
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 9, September-October 2009

Anthony Savidis, Yannis Lilis: “Support for language independent browsing of aggregate
values by debugger backends”, in Journal of Object Technology, vol. 8, no. 6, September-
October 2009, pp. 159 – 180 http://www.jot.fm/issues/issue_2009_09/article4/

Support for language independent
browsing of aggregate values by
debugger backends

Anthony Savidis, Yannis Lilis, ICS-FORTH, Greece

Abstract
The debugger backend is a lower-level language subsystem enabling to control and
inspect a program’s execution (debuggee), while the frontend is a higher-level API
for backend functionality aiming to support debugger user-interfaces. Existing
debugger backends allow retrieve aggregate contents, but are language technology
dependent, limiting the chances for producing debugger user-interfaces for other
types of languages. For instance, it is common to use reserved type identifiers, like
pointer, class, void and enumerated, restricting applicability to languages with no
equivalent types. Moreover, in all known backends the aggregate nature of a value
is implied by its type, requiring the debugger user-interface developer interpret it
according to the language. For example, in Java Debugger Interface an object
reference is always assumed to be an aggregate, while in GDB Internals gaining the
contents of a memory address requires interpret the pointer type. We resolve such
issues by implementing a backend component relying on encoding of aggregates in
a language-agnostic way, with no explicit or implicit type information. Our backend
supports incremental retrieval of contents, reducing the performance overhead
observed in other libraries, like MS Visual Studio Debugger Visualizer Library,
serializing entire objects. Our method has been implemented in the backend of the
Delta language Debug Architecture (DDA), deployed by the Disco command-line
debugger and the Zen graphical debugger, publicly available (details at the end).

1 INTRODUCTION

The development of a debugger entails primarily three key components (see Figure
1): (a) the debugger backend being usually language or platform dependent; (b) the
debugger frontend, being in most cases tied to a specific backend; and (c) the
debugger user interface that has to deploy a specific frontend.

Debuggee
(Running program)

Debugger
Backend

Debugger
Frontend

Debugger User
Interface

remote communication

Debuggee
(Running program)

Debugger
Backend

Debugger
Frontend

Debugger User
Interface

remote communication

Figure 1: Key components involved in debugger development.

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

The development style of the backend heavily depends on the target platforms, as well
as the languages aimed to be supported. For example, if the debugged programs are
compiled in machine code, specific operating system facilities are needed to control
execution and to trace system-level events, as done in GDB [GNU07]. Additionally,
the format of symbolic debugging information, inserted during code generation by the
language compilers, must be known since it is read and analyzed before execution, or
even during execution when a lazy approach for symbol loading is implemented
(planned for the next version of GDB). On the other hand, for languages compiled to
byte code the backend is typically built as a subsystem using intrinsic features of the
virtual machine. The latter is usually opaque to language users and is implemented in
native code to avoid circular interference, as with the Java TI [Sun05] and the CLR
debugging API [Microsoft07-2].

IntelliJ IDEA, Java (JPDA)

Disco (console), Delta (DDA)

Visual Studio (C++ session), CLR API

Zen (in Sparrow), Delta (DDA)

Data Display Debugger (GDB Internals)

IntelliJ IDEA, Java (JPDA)

Disco (console), Delta (DDA)

Visual Studio (C++ session), CLR API

Zen (in Sparrow), Delta (DDA)

Data Display Debugger (GDB Internals)

Figure 2: Browsing support for aggregate values in different debuggers.

In all backends, various methods are offered to query the contents of variables and
program memory, in ways depending on the language semantics (e.g., in Java or CLR
no memory inspection is supported as with C++). Content retrieval for aggregate
variables and interactive browsing is a valuable user-interface feature of most existing
debuggers (see Figure 2), enabling programmers rigorously inspect and analyze the
current program state. Such browsing facilities may support typical tree views, or
even object graphs, the latter capable of revealing recursive associations.

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 161

Identification of the Problem

Our technical focus is on implementation methods enabling debugger backends
deliver functionality in ways hiding language details. Such a potential genericity will
inherently turn frontends to language-independent modules, since the latter are no
more than remote interfaces to the backend services.

In this context, while reviewing the core debugger architecture of many
languages we observed that, in all cases, the information describing the returned value
of queried expressions is language dependent, since it explicitly involves type
information. Effectively, the debugger user-interface developer is obliged to
implement the browsing logic according to the type information obtained for
aggregate variables. The latter disables the implementation of a common language-
agnostic component to browse aggregate values for debugger user-interfaces.

We present a method to effectively overcome this barrier. Currently, we support
this method in the debug architecture of the Delta language [Savidis08] - Delta Debug
Architecture (DDA). The latter has been deployed in the development of two
debugger user-interfaces, a command-line debugger (Disco), and graphical one (Zen)
embedded in the Sparrow IDE of the Delta language. Although our test-case is a
dynamically-typed language, as we also demonstrate with specific examples for
describing C++ STL container values, our method is pretty generic.

Overview of Contribution

In our approach, we entirely avoid type descriptors in the value information for
aggregate variables. Instead, we introduce indexing strings (expressions) for fields, to
be deployed as they are by the debugger user-interface when querying field contents.
Such a process may be recursively applied in case the returned value of a queried field
is tagged as aggregate too. The responsibility to generate and interpret field indexing
strings is entirely on the backend in a way fully transparent to the frontend.
Practically, the content of indexing strings will reflect being language-specific lexical
and syntactic characteristics. However, the frontend is never required to interpret such
contents. It merely uses the indexing strings to post further field queries. We present a
quick example related to the C language to outline our method.

