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Abstract 
The debugger backend is a lower-level language subsystem enabling to control and 
inspect a program’s execution (debuggee), while the frontend is a higher-level API 
for backend functionality aiming to support debugger user-interfaces. Existing 
debugger backends allow retrieve aggregate contents, but are language technology 
dependent, limiting the chances for producing debugger user-interfaces for other 
types of languages. For instance, it is common to use reserved type identifiers, like 
pointer, class, void and enumerated, restricting applicability to languages with no 
equivalent types. Moreover, in all known backends the aggregate nature of a value 
is implied by its type, requiring the debugger user-interface developer interpret it 
according to the language. For example, in Java Debugger Interface an object 
reference is always assumed to be an aggregate, while in GDB Internals gaining the 
contents of a memory address requires interpret the pointer type. We resolve such 
issues by implementing a backend component relying on encoding of aggregates in 
a language-agnostic way, with no explicit or implicit type information. Our backend 
supports incremental retrieval of contents, reducing the performance overhead 
observed in other libraries, like MS Visual Studio Debugger Visualizer Library, 
serializing entire objects. Our method has been implemented in the backend of the 
Delta language Debug Architecture (DDA), deployed by the Disco command-line 
debugger and the Zen graphical debugger, publicly available (details at the end). 

1 INTRODUCTION 

The development of a debugger entails primarily three key components (see Figure 
1): (a) the debugger backend being usually language or platform dependent; (b) the 
debugger frontend, being in most cases tied to a specific backend; and (c) the 
debugger user interface that has to deploy a specific frontend. 
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Figure 1: Key components involved in debugger development. 
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The development style of the backend heavily depends on the target platforms, as well 
as the languages aimed to be supported. For example, if the debugged programs are 
compiled in machine code, specific operating system facilities are needed to control 
execution and to trace system-level events, as done in GDB [GNU07]. Additionally, 
the format of symbolic debugging information, inserted during code generation by the 
language compilers, must be known since it is read and analyzed before execution, or 
even during execution when a lazy approach for symbol loading is implemented 
(planned for the next version of GDB). On the other hand, for languages compiled to 
byte code the backend is typically built as a subsystem using intrinsic features of the 
virtual machine. The latter is usually opaque to language users and is implemented in 
native code to avoid circular interference, as with the Java TI [Sun05] and the CLR 
debugging API [Microsoft07-2]. 
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Figure 2: Browsing support for aggregate values in different debuggers. 

In all backends, various methods are offered to query the contents of variables and 
program memory, in ways depending on the language semantics (e.g., in Java or CLR 
no memory inspection is supported as with C++). Content retrieval for aggregate 
variables and interactive browsing is a valuable user-interface feature of most existing 
debuggers (see Figure 2), enabling programmers rigorously inspect and analyze the 
current program state. Such browsing facilities may support typical tree views, or 
even object graphs, the latter capable of revealing recursive associations. 
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Identification of the Problem 

Our technical focus is on implementation methods enabling debugger backends 
deliver functionality in ways hiding language details. Such a potential genericity will 
inherently turn frontends to language-independent modules, since the latter are no 
more than remote interfaces to the backend services.  

In this context, while reviewing the core debugger architecture of many 
languages we observed that, in all cases, the information describing the returned value 
of queried expressions is language dependent, since it explicitly involves type 
information. Effectively, the debugger user-interface developer is obliged to 
implement the browsing logic according to the type information obtained for 
aggregate variables. The latter disables the implementation of a common language-
agnostic component to browse aggregate values for debugger user-interfaces.  

We present a method to effectively overcome this barrier. Currently, we support 
this method in the debug architecture of the Delta language [Savidis08] - Delta Debug 
Architecture (DDA). The latter has been deployed in the development of two 
debugger user-interfaces, a command-line debugger (Disco), and graphical one (Zen) 
embedded in the Sparrow IDE of the Delta language. Although our test-case is a 
dynamically-typed language, as we also demonstrate with specific examples for 
describing C++ STL container values, our method is pretty generic. 

Overview of Contribution 

In our approach, we entirely avoid type descriptors in the value information for 
aggregate variables. Instead, we introduce indexing strings (expressions) for fields, to 
be deployed as they are by the debugger user-interface when querying field contents. 
Such a process may be recursively applied in case the returned value of a queried field 
is tagged as aggregate too. The responsibility to generate and interpret field indexing 
strings is entirely on the backend in a way fully transparent to the frontend. 
Practically, the content of indexing strings will reflect being language-specific lexical 
and syntactic characteristics. However, the frontend is never required to interpret such 
contents. It merely uses the indexing strings to post further field queries. We present a 
quick example related to the C language to outline our method. 

Consider the C type struct List { char val[64]; List* next; } and 
a respective program variable x where x.val=”hello”, x.next points to a List 
where x.next->val=”world” and x->next->next = NULL. In the request of 
“x” expression via the debugger frontend, the debugger backend will return the 
following value information: 

 
• The value is composite 
• Its content overview is the string “List()”      
• Its absolute reference is the string “0x3fdcc80ef” 
• It has two (2) fields 
• Field 1 has the display string “val” and indexing string “->val”  
• Field 2 has the display string “next” and indexing string “->next” 
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In the previous list, the way the content of the various indexing strings is produced is 
a responsibility of the debugger backend and is clearly dependent on the particular 
language semantics. For instance, a C-language backend will adopt a memory address 
as an absolute reference to an aggregate object, while a Java backend may use an 
object reference string appropriate for the JVM. Based on this information, the 
debugger user interface can produce an appropriate interactive display view as shown 
under Figure 3, part 1 (top left). Notice that for all fields the debugger user-interface 
uses the display string returned as part of the value information.  
 

x 
List() : 0x3fdcc80ef 
 [+] val 
 [+] next 

x 
List() : 0x3fdcc80ef 
 [-] val char[64]: ’Hello’ 
 [-] next List() : 0x3fdcca1c2 
  [+] val 
  [+] next 

x 
List() : 0x3fdcc80ef 
 [-] val char[64]: ’Hello’ 
 [+] next 

x 
List() : 0x3fdcc80ef 
 [-] val char[64]: ’Hello’ 
 [-] next List() : 0x3fdcca1c2 
  [-] val  char[64]: ’Hello’ 
  [-] next List(): null 

Figure 3: Example of debugger data inspection with incremental query on selected fields. 

