 2.1 on Algol, 1975. Schuman, A. (Editor).

[Ric01] Jeffrey Richter. An introduction to delegates. MSDN Magazine, April 2001.

[SF90] G. Springer and D.P. Friedman. Scheme and the Art of Programming. MIT Press, 1990.

[SL95] A. A. Stepanov and M. Lee. The Standard Template Library. Technical report, Hewlett-Packard, Palo
Alto, CA, 1995.

[SM00] Y. Smaragdakis and B. McNamara. Bridging functional and object-oriented programming. Technical
Report 00-37, Georgia Tech CoC Tech., 2000.

[VMR98] J. Vlissides, R. Martin, and D Riehle. Pattern Languages of Program Design 3. Addison-Wesley, 1998.

[Wad98] Ph. Wadler. The expression problem. Java Genericity Mailing List, 1998.

[Wie08] Richard Wiener. Arithmetic function interpreter in C# 3.0 using lambda expression trees. Journal of
Object Technology, 7(3):41–48, 2008.

ABOUT THE AUTHOR

Ph. Narbel is associate professor in computer science at Bordeaux University,
France. He can be reached at narbel at labri.fr.

VOL 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 209