Consider the C type struct List { char val[64]; List* next; } and
a respective program variable x where x.val=”hello”, x.next points to a List
where x.next->val=”world” and x->next->next = NULL. In the request of
“x” expression via the debugger frontend, the debugger backend will return the
following value information:

• The value is composite
• Its content overview is the string “List()”
• Its absolute reference is the string “0x3fdcc80ef”
• It has two (2) fields
• Field 1 has the display string “val” and indexing string “->val”
• Field 2 has the display string “next” and indexing string “->next”

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

In the previous list, the way the content of the various indexing strings is produced is
a responsibility of the debugger backend and is clearly dependent on the particular
language semantics. For instance, a C-language backend will adopt a memory address
as an absolute reference to an aggregate object, while a Java backend may use an
object reference string appropriate for the JVM. Based on this information, the
debugger user interface can produce an appropriate interactive display view as shown
under Figure 3, part 1 (top left). Notice that for all fields the debugger user-interface
uses the display string returned as part of the value information.

x
List() : 0x3fdcc80ef
 [+] val
 [+] next

x
List() : 0x3fdcc80ef
 [-] val char[64]: ’Hello’
 [-] next List() : 0x3fdcca1c2
 [+] val
 [+] next

x
List() : 0x3fdcc80ef
 [-] val char[64]: ’Hello’
 [+] next

x
List() : 0x3fdcc80ef
 [-] val char[64]: ’Hello’
 [-] next List() : 0x3fdcca1c2
 [-] val char[64]: ’Hello’
 [-] next List(): null

Figure 3: Example of debugger data inspection with incremental query on selected fields.

Now, let’s assume the user chooses to view the content of “val” field. The user-
interface needs only concatenate the “x” of the original expression with the respective
indexing string of the field selected for inspection , being “->val” in our example,
and post an inquiry for evaluation of the “x->val” expression. In this case, the
debugger backend will return the following value information:

• The value is simple
• Its content is the string “char[64]: ‘hello’”

Through such information the debugger user-interface may further expand the field
display to incorporate the received value as shown in Figure 3, part 2 (bottom left). It
should be noted that field type information is visible to the user only because it
happens to be embedded in the received value content string “char[64]: ‘hello’”.
Following similar steps, the “next” field is also expanded, as shown in Figure 3, part
3 (top right), being received as an aggregate value with explicit field access
information, like the previously queried “x” expression. Finally, to obtain the two
fields of x->next, the concatenation with the respective field indexing strings will
produce “x->next->val” and “x->next->next”, thus resulting in the fully expanded
display of the entire aggregate object x as shown in Figure 3, part 4 (bottom right).
This example provides an overview of the way our expression query method allows
debugger user-interfaces to access individual fields of aggregate objects and to even
display type information without introducing in the backend module functions
involving type-specific parameters. In summary, the novel features of our method for
obtaining aggregate values are the following:

1

2

3

4

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 163

Type free encoding - supporting language independence
Object reference representation – supporting detection of recursive structures
Incremental on-demand retrieval – supporting performance efficiency
Mixed language debugging – supporting mixed backends for component software

2 RELATED WORK

We continue by studying some of the major debugger backends currently deployed in
the development of most popular source-level debuggers. In particular, we focus on
the APIs offered by the corresponding frontends, showing that they all introduce type-
dependent information, effectively rendering the frontend as language dependent.

GDB Internals, Types [Gnu07] The Internals library of GDB is an interface to
the GNU GDB debugger, not a typical frontend as such, but a sort of a control API
(via libgdb) over the basic GDB debugger that must be running. It aims to support
graphical user-interfaces. The API part relating to variable content information is the
Types section, directly revealing language-specific types like builtin_type_void
and builtin_type_char, meaning the graphical debugger is obliged to interpret
value information in compliance to such language-dependent type tags.

Java Platform Debug Architecture (PDA), Debug Interface [Sun05] The
JPDA JDI is a debugger frontend in Java providing information useful for debuggers
and similar systems (like profilers) which need access to the running state of a
(usually remote) Java virtual machine. The API being in Java allows tool developers
to easily create Java debugger applications running portably across various platforms.
The JDI API defines classes of outgoing requests (com.sun.jdi.request package)
and incoming events (com.sun.jdi.event package) communicated to / from the
backend (Java Technology Interface), together with classes regarding the value of
inspected variables, derived from (implementing super-interface) Value. Examples of
such classes modeling the content of values are CharType / CharValue,
ArrayType / ArrayReference, and ClassType / ClassObjectReference. It is
evident that such classes, which must be deployed by the debugger user-interface
developer, are strongly tied to the Java language.

CLR Debugging Architecture, Debugging API [Microsoft07-1, Microsoft07-2]
The Debugging Architecture (DA) of the Common Language Runtime (CLR) allows
debugging in a uniform manner executables which encompass both managed and
unmanaged code (i.e. mixing CLR byte code and native code). This is a powerful
feature towards mixed-language debugging that is not supported by the JPDA where
native code is opaque during debugging of Java code (there is no way in JPDA to
trace into native code). The CLR debugging API, amongst a plethora of other
features, provides methods to get the value of an argument or local variable that is
stored in a specified register of a retrieved native stack frame instance. The value type
is gained by calling the ICorDebugValue::GetType method returning a
CorElementType value tested against type tags like ELEMENT_TYPE_STRING,
ELEMENT_TYPE_CLASS and ELEMENT_TYPE_GENERICINST. An important
difference when comparing to similar Java API is that the value type for CLR is

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

actually a unified API covering the C#, C and C++ languages altogether.
Nevertheless, the API still remains language-dependent, despite the fact it unifies
three languages instead of one.