Now, let’s assume the user chooses to view the content of “val” field. The user-
interface needs only concatenate the “x” of the original expression with the respective 
indexing string of the field selected for inspection , being “->val” in our example, 
and post an inquiry for evaluation of the “x->val” expression. In this case, the 
debugger backend will return the following value information: 

 
• The value is simple 
• Its content is the string “char[64]: ‘hello’”    

 
Through such information the debugger user-interface may further expand the field 
display to incorporate the received value as shown in Figure 3, part 2 (bottom left). It 
should be noted that field type information is visible to the user only because it 
happens to be embedded in the received value content string “char[64]: ‘hello’”. 
Following similar steps, the “next” field is also expanded, as shown in Figure 3, part 
3 (top right), being received as an aggregate value with explicit field access 
information, like the previously queried “x” expression. Finally, to obtain the two 
fields of x->next, the concatenation with the respective field indexing strings will 
produce “x->next->val” and “x->next->next”, thus resulting in the fully expanded 
display of the entire aggregate object x as shown in Figure 3, part 4 (bottom right). 
This example provides an overview of the way our expression query method allows 
debugger user-interfaces to access individual fields of aggregate objects and to even 
display type information without introducing in the backend module functions 
involving type-specific parameters. In summary, the novel features of our method for 
obtaining aggregate values are the following: 

1 
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Type free encoding  - supporting language independence 
Object reference representation – supporting detection of recursive structures 
Incremental on-demand retrieval – supporting performance efficiency 
Mixed language debugging – supporting mixed backends for component software 

2 RELATED WORK 

We continue by studying some of the major debugger backends currently deployed in 
the development of most popular source-level debuggers. In particular, we focus on 
the APIs offered by the corresponding frontends, showing that they all introduce type-
dependent information, effectively rendering the frontend as language dependent. 

GDB Internals, Types [Gnu07] The Internals library of GDB is an interface to 
the GNU GDB debugger, not a typical frontend as such, but a sort of a control API 
(via libgdb) over the basic GDB debugger that must be running. It aims to support 
graphical user-interfaces. The API part relating to variable content information is the 
Types section, directly revealing language-specific types like builtin_type_void 
and builtin_type_char, meaning the graphical debugger is obliged to interpret 
value information in compliance to such language-dependent type tags. 

Java Platform Debug Architecture (PDA), Debug Interface [Sun05] The 
JPDA JDI is a debugger frontend in Java providing information useful for debuggers 
and similar systems (like profilers) which need access to the running state of a 
(usually remote) Java virtual machine. The API being in Java allows tool developers 
to easily create Java debugger applications running portably across various platforms. 
The JDI API defines classes of outgoing requests (com.sun.jdi.request package) 
and incoming events (com.sun.jdi.event package) communicated to / from the 
backend (Java Technology Interface), together with classes regarding the value of 
inspected variables, derived from (implementing super-interface) Value. Examples of 
such classes modeling the content of values are CharType / CharValue, 
ArrayType / ArrayReference, and ClassType / ClassObjectReference. It is 
evident that such classes, which must be deployed by the debugger user-interface 
developer, are strongly tied to the Java language. 

CLR Debugging Architecture, Debugging API [Microsoft07-1, Microsoft07-2] 
The Debugging Architecture (DA) of the Common Language Runtime (CLR) allows 
debugging in a uniform manner executables which encompass both managed and 
unmanaged code (i.e. mixing CLR byte code and native code). This is a powerful 
feature towards mixed-language debugging that is not supported by the JPDA where 
native code is opaque during debugging of Java code (there is no way in JPDA to 
trace into native code). The CLR debugging API, amongst a plethora of other 
features, provides methods to get the value of an argument or local variable that is 
stored in a specified register of a retrieved native stack frame instance. The value type 
is gained by calling the ICorDebugValue::GetType method returning a 
CorElementType value tested against type tags like ELEMENT_TYPE_STRING, 
ELEMENT_TYPE_CLASS and ELEMENT_TYPE_GENERICINST. An important 
difference when comparing to similar Java API is that the value type for CLR is 
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actually a unified API covering the C#, C and C++ languages altogether. 
Nevertheless, the API still remains language-dependent, despite the fact it unifies 
three languages instead of one. 

Visual Studio™ Debugger Visualizer Library [Nonnenberg05] Not a debugger 
frontend as such, it generally falls in the category of add-ons enabling to extend or 
enrich specific debugging facilities, in particular the data visualization support. In this 
library, all data to be visualized must be serialized to System.IO.Streams to be 
transported between the debuggee and the visualization code residing in the debugger 
user-interface. To simplify this, Microsoft.VisualStudio.DebuggerVisualizers.dll 
provides a class called VisualizerObjectSource that does the most basic type of 
serialization required by serializing the entire object and making it easy to extract it 
on the debugger user-interface side, for objects having the Serializable attribute. 
In [Nonnenberg05] it is acknowledged that performance may suffer if large classes 
are visualized using this method, so it is recommended to develop some sort of on-
demand communication mechanism beyond the default monolithic implementation. 
For example, a List visualizer might only transfer the elements initially in view; 
once the user scrolls, the visualizer could request the data necessary to draw the new 
view. We put emphasis on this remark, since our method already supports incremental 
on-demand content delivery for aggregate objects. 