Visual Studio™ Debugger Visualizer Library [Nonnenberg05] Not a debugger
frontend as such, it generally falls in the category of add-ons enabling to extend or
enrich specific debugging facilities, in particular the data visualization support. In this
library, all data to be visualized must be serialized to System.IO.Streams to be
transported between the debuggee and the visualization code residing in the debugger
user-interface. To simplify this, Microsoft.VisualStudio.DebuggerVisualizers.dll
provides a class called VisualizerObjectSource that does the most basic type of
serialization required by serializing the entire object and making it easy to extract it
on the debugger user-interface side, for objects having the Serializable attribute.
In [Nonnenberg05] it is acknowledged that performance may suffer if large classes
are visualized using this method, so it is recommended to develop some sort of on-
demand communication mechanism beyond the default monolithic implementation.
For example, a List visualizer might only transfer the elements initially in view;
once the user scrolls, the visualizer could request the data necessary to draw the new
view. We put emphasis on this remark, since our method already supports incremental
on-demand content delivery for aggregate objects.

Lua Debugger Interface [Ierusalimschy03-2] Lua [Ierusalimschy03-1] does not
offer a debugger frontend as such, but reveals a lower-level backend C API
implemented in native code as part of the Lua Virtual Machine. In this sense, the
debugger interface assumes the debugger user-interface developer to deploy directly
the core Lua API (embedding API) in order to access the stack and to examine
variable state (content). Overall, compared to previous methods, the Lua Debugger
Interface is the most primitive API, and also the most language-specific for debugger
user-interface development.

DBGP Common Debugger Protocol [Caraveo07] DBGP is a simple frontend
protocol to use with language tools and engines for the purpose of debugging
applications. An interesting feature of DBGP is that it supports incremental retrieval
of aggregate object contents, relying on string identifiers for field names that the
debugger user-interface should concatenate (all the way to the root aggregate object)
so as to query a field (see Section 7.11 of the protocol definition). However, the
protocol itself still introduces data types, which, while aimed to be generic enough,
they can’t be in real practice. More specifically, section 7.12 of the protocol presents
common data types together with a way of mapping native (debuggee language) types
to generic frontend types. Such type information should be used by the debugger user
interface to decide the value query policy. In particular, hash is type tag for
dictionaries, supporting only string keys. The latter is inadequate for even trivial cases
of the C++ STL std::map where keys other than string may be commonly
defined. Additionally, there is a resource type tag, experimentally introduced to
address types not covered by the standard types of the protocol. This type tag is very
problematic, since, at the user-interface level it practically implies a sort of ‘no further
inspection possible’ dead-end. Even for scripting languages, for which the protocol
was likely originally inspired, such a restriction is very crude. For example, most

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 165

scripting languages support native pointers as external objects, whose data structure
and operations (methods) are defined in C or C++ code. In such cases, there is no way
for the developer of native libraries to allow scripting language users inspect in detail
the native objects. As we will show, our frontend method puts no restriction as to the
type of objects for which the backend allows detailed inspection.

Next we continue elaborating on the software architecture putting emphasis on
the component structure to support language-independent aggregate object inspection.

3 OVERALL SOFTWARE ARCHITECTURE

We discuss the software architecture details, in particular the way expression
evaluation is managed at the debugger backend and frontend sides. At the
macroscopic level, the architecture adopts the typical separation among the backend
and frontend components via remote communication. In this context, we put no
particular requirements on the way these two basic components are implemented and
the specific services they provide. Practically, our approach can be easily
implemented as an extension on existing debugger engines with a relatively small
effort, independently of their implementation language and software architecture. Our
architecture is outlined under Figure 4. Its is evident that the changes introduced on
typical debug architectures merely relate to the way an expression evaluation result is
converted from a native value object to a language-neutral value-information object
(see right part of Figure 4, control flow starting from ‘Expression Evaluator’).

Expression
Evaluator

NativeValue to
ValueInfo Converter

Encoder of ValueInfo
to XML

Decoder of XML to
ValueInfo

ValueInfo Class (in
backend language)

NativeValue Class (in
backend language)

ValueInfo Class (in
frontend language)

Debugger
User

Interface

Pr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(b
ac

ke
nd

)

Rest of backend functionalityPr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(fr
on

te
nd

)

Rest of
frontend

functionality

ne
tw

or
k st

rin
g

xm
l

xm
l

Browser for
Aggregate

Values

Frontend Backend

Expression
Evaluator

NativeValue to
ValueInfo Converter

Encoder of ValueInfo
to XML

Decoder of XML to
ValueInfo

ValueInfo Class (in
backend language)

NativeValue Class (in
backend language)

ValueInfo Class (in
frontend language)

Debugger
User

Interface

Pr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(b
ac

ke
nd

)

Rest of backend functionalityPr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(fr
on

te
nd

)

Rest of
frontend

functionality

ne
tw

or
k st

rin
g

xm
l

xm
l

Browser for
Aggregate

Values

Expression
Evaluator

NativeValue to
ValueInfo Converter

Encoder of ValueInfo
to XML

Decoder of XML to
ValueInfo

ValueInfo Class (in
backend language)

NativeValue Class (in
backend language)

ValueInfo Class (in
frontend language)

Debugger
User

Interface

Pr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(b
ac

ke
nd

)

Rest of backend functionalityPr
ot

oc
ol

 a
nd

 C
om

m
un

ic
at

io
n

(fr
on

te
nd

)

Rest of
frontend

functionality

ne
tw

or
k st

rin
g

xm
l

xm
l

Browser for
Aggregate

Values

Frontend Backend

Figure 4: Overview of the debugger architecture to support language-agnostic expression evaluation

and incremental browsing for aggregate values.

In this process, two key classes are involved, NativeValue and ValueInfo.
Naturally, for backend languages with no support of classes other user-defined
structured data types can be used to model value content and value information (like
structures, tuples, records, etc.). Objects of NativeValue class are practically
metadata for native values enriching the latter with type information. This way, it is
possible to write code which extracts the contents of an aggregate native value from a
NativeValue object. The NativeValue class is intrinsic to the debugger backend,
and in the language the backend is also implemented. Currently, as discussed in the
‘Related Work’ section, most known backends or frontends already encompass a data

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

type with role similar to NativeValue class, although they tend to externalize such a
type to the debugger frontend. For example, in CLR this role is covered by the
Metadata API together with the reflection API (debugger APIs at backend side),
while, under JDI, objects of class implementing Value super-interface (API at
frontend side) may be examined via reflection. Also, the step involving translation of
a native value to respective metadata is implemented in most debugger engines, since
they make such metadata available to the debugger frontend.

typedef const string ConstStr;
typedef const list<ConstStr> ConstStrList;

struct ValueInfo {
 struct Aggregate {
 struct Elem {
 struct Key {
 ConstStr GetDisplayText (void) const;
 ConstStr GetValueRef (void) const;
 bool HasValueRef (void) const;
 };
 ConstStr GetDisplayText (void) const;
 bool AreKeysVisible (void) const;
 ConstStrList& GetFieldKeys (void) const;
 ConstStr GetSubIndex (void) const;
 };
 ConstStr& GetDisplayText (void) const;
 ConstStr& GetAbsoluteRef (void) const;
 const list<Elem>& GetElems (void) const;
 };

 enum MetaType { SimpleType = 0, AggregateType = 1 };
 MetaType GetMetaType (void) const;
 const ConstStr& GetSimple (void) const;
 const Aggregate& GetAggregate (void) const;
};

Figure 5: Outline of the ValueInfo C++ class (as a struct to avoid access qualifiers) for the debugger
frontend and backend of the Delta language; constructors, destructors, operator methods, and member

fields, have been all stripped-off for clarity.

In conclusion, as a first step, we propose to encapsulate (hide) any value metadata at
the debugger backend side. The ValueInfo class is a special form of metadata
whose objects carry information regarding the value content for display purposes
only, having no type related elements. In this sense, the ValueInfo object of a native
value is an external language-independent representation. As an example, consider the
numeric value 10. On the one hand, as a NativeValue object it carries a type tag
corresponding to numeric data types, together with the native representation of the
numeric value 10. On the other hand, its respective ValueInfo object carries merely
a meta-tag identifying it is a simple value and the string value “10” as its displayable
content. The difference amongst the two classes is fundamental. While from a
NativeValue object the native value can be always obtained, from a ValueInfo

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 167

object it cannot since type information is missing. Clearly, converting from
NativeValue to ValueInfo is implemented in a straightforward manner by
dispatching on the NativeValue type tag, the process applied recursively for
aggregates. In Figure 5, our implementation of the ValueInfo class in C++ is
outlined for the Delta debugger engine, currently shared by the backend and frontend
as they are both implemented in the C++ language.

Following Figure 5, ValueInfo merely distinguishes two fundamental meta-
types for values: AggregateType and SimpleType. Simple values need only carry
the display content that is stored in a string (see GetSimple() method). Apparently,
for Aggregate values more information is included:

List of elements taken via GetElems() method, with information per element
modeled through the Elem class
Optional display text for the entire aggregate object taken via the
GetDisplayText() method, such as “List(): 0x3fdcc80ef” of our early
example in Figure 3
Reference string taken via the GetAbsoluteRef() method, uniquely identifying the
entire aggregate object such as “0x3fdcc80ef” of our early example in Figure 3,
enabling easily identify recursive references

As explained earlier, what is actually put inside display or reference strings is a
responsibility of the backend. In our example, it happens to be a pointer address in
hexadecimal format, while as we discuss latter, the Delta debugger backend produces
reference strings like “_2object(0x13)” or “_2externid(0x14)”. Whether
such references are displayed to the user is a matter of the debugger user interface.
For instance, in a DDD [DDD08] style data visualizer it may be more appropriate to
show such reference strings, while in a typical tree view browser likely not.

Returning to our architecture of Figure 4, as shown, the produced ValueInfo
object is encoded in XML and communicated through the network to the debugger
frontend. Then, it is decoded to the original ValueInfo object, however,
ValueInfo class now defined in the frontend programming language. Apparently,
the ValueInfo class may be reused by the frontend in case it is implemented in the
same language as with the backend. The retrieved ValueInfo object is then used by
the component facilitating interactive browsing of aggregate values. This component
may post further expression evaluation requests for field expansion, as briefly
explained in our introductory example. The details of this process are discussed under
Section 5 ‘FRONTEND AND UI: DECODING AND BROWSING’.

Next we continue with the details of converting native values to value
information, discussing the design rationale regarding: structure, syntax, multiple
encoding formats, and value conversion examples for objects in different languages.

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

4 BACKEND: CONVERTING AND ENCODING

The choice of the ValueInfo structure to carry display information was the result of
an in depth study regarding the type information required by debugger user-interfaces
so as to support effective inspection of aggregate variables. We have examined
scenarios with varying requirements such as:

Visualization via typical tree views or object graphs
Stepwise content browsing (i.e., user is clicking or selecting to reveal inner contents)
or fully expanded views (i.e., the user interface provides an exploded view of
aggregate contents down to simple elements)
Various object categories: normal objects, collections (e.g., arrays, lists, sets, and
dictionaries with one or multiple keys), native objects (for scripting languages),
methods, functions, packages
Alternative field access policies:
Visible or hidden keys (e.g., to force fields be inspected only within their parent
context, thus forbidding standalone indexing)
Extra language-supported pseudo fields (e.g. source file, definition line, type
information structure)
Modified or even artificial (pseudo) keys (e.g., allow straight indexing of list elements
via numeric indices)
Expandable aggregate keys (e.g., tuples or dictionaries supporting entire objects as
keys)
Various object models:
Class-based, single or multiple inheritance, where depending on the language, may
view class name, virtual table and derivation tree
Prototype-based languages with dynamic inheritance, where depending on the
language the following can be viewed:
Parent slots (for delegation links)
Base objects and derived object (for dynamic object trees)

The need for such an exhaustive analysis with diverse scenarios was prominent, since,
the elimination of type information at the debugger frontend side requires guarantee
that type information won’t be necessary whatsoever. The text encoding syntax for
value information is provided under Figure 6. We continue with a few examples
demonstrating the expressive power of the encoding method for aggregate objects in
C++ (typed class-based) and Delta (dynamic object-based).