Lua Debugger Interface [Ierusalimschy03-2] Lua [Ierusalimschy03-1] does not 
offer a debugger frontend as such, but reveals a lower-level backend C API 
implemented in native code as part of the Lua Virtual Machine. In this sense, the 
debugger interface assumes the debugger user-interface developer to deploy directly 
the core Lua API (embedding API) in order to access the stack and to examine 
variable state (content). Overall, compared to previous methods, the Lua Debugger 
Interface is the most primitive API, and also the most language-specific for debugger 
user-interface development. 

DBGP Common Debugger Protocol [Caraveo07] DBGP is a simple frontend 
protocol to use with language tools and engines for the purpose of debugging 
applications. An interesting feature of DBGP is that it supports incremental retrieval 
of aggregate object contents, relying on string identifiers for field names that the 
debugger user-interface should concatenate (all the way to the root aggregate object) 
so as to query a field (see Section 7.11 of the protocol definition). However, the 
protocol itself still introduces data types, which, while aimed to be generic enough, 
they can’t be in real practice. More specifically, section 7.12 of the protocol presents 
common data types together with a way of mapping native (debuggee language) types 
to generic frontend types. Such type information should be used by the debugger user 
interface to decide the value query policy. In particular, hash is type tag for 
dictionaries, supporting only string keys. The latter is inadequate for even trivial cases 
of the C++ STL std::map where keys other than string may be commonly 
defined. Additionally, there is a resource type tag, experimentally introduced to 
address types not covered by the standard types of the protocol. This type tag is very 
problematic, since, at the user-interface level it practically implies a sort of ‘no further 
inspection possible’ dead-end. Even for scripting languages, for which the protocol 
was likely originally inspired, such a restriction is very crude. For example, most 
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scripting languages support native pointers as external objects, whose data structure 
and operations (methods) are defined in C or C++ code. In such cases, there is no way 
for the developer of native libraries to allow scripting language users inspect in detail 
the native objects. As we will show, our frontend method puts no restriction as to the 
type of objects for which the backend allows detailed inspection.  

Next we continue elaborating on the software architecture putting emphasis on 
the component structure to support language-independent aggregate object inspection. 

3 OVERALL SOFTWARE ARCHITECTURE 

We discuss the software architecture details, in particular the way expression 
evaluation is managed at the debugger backend and frontend sides. At the 
macroscopic level, the architecture adopts the typical separation among the backend 
and frontend components via remote communication. In this context, we put no 
particular requirements on the way these two basic components are implemented and 
the specific services they provide. Practically, our approach can be easily 
implemented as an extension on existing debugger engines with a relatively small 
effort, independently of their implementation language and software architecture. Our 
architecture is outlined under Figure 4. Its is evident that the changes introduced on 
typical debug architectures merely relate to the way an expression evaluation result is 
converted from a native value object to a language-neutral value-information object 
(see right part of Figure 4, control flow starting from ‘Expression Evaluator’). 
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Figure 4: Overview of the debugger architecture to support language-agnostic expression evaluation 

and incremental browsing for aggregate values. 

In this process, two key classes are involved, NativeValue and ValueInfo. 
Naturally, for backend languages with no support of classes other user-defined 
structured data types can be used to model value content and value information (like 
structures, tuples, records, etc.). Objects of NativeValue class are practically 
metadata for native values enriching the latter with type information. This way, it is 
possible to write code which extracts the contents of an aggregate native value from a 
NativeValue object. The NativeValue class is intrinsic to the debugger backend, 
and in the language the backend is also implemented. Currently, as discussed in the 
‘Related Work’ section, most known backends or frontends already encompass a data 
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type with role similar to NativeValue class, although they tend to externalize such a 
type to the debugger frontend. For example, in CLR this role is covered by the 
Metadata API together with the reflection API (debugger APIs at backend side), 
while, under JDI, objects of class implementing Value super-interface (API at 
frontend side) may be examined via reflection. Also, the step involving translation of 
a native value to respective metadata is implemented in most debugger engines, since 
they make such metadata available to the debugger frontend.  
 

typedef const string ConstStr; 
typedef const list<ConstStr> ConstStrList; 
 
struct ValueInfo { 
 struct Aggregate {   
  struct Elem { 
   struct Key { 
    ConstStr GetDisplayText (void) const; 
    ConstStr GetValueRef (void) const; 
    bool  HasValueRef (void) const; 
   }; 
   ConstStr  GetDisplayText (void) const; 
   bool   AreKeysVisible (void) const; 
   ConstStrList& GetFieldKeys (void) const; 
   ConstStr  GetSubIndex (void) const; 
  }; 
  ConstStr&   GetDisplayText (void) const; 
  ConstStr&   GetAbsoluteRef (void) const; 
  const list<Elem>& GetElems (void) const; 
 }; 

 enum MetaType { SimpleType = 0, AggregateType = 1 }; 
 MetaType   GetMetaType (void) const; 
 const ConstStr&  GetSimple (void) const; 
 const Aggregate&  GetAggregate (void) const; 
}; 
 

Figure 5: Outline of the ValueInfo C++ class (as a struct to avoid access qualifiers) for the debugger 
frontend and backend of the Delta language; constructors, destructors, operator methods, and member 

fields, have been all stripped-off for clarity. 