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 169

Value ::= (Simple| Aggregate)
Simple ::= ‘simple’ DpyText
DpyText ::= ‘display’ quoted_string
Aggregate ::= ‘aggregate’ DpyText AbsRef { [Elem] }
AbsRef ::= ‘absref’ quoted_string
Elem: ::= ‘element’ Index [DpyText] Keys
Index: ::= KeyAccess ‘index’ quoted_string
KeyAccess: ::= (‘visible’ | ‘hidden’)
Keys: ::= { ‘key’ DpyText KeyValueRef }
KeyValueRef ::= (‘nokeyref’ | ‘keyref’ quoted_string)

Figure 6: Grammar in EBNF for encoding ValueInfo to text.

Encoding Examples for Aggregate Values

C++ STL std::list Since it is a container supporting sequential access, we chose
an encoding style by enumerating elements through successive numeric indices that
the backend can interpret, even though such random access is not provided by the
actual class (i.e. can’t get independently a list element by such indexing). The display
text of every element provides information regarding its position in the list, while the
display text of the list object displays information regarding the number of elements
and the element type (template parameter) of the list. For example, for a list<int>
with elements 23,56,98 an encoding could be the following:

aggregate display “list<int>: size 3” absref “(*(list<int>*)0xfe129409)”
element hidden index “.getbyorder(0)” key display “(0)” nokeyref
element hidden index “.getbyorder(1)” key display “(1)” nokeyref
element hidden index “.getbyorder(2)” key display “(2)” nokeyref

The strings at the right of the index keyword, e.g. “.getbyorder(0)”, are actually
the indices to be internally used by debugger user-interface when querying the value
of individual fields. The displayable part of the keys, when listing all fields in the
user-interface, are provided by the strings at the right of the display keyword, e.g.
“(0)”. To query individual fields, every index entry should be concatenated with the
aggregate’s absolute reference string next to absref to form the expression string for
field inquiry. For example, “(*(list<int>*)0xfe129409).getbyorder(0)”
string is the entire expression to query the first field.

When for a particular element its key is defined as hidden it means the debugger
user-interface should never display the internal key explicitly to the user. The
indexing method implied by the string content of the index entry is something to be
supported by the expression evaluator, not actually related to the methods offered in
the language for manipulating aggregate types. For example, “getbyorder(0)”
need not be a method of the list class, but a pseudo method handled by the expression
evaluator at the debugger backend side. In a similar way, pseudo attributes may also
be introduced.

Field query keys Field display keys

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

C++ STL std::map It is a single-key dictionary container supporting
aggregate keys. Stored elements are aggregates as pairs of the key and a respective
stored value. In C++ debuggers, like Visual Studio, it is supported to enumerate
(according to an implementation-dependent ordering) all elements, enabling browse
the pair contents (via first and second fields). Lets consider a map of strings keys
and integer values, with the elements <”hello”:9> and <”world”:11>. We
provide below the encoding for the map aggregate itself, and the two aggregate
elements.

aggregate display “map<string,int>: size 2”
 absref “(*(map<string,int>*)0x8001f0ea)”
element hidden index “.getbyorder(0)” key display “(0)” nokeyref
element hidden index “.getbyorder(1)” key display “(1)” nokeyref

aggregate display ”pair<string,int>”
 absref “(*(pair<string,int>*)0xf1cabd0e)”

element visible index “.first” key display “first” nokeyref
element visible index “.second” key display “second” nokeyref

aggregate display ”pair<string,int>”
 absref “(*(pair<string,int>*)0xf1cb10fc)”

element visible index “.first” key display “first” nokeyref
element visible index “.second” key display “second” nokeyref

Because an STL map encompasses the key value in the element structure, access to
key contents is straightforward through index .first, whether the key is aggregate
or simple. In other words, if the field key is also a reserved normal field, like first, it is
enumerated with the rest of the fields during encoding, as with the example above.
However, in some cases dictionary types may be an integral part of the language,
rather than part of accompanying libraries, while the storage area of key values is
opaque to programmers. In this case, for aggregate keys it is necessary to provide
extra reference facilities so as to support expandability by the user. The next example
is about this scenario.

Delta Object Delta is an untyped object-based language (i.e. has no notion of a
class), where objects are created by replication (usually the very first objects in such a
process produced explicitly by initializing fields, not by cloning, are commonly
referred as prototypes). The main object element in the Delta language is a single-key
dictionary, allowing keys of any value (not only strings, but objects or methods may
play the role of keys as well), while supporting runtime inheritance associations
among distinct objects to form either delegation webs or subobject trees [Savidis08].
Practically, as with all languages, an object is an associative container. When during
debugging an expression evaluates to an object having aggregate keys, like an object
or a method, it is imperative to allow the user expand the contents of the aggregate
keys as well. We show how our value information grammar enables to inject such
information within value encoding.

Let’s consider an object A having three fields with the following keys and
respective values: string key “x” for value number 10, numeric key 0 for value a
program function f, and an object key B for value being another object C. The text
encoding in our grammar is provided below.

element (0)

element (1)

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 171

aggregate display “object(0x14)BASES<0>DERIVED<0>” absref “_2object_(0x14)”

element index “.x” key display “x” nokeyref
element index “[0]” key display “[0]” nokeyref
element index “_2object_(0x17)”
 key display “object(0x17)BASES<1>DERIVED<0)>”
 keyref “_2object_(0x17)”

The key point in the previous value encoding is the presence at the third element of a
keyref string, e.g., “_2object_(0x17)”. This entry implies that the respective key
is aggregate and may be expanded as well, while the keyref string content is the
precise object-reference expression string that can be used to actually gain the key
value. It should be noted that the reference string must be used as it is by the debugger
user-interface to query they key contents, i.e. no extra concatenation with the
aggregate’s reference string is needed.

C++ derived objects The debug information provided for objects pertaining to
classes involved in an inheritance scheme may vary per language, while it is strongly
dependent on the language inheritance semantics (e.g., single versus multiple
inheritance, explicit versus implicit abstract classes or interfaces, etc.). What is
common, however, is to allow inspect the base parts of an object, i.e. those donated by
its base classes, and usually the virtual table for all late bound methods. In this
context, let’s consider an object of class C derived from A and B superclasses, by
refining virtual functions A::f and B::g, and encompassing two fields with
identifiers x and y. Most debugger backends allow inspection of the locals, the base
objects, and the virtual table. Usually, base objects are listed before local members,
with an appropriate display string encompassing the class name, such as “<A>”,
“[A]” or “(A)”, to make them distinguishable from the rest of normal members. A
similar technique is applied for the virtual table, while the number of entries could be
also concatenated as a suffix to brief the total number of virtual functions, e.g.,
“[vtable](2)” in our example. Once the backend supports extraction of such
information, the encoding through our method is straightforward, as shown below.

aggregate display “C object” absref “(*(C*)0x14fcd01d)”

element hidden index “._getbase_(\”A\”)” key display “[A]” nokeyref
element hidden index “._getbase_(\”B\”)” key display “[B]” nokeyref
element hidden index “._getvtable_()” key display “[vtable](2)” nokeyref

element visible index “.x” key display “x” nokeyref
element visible index “.y” key display “y” nokeyref

As indicated, all artificial fields introduced by the backend are made invisible to the
user, disabling explicit reference. The reason that such indexing strings are hidden is
mainly implementation dependent, since they rely on intrinsic undocumented pseudo
methods that may be subject to change in future backend versions.

Native objects in scripting languages (example in Delta) Scripting languages,
interpreted or compiled, provide an execution engine, interpreter or virtual machine,
and a basic runtime library, both implemented in a host language (native code). User-

An expandable
aggregate key

Pseudo fields with hidden keys

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

defined libraries in native code are normally supported. In this context, it is very
common for library functions to produce objects whose class is defined by native
code, meaning class information may be opaque to the scripting engine, and
inherently to the debugger backend. Even when the native code is implemented in
languages with a comprehensive runtime reflection API, like Java or C#, the
automatic inspection of native objects may be inappropriate. In particular, for self-
checking reasons, some scripting libraries may wrap native objects with special-
purpose objects carrying extra meta-information such as: serial number, creation
timestamp, native source file name and line in which instantiated, etc. Such wrapping
is library-dependent and cannot be known a priori to the scripting language.
Consequently, scripting language developers must provide a standard infrastructure so
that library developers may extend inspection to appropriately apply on native objects.

Inspection wrapper object
(in native language)

Native library object
(in native language)

GetKeys()

List of (index, display text)

GetField(string key)

NativeValue
(scripting language type)

Inspection wrapper object
(in native language)

Native library object
(in native language)

GetKeys()

List of (index, display text)

GetField(string key)

NativeValue
(scripting language type)

Figure 7: Inspection wrappers on native library objects in the Delta debugger backend to support

queries for native object fields using string indices.

The way we solved this problem in the debugger backend of the Delta language is to
offer a standard inspection wrapper for native objects (see Figure 7), which, amongst
others, allows library developers to hook functions: (a) enumerating the string keys of
visible fields; and (b) responding to field inquiries using respective string keys. This
way, the backend is capable to produce a ValueInfo for native objects, while the
expression evaluator can query field contents of native objects using merely string
keys. We provide below an example of the text encoding for a list aggregate value
with three elements; list is a native library object in the Delta language standard
library, i.e. it is not a built-in type as in other dynamic languages.

aggregate display “list: size 3” absref “_2externid_(0xf6)”

element visible index “.size” key display “size” nokeyref
element visible index “.front” key display “front” nokeyref
element visible index “.back” key display “back” nokeyref

element visible index “[0]” key display “[0]” nokeyref
element visible index “[1]” key display “[1]” nokeyref
element visible index “[2]” key display “[2]” nokeyref

As observed, in contrast to the previous cases where hidden indices where chosen for
artificial fields, the extra fields offered by the list library object are now visible to
the user. The same holds true for the numeric indices supported per element. Hence, it
is possible to index individual elements independently like “my_list[0]”, besides
viewing individual fields when browsing the respective container. In typed scripting

Pseudo fields with visible keys

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 173

languages, the problem of enabling inspection of native objects by the debugger
backend may be resolved through an infrastructure enabling to introduce native
classes while turning them automatically exportable scripting language (e.g., like in
[BoostPython08]).

Internal Architecture

The internal software architecture for expression evaluation, and conversion from
language-specific native values to language-independent value information, is
illustrated under Figure 8.