In conclusion, as a first step, we propose to encapsulate (hide) any value metadata at 
the debugger backend side. The ValueInfo class is a special form of metadata 
whose objects carry information regarding the value content for display purposes 
only, having no type related elements. In this sense, the ValueInfo object of a native 
value is an external language-independent representation. As an example, consider the 
numeric value 10. On the one hand, as a NativeValue object it carries a type tag 
corresponding to numeric data types, together with the native representation of the 
numeric value 10. On the other hand, its respective ValueInfo object carries merely 
a meta-tag identifying it is a simple value and the string value “10” as its displayable 
content. The difference amongst the two classes is fundamental. While from a 
NativeValue object the native value can be always obtained, from a ValueInfo 
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object it cannot since type information is missing. Clearly, converting from 
NativeValue to ValueInfo is implemented in a straightforward manner by 
dispatching on the NativeValue type tag, the process applied recursively for 
aggregates. In Figure 5, our implementation of the ValueInfo class in C++ is 
outlined for the Delta debugger engine, currently shared by the backend and frontend 
as they are both implemented in the C++ language. 

Following Figure 5, ValueInfo merely distinguishes two fundamental meta-
types for values: AggregateType and SimpleType. Simple values need only carry 
the display content that is stored in a string (see GetSimple() method). Apparently, 
for Aggregate values more information is included:  
 
List of elements taken via GetElems() method, with information per element 
modeled through the Elem class  
Optional display text for the entire aggregate object taken via the 
GetDisplayText() method, such as “List(): 0x3fdcc80ef” of our early 
example in Figure 3 
Reference string taken via the GetAbsoluteRef() method, uniquely identifying the 
entire aggregate object such as “0x3fdcc80ef” of our early example in Figure 3, 
enabling easily identify recursive references 
 
As explained earlier, what is actually put inside display or reference strings is a 
responsibility of the backend. In our example, it happens to be a pointer address in 
hexadecimal format, while as we discuss latter, the Delta debugger backend produces 
reference strings like “_2object(0x13)” or “_2externid(0x14)”. Whether 
such references are displayed to the user is a matter of the debugger user interface. 
For instance, in a DDD [DDD08] style data visualizer it may be more appropriate to 
show such reference strings, while in a typical tree view browser likely not. 

Returning to our architecture of Figure 4, as shown, the produced ValueInfo 
object is encoded in XML and communicated through the network to the debugger 
frontend.  Then, it is decoded to the original ValueInfo object, however, 
ValueInfo class now defined in the frontend programming language. Apparently, 
the ValueInfo class may be reused by the frontend in case it is implemented in the 
same language as with the backend. The retrieved ValueInfo object is then used by 
the component facilitating interactive browsing of aggregate values. This component 
may post further expression evaluation requests for field expansion, as briefly 
explained in our introductory example. The details of this process are discussed under 
Section 5 ‘FRONTEND AND UI: DECODING AND BROWSING’.  

Next we continue with the details of converting native values to value 
information, discussing the design rationale regarding: structure, syntax, multiple 
encoding formats, and value conversion examples for objects in different languages. 
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4 BACKEND: CONVERTING AND ENCODING 

The choice of the ValueInfo structure to carry display information was the result of 
an in depth study regarding the type information required by debugger user-interfaces 
so as to support effective inspection of aggregate variables. We have examined 
scenarios with varying requirements such as: 
 
Visualization via typical tree views or object graphs 
Stepwise content browsing (i.e., user is clicking or selecting to reveal inner contents) 
or fully expanded views (i.e., the user interface provides an exploded view of 
aggregate contents down to simple elements) 
Various object categories: normal objects, collections (e.g., arrays, lists, sets, and 
dictionaries with one or multiple keys), native objects (for scripting languages), 
methods, functions, packages 
Alternative field access policies:  
Visible or hidden keys (e.g., to force fields be inspected only within their parent 
context, thus forbidding standalone indexing) 
Extra language-supported pseudo fields (e.g. source file, definition line, type 
information structure) 
Modified or even artificial (pseudo) keys (e.g., allow straight indexing of list elements 
via numeric indices) 
Expandable aggregate keys (e.g., tuples or dictionaries supporting entire objects as 
keys) 
Various object models:  
Class-based, single or multiple inheritance, where depending on the language, may 
view  class name, virtual table and derivation tree 
Prototype-based languages with dynamic inheritance, where depending on the 
language the following can be viewed: 
Parent slots (for delegation links) 
Base objects and derived object (for dynamic object trees) 
 
The need for such an exhaustive analysis with diverse scenarios was prominent, since, 
the elimination of type information at the debugger frontend side requires guarantee 
that type information won’t be necessary whatsoever. The text encoding syntax for 
value information is provided under Figure 6. We continue with a few examples 
demonstrating the expressive power of the encoding method for aggregate objects in 
C++ (typed class-based) and Delta (dynamic object-based). 
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Value  ::= ( Simple| Aggregate ) 
Simple  ::= ‘simple’ DpyText 
DpyText  ::= ‘display’ quoted_string 
Aggregate ::= ‘aggregate’ DpyText AbsRef { [ Elem ] } 
AbsRef  ::= ‘absref’ quoted_string 
Elem:  ::= ‘element’ Index [ DpyText ] Keys 
Index:  ::=  KeyAccess ‘index’ quoted_string 
KeyAccess: ::= ( ‘visible’ | ‘hidden’ ) 
Keys:  ::= { ‘key’ DpyText KeyValueRef } 
KeyValueRef ::= ( ‘nokeyref’ | ‘keyref’ quoted_string ) 
 

Figure 6: Grammar in EBNF for encoding ValueInfo to text. 