Expression (string)

Format (string)

NativeValue

ValueInfo

Expression
Evaluator

Converter
NativeValue → ValueInfo

Type-specific
ConverterType-specific

ConverterType-specific
Converter

Converter dispatcher

Format-specific
EncoderFormat-specific

EncoderFormat-specific
Encoder

Encoder dispatcher

Encoder
ValueInfo → Text

Encoded ValueInfo

1

2

3

4

5

D
eb

ug
ge

r
Fr

on
te

nd

in

out

in

out

in

out

result

eval

D
eb

ug
ge

r
U

se
r I

nt
er

fa
ce

Expression (string)

Format (string)

NativeValue

ValueInfo

Expression
Evaluator

Converter
NativeValue → ValueInfo

Type-specific
ConverterType-specific

ConverterType-specific
Converter

Type-specific
ConverterType-specific

ConverterType-specific
Converter

Converter dispatcher

Format-specific
EncoderFormat-specific

EncoderFormat-specific
Encoder

Format-specific
EncoderFormat-specific

EncoderFormat-specific
Encoder

Encoder dispatcher

Encoder
ValueInfo → Text

Encoded ValueInfo

1

2

3

4

5

D
eb

ug
ge

r
Fr

on
te

nd

in

out

in

out

in

out

result

eval

D
eb

ug
ge

r
U

se
r I

nt
er

fa
ce

Figure 8: From expression evaluation strings to formatted value information.

Following Figure 8, the input coming from the debugger frontend is typically supplied
by the user through the debugger user-interface and encompasses the actual
expression string. Additionally, a string identifier of the desirable encoding format
regarding for returned value information (e.g., in XML) is supplied by the debugger
frontend; we explain the format latter in the next Section. The expression evaluator
(step 1) parses the input expression and outputs the corresponding native value. Then
(steps 2 and 3), conversion to value information is handled by dispatching on the
actual native value type, invoking the appropriate type-specific converter. Following
(steps 4 and 5), the resulting value information is encoded according to the requested
format, by internally dispatching to the format-specific encoder. Eventually, the
resulting value information in its encoded form is sent back to the frontend via
network communication.

Value Information Encoding Formats

The debugger backend may support encoding of value information in different
formats. While one possible universal format could be textual encoding in XML, in
some cases, other formats may be deployed such as a structured configuration

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

language, or even binary encoding. For example, in case of a Java frontend and
backend we may wish to eliminate the overhead of converting from Java to text and
then back to Java by enabling value information serialization to be a legitimate
encoding policy. Overall, the only requirement for encoding is that either the
encoding syntax is well documented so that the frontend can perform the decoding
process, or that the necessary decoders are simply made available as part of the
frontend library. Additionally, the frontend should enable debugger user-interfaces
query the supported encoding formats. We show the two formats supported for
encoding value information in the Delta debugger backend: (i) RC, the resource
format of the Delta standard library (see Figure 9); and (ii) XML (see Figure 10).

type "COMPOSITE" value [
 contents [
 overview "terrainicon(0x32c)[layer='bg',x=630,y=402,frame=0]",
 absoluteref "_2externid_(0x32d)",
 size 14, // There are 14 fields
 [subindex ".type",
 displaydesc [type "DESC" value], keyaccess "VISIBLE",
 fieldkeys [
 size 1, // Single key
 [keycontentref [type "NOKEYREF"], displayedkey "type"]
]
],
 [subindex ".x",
 displaydesc [type "NODESC"], keyaccess "VISIBLE",
 fieldkeys [
 size 1, // Single key
 [keycontentref [type "NOKEYREF"], displayedkey "x"]
]
],
 [subindex ".y",
 displaydesc [type "NODESC"], keyaccess "VISIBLE",
 fieldkeys [
 size 1, // Single key
 [keycontentref [type "NOKEYREF"], displayedkey "y"]
]
]
 …Rest of entries here were skipped for clarity…
]
]

Figure 9: Encoding of value information, for a native library object, in the Delta RC format (like tag-
less XML), following the grammar of Figure 6; actual value contents are shown highlighted.

<value type="COMPOSITE">
 <contents>
 <overview>terrainicon(0x32c)[layer='bg',x=630,y=402,frame=0]</overview>
 <absoluteref>_2externid_(0x32d)</absoluteref>
 <content subindex=".type">
 <displaydesc type="NODESC"></displaydesc>
 <keyaccess>VISIBLE</keyaccess>
 <fieldkeys>
 <fieldkey>
 <keycontentref type="NOKEYREF"></keycontentref>
 <displayedkey>type</displayedkey>
 </fieldkey>
 </fieldkeys>
 </content>
 <content subindex=".x">
 <displaydesc type="NODESC"></displaydesc>
 <keyaccess>VISIBLE</keyaccess>
 <fieldkeys>
 <fieldkey>
 <keycontentref type="NOKEYREF"></keycontentref>

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 175

 <displayedkey>x</displayedkey>
 </fieldkey>
 </fieldkeys>
 </content>
 <content subindex=".y">
 <displaydesc type="NODESC"></displaydesc>
 <keyaccess>VISIBLE</keyaccess>
 <fieldkeys>
 <fieldkey>
 <keycontentref type="NOKEYREF"></keycontentref>
 <displayedkey>y</displayedkey>
 </fieldkey>
 </fieldkeys>
 </content>
 …Rest of entries here were skipped for clarity…
 </contents>
 </value>

Figure 10: Encoding of the value information from Figure 9 in XML format; actual value contents are
shown highlighted.

5 FRONTEND AND UI: DECODING AND BROWSING

For convenience, the debugger frontend may provide methods to decode value
information and store it locally in some intrinsic data structures. The latter is optional,
since through our method the encoding method may be standardized and documented.
For instance, in case of XML encoding, any XML parser may be used to extract value
information contents. Regardless of the decoding responsibility, the debugger user
interface should allow users interactively browse into the aggregate value contents,
while likely posting extra expression evaluation requests to the backend.