Encoding Examples for Aggregate Values 

C++ STL std::list Since it is a container supporting sequential access, we chose 
an encoding style by enumerating elements through successive numeric indices that 
the backend can interpret, even though such random access is not provided by the 
actual class (i.e. can’t get independently a list element by such indexing). The display 
text of every element provides information regarding its position in the list, while the 
display text of the list object displays information regarding the number of elements 
and the element type (template parameter) of the list. For example, for a list<int> 
with elements 23,56,98 an encoding could be the following: 

 
aggregate display “list<int>: size 3”     absref “(*(list<int>*)0xfe129409)” 
element   hidden index “.getbyorder(0)”  key display   “(0)”  nokeyref 
element   hidden index “.getbyorder(1)”  key display   “(1)”  nokeyref 
element   hidden index “.getbyorder(2)”  key display   “(2)”  nokeyref 

 
The strings at the right of the index keyword, e.g. “.getbyorder(0)”, are actually 
the indices to be internally used by debugger user-interface when querying the value 
of individual fields. The displayable part of the keys, when listing all fields in the 
user-interface, are provided by the strings at the right of the display keyword, e.g. 
“(0)”. To query individual fields, every index entry should be concatenated with the 
aggregate’s absolute reference string next to absref to form the expression string for 
field inquiry.  For example, “(*(list<int>*)0xfe129409).getbyorder(0)” 
string is the entire expression to query the first field.  

When for a particular element its key is defined as hidden it means the debugger 
user-interface should never display the internal key explicitly to the user. The 
indexing method implied by the string content of the index entry is something to be 
supported by the expression evaluator, not actually related to the methods offered in 
the language for manipulating aggregate types. For example, “getbyorder(0)” 
need not be a method of the list class, but a pseudo method handled by the expression 
evaluator at the debugger backend side. In a similar way, pseudo attributes may also 
be introduced. 

Field query keys Field display keys 
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C++ STL std::map It is a single-key dictionary container supporting 
aggregate keys. Stored elements are aggregates as pairs of the key and a respective 
stored value. In C++ debuggers, like Visual Studio, it is supported to enumerate 
(according to an implementation-dependent ordering) all elements, enabling browse 
the pair contents (via first and second fields). Lets consider a map of strings keys 
and integer values, with the elements <”hello”:9> and <”world”:11>. We 
provide below the encoding for the map aggregate itself, and the two aggregate 
elements.  

 
aggregate display “map<string,int>: size 2”  
          absref  “(*(map<string,int>*)0x8001f0ea)” 
element   hidden index “.getbyorder(0)”  key display “(0)” nokeyref 
element   hidden index “.getbyorder(1)”  key display “(1)” nokeyref 

aggregate   display ”pair<string,int>” 
     absref  “(*(pair<string,int>*)0xf1cabd0e)” 

element   visible index “.first”    key display “first”  nokeyref 
element   visible index “.second”   key display “second” nokeyref  

aggregate   display ”pair<string,int>” 
     absref  “(*(pair<string,int>*)0xf1cb10fc)” 

element   visible index “.first”    key display “first”  nokeyref 
element   visible index “.second”   key display “second” nokeyref 

 
Because an STL map encompasses the key value in the element structure, access to 
key contents is straightforward through index .first, whether the key is aggregate 
or simple. In other words, if the field key is also a reserved normal field, like first, it is 
enumerated with the rest of the fields during encoding, as with the example above. 
However, in some cases dictionary types may be an integral part of the language, 
rather than part of accompanying libraries, while the storage area of key values is 
opaque to programmers. In this case, for aggregate keys it is necessary to provide 
extra reference facilities so as to support expandability by the user. The next example 
is about this scenario. 

Delta Object Delta is an untyped object-based language (i.e. has no notion of a 
class), where objects are created by replication (usually the very first objects in such a 
process produced explicitly by initializing fields, not by cloning, are commonly 
referred as prototypes). The main object element in the Delta language is a single-key 
dictionary, allowing keys of any value (not only strings, but objects or methods may 
play the role of keys as well), while supporting runtime inheritance associations 
among distinct objects to form either delegation webs or subobject trees [Savidis08]. 
Practically, as with all languages, an object is an associative container. When during 
debugging an expression evaluates to an object having aggregate keys, like an object 
or a method, it is imperative to allow the user expand the contents of the aggregate 
keys as well. We show how our value information grammar enables to inject such 
information within value encoding.  

Let’s consider an object A having three fields with the following keys and 
respective values:  string key “x” for value number 10, numeric key 0 for value a 
program function f, and an object key B for value being another object C. The text 
encoding in our grammar is provided below. 

element (0) 

element (1) 
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aggregate display “object(0x14)BASES<0>DERIVED<0>” absref “_2object_(0x14)” 

element   index “.x” key display “x”  nokeyref 
element   index “[0]” key display “[0]”  nokeyref 
element   index   “_2object_(0x17)”   
  key display  “object(0x17)BASES<1>DERIVED<0)>”   
  keyref     “_2object_(0x17)” 

 
The key point in the previous value encoding is the presence at the third element of a 
keyref string, e.g., “_2object_(0x17)”. This entry implies that the respective key 
is aggregate and may be expanded as well, while the keyref string content is the 
precise object-reference expression string that can be used to actually gain the key 
value. It should be noted that the reference string must be used as it is by the debugger 
user-interface to query they key contents, i.e. no extra concatenation with the 
aggregate’s reference string is needed. 

C++ derived objects The debug information provided for objects pertaining to 
classes involved in an inheritance scheme may vary per language, while it is strongly 
dependent on the language inheritance semantics (e.g., single versus multiple 
inheritance, explicit versus implicit abstract classes or interfaces, etc.). What is 
common, however, is to allow inspect the base parts of an object, i.e. those donated by 
its base classes, and usually the virtual table for all late bound methods. In this 
context, let’s consider an object of class C derived from A and B superclasses, by 
refining virtual functions A::f and B::g, and encompassing two fields with 
identifiers x and y. Most debugger backends allow inspection of the locals, the base 
objects, and the virtual table. Usually, base objects are listed before local members, 
with an appropriate display string encompassing the class name, such as “<A>”, 
“[A]” or “(A)”, to make them distinguishable from the rest of normal members. A 
similar technique is applied for the virtual table, while the number of entries could be 
also concatenated as a suffix to brief the total number of virtual functions, e.g., 
“[vtable](2)” in our example. Once the backend supports extraction of such 
information, the encoding through our method is straightforward, as shown below. 

 
aggregate display “C object”  absref “(*(C*)0x14fcd01d)” 

element   hidden  index “._getbase_(\”A\”)”  key display “[A]”   nokeyref 
element   hidden  index “._getbase_(\”B\”)”  key display “[B]”   nokeyref 
element   hidden  index “._getvtable_()”   key display “[vtable](2)”  nokeyref 
 
 
element   visible index “.x”     key display “x”   nokeyref 
element   visible index “.y”     key display “y”   nokeyref 

 
As indicated, all artificial fields introduced by the backend are made invisible to the 
user, disabling explicit reference. The reason that such indexing strings are hidden is 
mainly implementation dependent, since they rely on intrinsic undocumented pseudo 
methods that may be subject to change in future backend versions. 

Native objects in scripting languages (example in Delta) Scripting languages, 
interpreted or compiled, provide an execution engine, interpreter or virtual machine, 
and a basic runtime library, both implemented in a host language (native code). User-

An expandable 
aggregate key 

Pseudo fields with hidden keys 
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defined libraries in native code are normally supported. In this context, it is very 
common for library functions to produce objects whose class is defined by native 
code, meaning class information may be opaque to the scripting engine, and 
inherently to the debugger backend. Even when the native code is implemented in 
languages with a comprehensive runtime reflection API, like Java or C#, the 
automatic inspection of native objects may be inappropriate. In particular, for self-
checking reasons, some scripting libraries may wrap native objects with special-
purpose objects carrying extra meta-information such as: serial number, creation 
timestamp, native source file name and line in which instantiated, etc. Such wrapping 
is library-dependent and cannot be known a priori to the scripting language. 
Consequently, scripting language developers must provide a standard infrastructure so 
that library developers may extend inspection to appropriately apply on native objects.  

 

Inspection wrapper object
(in native language)

Native library object 
(in native language)

GetKeys()

List of (index, display text)

GetField(string key)

NativeValue
(scripting language type)

Inspection wrapper object
(in native language)

Native library object 
(in native language)

GetKeys()

List of (index, display text)

GetField(string key)

NativeValue
(scripting language type)

 
Figure 7: Inspection wrappers on native library objects in the Delta debugger backend to support 

queries for native object fields using string indices. 

The way we solved this problem in the debugger backend of the Delta language is to 
offer a standard inspection wrapper for native objects (see Figure 7), which, amongst 
others, allows library developers to hook functions: (a) enumerating the string keys of 
visible fields; and (b) responding to field inquiries using respective string keys. This 
way, the backend is capable to produce a ValueInfo for native objects, while the 
expression evaluator can query field contents of native objects using merely string 
keys. We provide below an example of the text encoding for a list aggregate value 
with three elements; list is a native library object in the Delta language standard 
library, i.e. it is not a built-in type as in other dynamic languages.  
 

aggregate display “list: size 3”  absref “_2externid_(0xf6)” 

element   visible index “.size”    key display “size”  nokeyref 
element   visible index “.front”    key display “front”  nokeyref 
element   visible index “.back”  key display “back”  nokeyref 
 
 
element   visible index “[0]”   key display “[0]”  nokeyref 
element   visible index “[1]”   key display “[1]”  nokeyref 
element   visible index “[2]”   key display “[2]”  nokeyref 

 
As observed, in contrast to the previous cases where hidden indices where chosen for 
artificial fields, the extra fields offered by the list library object are now visible to 
the user. The same holds true for the numeric indices supported per element. Hence, it 
is possible to index individual elements independently like “my_list[0]”, besides 
viewing individual fields when browsing the respective container. In typed scripting 

Pseudo fields with visible keys 
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languages, the problem of enabling inspection of native objects by the debugger 
backend may be resolved through an infrastructure enabling to introduce native 
classes while turning them automatically exportable scripting language (e.g., like in 
[BoostPython08]).  

Internal Architecture 

The internal software architecture for expression evaluation, and conversion from 
language-specific native values to language-independent value information, is 
illustrated under Figure 8. 
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Figure 8: From expression evaluation strings to formatted value information. 

Following Figure 8, the input coming from the debugger frontend is typically supplied 
by the user through the debugger user-interface and encompasses the actual 
expression string. Additionally, a string identifier of the desirable encoding format 
regarding for returned value information (e.g., in XML) is supplied by the debugger 
frontend; we explain the format latter in the next Section. The expression evaluator 
(step 1) parses the input expression and outputs the corresponding native value. Then 
(steps 2 and 3), conversion to value information is handled by dispatching on the 
actual native value type, invoking the appropriate type-specific converter. Following 
(steps 4 and 5), the resulting value information is encoded according to the requested 
format, by internally dispatching to the format-specific encoder. Eventually, the 
resulting value information in its encoded form is sent back to the frontend via 
network communication. 

Value Information Encoding Formats 

The debugger backend may support encoding of value information in different 
formats. While one possible universal format could be textual encoding in XML, in 
some cases, other formats may be deployed such as a structured configuration 
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language, or even binary encoding. For example, in case of a Java frontend and 
backend we may wish to eliminate the overhead of converting from Java to text and 
then back to Java by enabling value information serialization to be a legitimate 
encoding policy. Overall, the only requirement for encoding is that either the 
encoding syntax is well documented so that the frontend can perform the decoding 
process, or that the necessary decoders are simply made available as part of the 
frontend library. Additionally, the frontend should enable debugger user-interfaces 
query the supported encoding formats. We show the two formats supported for 
encoding value information in the Delta debugger backend: (i) RC, the resource 
format of the Delta standard library (see Figure 9); and (ii) XML (see Figure 10).  
  

type "COMPOSITE" value [  
 contents [ 
  overview  "terrainicon(0x32c)[layer='bg',x=630,y=402,frame=0]", 
  absoluteref  "_2externid_(0x32d)", 
  size 14,   // There are 14 fields 
  [ subindex ".type", 
   displaydesc [type "DESC" value], keyaccess "VISIBLE", 
   fieldkeys [ 
    size 1, // Single key 
    [ keycontentref [type "NOKEYREF"], displayedkey "type" ] 
   ] 
  ], 
  [ subindex ".x", 
   displaydesc [type "NODESC"], keyaccess "VISIBLE", 
   fieldkeys [ 
    size 1, // Single key 
    [ keycontentref [type "NOKEYREF"], displayedkey "x" ] 
   ] 
  ], 
  [ subindex ".y", 
   displaydesc [type "NODESC"], keyaccess "VISIBLE", 
   fieldkeys [ 
    size 1, // Single key 
    [ keycontentref [type "NOKEYREF"], displayedkey "y" ] 
   ] 
  ] 
  …Rest of entries here were skipped for clarity… 
 ] 
] 

Figure 9: Encoding of value information, for a native library object, in the Delta RC format (like tag-
less XML), following the grammar of Figure 6; actual value contents are shown highlighted. 

<value type="COMPOSITE"> 
 <contents> 
  <overview>terrainicon(0x32c)[layer='bg',x=630,y=402,frame=0]</overview> 
  <absoluteref>_2externid_(0x32d)</absoluteref> 
  <content subindex=".type"> 
   <displaydesc type="NODESC"></displaydesc> 
   <keyaccess>VISIBLE</keyaccess> 
   <fieldkeys> 
    <fieldkey> 
     <keycontentref type="NOKEYREF"></keycontentref> 
     <displayedkey>type</displayedkey> 
     </fieldkey> 
    </fieldkeys> 
   </content> 
  <content subindex=".x"> 
   <displaydesc type="NODESC"></displaydesc> 
   <keyaccess>VISIBLE</keyaccess> 
   <fieldkeys> 
    <fieldkey> 
     <keycontentref type="NOKEYREF"></keycontentref> 
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     <displayedkey>x</displayedkey> 
     </fieldkey> 
    </fieldkeys> 
   </content> 
  <content subindex=".y"> 
   <displaydesc type="NODESC"></displaydesc> 
   <keyaccess>VISIBLE</keyaccess> 
   <fieldkeys> 
    <fieldkey> 
     <keycontentref type="NOKEYREF"></keycontentref> 
     <displayedkey>y</displayedkey> 
     </fieldkey> 
    </fieldkeys> 
   </content> 
  …Rest of entries here were skipped for clarity… 
  </contents> 
 </value> 

Figure 10: Encoding of the value information from Figure 9 in XML format; actual value contents are 
shown highlighted. 

5 FRONTEND AND UI: DECODING AND BROWSING 

For convenience, the debugger frontend may provide methods to decode value 
information and store it locally in some intrinsic data structures. The latter is optional, 
since through our method the encoding method may be standardized and documented. 
For instance, in case of XML encoding, any XML parser may be used to extract value 
information contents. Regardless of the decoding responsibility, the debugger user 
interface should allow users interactively browse into the aggregate value contents, 
while likely posting extra expression evaluation requests to the backend.  

In this context, we detail in Figure 11 the logic for presenting an aggregate value, 
irrespective of the display method (e.g., tree view as in Visual Studio, data object 
graph as in DDD, or menu-based display as in Disco debugger). As discussed earlier, 
a value information instance encompasses information only on how to extract (query 
or evaluate) the various fields of an aggregate object using respective indexing 
strings, without encompassing the actual values. The latter are to be gained with 
successive evaluation inquiries using the original aggregate’s expression together with 
the field index. The latter is also apparent in the show_aggregate function of Figure 
11. In graphical debugger user interfaces we would probably prefer to display field 
keys together with their value. For this purpose, at line 13, an extra evaluation inquiry 
is made per element using the fully qualified expression string of the element 
produced at line 12, by concatenating the aggregate’s expression string with the 
element’s respective index. The returned value information is used to extract the 
element’s value DpyText (line 13), to be usually shown next to the element’s 
displayed key.  

Additionally, for all aggregate field values (test at line 15) we facilitate further 
expansion of their contents by extra calls to show_aggregate (at line 16). Such calls 
may be hooked as typical user interface callbacks, invoked during interaction when 
the user clicks on the respective element’s inspection widget (i.e. expansion on 
demand, or incremental expansion), or may be called directly, i.e. recursively, when 
exhaustive expansion of aggregate contents is desired. The logic to display the 
element’s keys starts at line 16. Since we support multiple keys per element we 
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assume their display is a concatenation of the display strings per key. For example, for 
an element indexed with three keys, with respective display strings “a”, “10”, and 
”\”hello\””, we use the single displayed key value “a, 10, \”hello\””. As 
explained earlier, our method also addresses cases of aggregate key values. For the 
latter, in a way similar to aggregate fields, we may either hook, or directly apply, an 
invocation to show_aggregate (at line 22) enabling users further expand and inspect 
the contents of the aggregate key. 

 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

14: 
15: 

16: 
17: 
18: 

19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

show_aggregate (ValueInfo vi, string expr) 
begin 
 Associate the expr string with all display actions and widgets for this aggregate value  
 Use DpyText as a single line display text (overview) for the aggregate contents 
 Use AbsRef when needed to detect a cycle (e.g. aggregate already shown)  

 foreach Elem x in vi.GetElems() do 
 begin 
  if  the element x has a non-empty DpyText value then 
      Use it as the displayed text (overview) for the brief content of x 

  Associate the KeyAccess value with all display actions and widgets of x 
  Let eval_x = expr + Index, be the full expression evaluation string of x 
  Request the value information x_vi for x via eval_x and display its DpyText 

  if  x_vi is aggregate then 
      Hook (callback) / invoke an expand action show_aggregate(x_vi, eval_x)  

  foreach key y of element x do 
  begin 
   Use the non-empty DpyText as the display overview of y content 

   if for key y a keyref entry y_k is defined then 
   begin 

        Request the value information y_vi of y via the expression y_k  
        Hook / invoke an expand action show_aggregate(y_vi, y_k) 
   end 

  end 
 end 
end 

Figure 11: Logic to retrieve and present aggregate values using value information, with the necessary 
user interface hooks for further inspection by expanding fields. 

6 APPLICATION OF THE METHOD 

As mentioned earlier, we have fully implemented our method in the context of the 
debugger backend for the Delta language [Savidis08], and inherently within the 
respective debugger frontend. The latter is a typical client API communicating with 
the debugger backend over the network. In this context, using this infrastructure, we 
have developed two separate debuggers for the Delta language: (a) a standalone 
command-line debugger, named Disco, and; (b) a graphical debugger named Zen, 
embedded in the Integrated Development Environment (IDE) of the Delta language 
named Sparrow. To our knowledge, the Disco debugger is the first command-line 
debugger to facilitate browsing into the contents of aggregate objects. 
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Disco Command Line Debugger  

The Disco command-line debugger allows incrementally browse into the contents of 
aggregate objects by providing a sequence of nested modal menus. At every point in 
time only a single aggregate object may be inspected through such a menu, displaying 
the string keys of its fields, while enabling the user to  either return back to inspecting 
the outer aggregate object (container) or escape to the main menu (Back and Main 
menu options respectively shown at Figure 12). 
 

Viewing a list element

Viewing the element contents

Browsing a list object

Viewing a list element

Viewing the element contents

Browsing a list objectBrowsing a list object

 
Figure 12: Snapshots showing browsing in a native list object using the Disco Delta debugger. 

When the value information of an aggregate object is received, the browsing menu is 
automatically assembled with N+2 options, N being the number of field entries of the 
aggregate object. The N menu items are reserved for the aggregate fields, while the 
necessary actions are hooked at every menu item to further request the contents of the 
particular corresponding field. For convenience, we have eventually chosen to use 
numeric indices as the selection codes for menu items corresponding to fields, as 
opposed to using directly the field keys. Initially, we adopted the latter approach. 
However, our tests indicated that it is slower for users to type the key expressions 
compared to entering natural numbers. The last two menu options are for returning to 
the previous inspection menu, i.e., the aggregate containing the currently viewed 
aggregate (option 0), and to the main debugger menu (option -1). At any point, the 
reference expression of the inspected aggregate is shown (see Expr: message at Figure 
12) to enable users keep track within nested aggregates. It should be noted that current 
Disco is the only known command-line debugger supporting such browsing facilities 
for aggregate objects. 
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Std library API (Delta object)

Game sprite (Native object)

Game data (Delta object)

List (Native object)

Std library API (Delta object)

Game sprite (Native object)

Game data (Delta object)

List (Native object)  
Figure 13: Snapshots showing browsing of different types of aggregate objects (language objects as 

well as native – external – objects) using the Zen Delta debugger. 

Zen Graphical Debugger  

In this graphical debugger, embedded in the Sparrow IDE of the Delta language, we 
have also implemented aggregate object browsing through the proposed method. 
Additionally, in the game development libraries of the Delta language, we have 
incorporated the inspection wrappers for native objects, as previously presented, to 
support debug queries for fields of native objects using normal string indices. As 
expected, the Zen debugger behaves a little a different than the Disco debugger for 
aggregate objects: (a) it creates tree view entries per aggregate object field; and (b) it 
queries every individual field, while setting as display content next to the field’s key 
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the received display text, and introducing an extra tree expansion widget (a cross) in 
case the field is also aggregate.  

Examples showing inspection of different types of values are shown under Figure 
13: a standard library object (top left), a game sprite object (bottom left), a game data 
object (top right), and a native list object (bottom right). In particular, for the list 
object, it is interesting that for the debugger user-interface there is no difference 
among string indices and numeric indices. Additionally, the fact that all string indices 
of the list object are placed before numeric indices, and that in both cases the indices 
are sorted, is due to the logic we have introduced in the backend, when converting 
native values to value information. This indicates how ignorant the frontend is 
essentially made, and how the complexity of evaluation and field representation is 
shifted and entirely hidden in the backend through our method. 

7 SUMMARY AND CONCLUSIONS 

We have introduced an implementation method for debugger backends supporting 
language-independent browsing into aggregate object contents. Our method relies on 
the transformation of language-specific native values to language-independent value 
information. The latter carries all the necessary information to allow debugger user-
interfaces display individual fields and post further evaluation requests for retrieval of 
individual fields that may be aggregate as well. The primary benefit of our technique 
is that the debugger user-interface component offering expression watches, or tree and 
graph object views, becomes language independent. Our method has been extensively 
tested in modeling a wide range of aggregate objects in varying languages, and is 
currently implemented by the debugger backend of the Delta language, deployed by 
the two interactive debuggers briefly discussed.  

As a closing remark, while reviewing numerous frontend interfaces of different 
languages, it became evident that the API parts being language-dependent concerned 
expression evaluation, since they tend to introduce language-specific value types. In 
this context, by eliminating this dependency, we consider our work a big step forward 
for building language-generic debugger user interfaces. 
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Availability information 
The Delta language IDE named Sparrow can be downloaded from (installer for 
Windows platform): http://www.ics.forth.gr/hci/files/plang/sparrow-setup.exe. It 
includes the Zen graphical debugger, the Disco command line debugger, and 
numerous examples, including a remake of the classical Snake game entirely in Delta. 
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