In this context, we detail in Figure 11 the logic for presenting an aggregate value,
irrespective of the display method (e.g., tree view as in Visual Studio, data object
graph as in DDD, or menu-based display as in Disco debugger). As discussed earlier,
a value information instance encompasses information only on how to extract (query
or evaluate) the various fields of an aggregate object using respective indexing
strings, without encompassing the actual values. The latter are to be gained with
successive evaluation inquiries using the original aggregate’s expression together with
the field index. The latter is also apparent in the show_aggregate function of Figure
11. In graphical debugger user interfaces we would probably prefer to display field
keys together with their value. For this purpose, at line 13, an extra evaluation inquiry
is made per element using the fully qualified expression string of the element
produced at line 12, by concatenating the aggregate’s expression string with the
element’s respective index. The returned value information is used to extract the
element’s value DpyText (line 13), to be usually shown next to the element’s
displayed key.

Additionally, for all aggregate field values (test at line 15) we facilitate further
expansion of their contents by extra calls to show_aggregate (at line 16). Such calls
may be hooked as typical user interface callbacks, invoked during interaction when
the user clicks on the respective element’s inspection widget (i.e. expansion on
demand, or incremental expansion), or may be called directly, i.e. recursively, when
exhaustive expansion of aggregate contents is desired. The logic to display the
element’s keys starts at line 16. Since we support multiple keys per element we

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

assume their display is a concatenation of the display strings per key. For example, for
an element indexed with three keys, with respective display strings “a”, “10”, and
”\”hello\””, we use the single displayed key value “a, 10, \”hello\””. As
explained earlier, our method also addresses cases of aggregate key values. For the
latter, in a way similar to aggregate fields, we may either hook, or directly apply, an
invocation to show_aggregate (at line 22) enabling users further expand and inspect
the contents of the aggregate key.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

14:
15:

16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

show_aggregate (ValueInfo vi, string expr)
begin
 Associate the expr string with all display actions and widgets for this aggregate value
 Use DpyText as a single line display text (overview) for the aggregate contents
 Use AbsRef when needed to detect a cycle (e.g. aggregate already shown)

 foreach Elem x in vi.GetElems() do
 begin
 if the element x has a non-empty DpyText value then
 Use it as the displayed text (overview) for the brief content of x

 Associate the KeyAccess value with all display actions and widgets of x
 Let eval_x = expr + Index, be the full expression evaluation string of x
 Request the value information x_vi for x via eval_x and display its DpyText

 if x_vi is aggregate then
 Hook (callback) / invoke an expand action show_aggregate(x_vi, eval_x)

 foreach key y of element x do
 begin
 Use the non-empty DpyText as the display overview of y content

 if for key y a keyref entry y_k is defined then
 begin

 Request the value information y_vi of y via the expression y_k
 Hook / invoke an expand action show_aggregate(y_vi, y_k)
 end

 end
 end
end

Figure 11: Logic to retrieve and present aggregate values using value information, with the necessary
user interface hooks for further inspection by expanding fields.

6 APPLICATION OF THE METHOD

As mentioned earlier, we have fully implemented our method in the context of the
debugger backend for the Delta language [Savidis08], and inherently within the
respective debugger frontend. The latter is a typical client API communicating with
the debugger backend over the network. In this context, using this infrastructure, we
have developed two separate debuggers for the Delta language: (a) a standalone
command-line debugger, named Disco, and; (b) a graphical debugger named Zen,
embedded in the Integrated Development Environment (IDE) of the Delta language
named Sparrow. To our knowledge, the Disco debugger is the first command-line
debugger to facilitate browsing into the contents of aggregate objects.

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 177

Disco Command Line Debugger

The Disco command-line debugger allows incrementally browse into the contents of
aggregate objects by providing a sequence of nested modal menus. At every point in
time only a single aggregate object may be inspected through such a menu, displaying
the string keys of its fields, while enabling the user to either return back to inspecting
the outer aggregate object (container) or escape to the main menu (Back and Main
menu options respectively shown at Figure 12).

Viewing a list element

Viewing the element contents

Browsing a list object

Viewing a list element

Viewing the element contents

Browsing a list objectBrowsing a list object

Figure 12: Snapshots showing browsing in a native list object using the Disco Delta debugger.

When the value information of an aggregate object is received, the browsing menu is
automatically assembled with N+2 options, N being the number of field entries of the
aggregate object. The N menu items are reserved for the aggregate fields, while the
necessary actions are hooked at every menu item to further request the contents of the
particular corresponding field. For convenience, we have eventually chosen to use
numeric indices as the selection codes for menu items corresponding to fields, as
opposed to using directly the field keys. Initially, we adopted the latter approach.
However, our tests indicated that it is slower for users to type the key expressions
compared to entering natural numbers. The last two menu options are for returning to
the previous inspection menu, i.e., the aggregate containing the currently viewed
aggregate (option 0), and to the main debugger menu (option -1). At any point, the
reference expression of the inspected aggregate is shown (see Expr: message at Figure
12) to enable users keep track within nested aggregates. It should be noted that current
Disco is the only known command-line debugger supporting such browsing facilities
for aggregate objects.

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

178 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

Std library API (Delta object)

Game sprite (Native object)

Game data (Delta object)

List (Native object)

Std library API (Delta object)

Game sprite (Native object)

Game data (Delta object)

List (Native object)
Figure 13: Snapshots showing browsing of different types of aggregate objects (language objects as

well as native – external – objects) using the Zen Delta debugger.

Zen Graphical Debugger

In this graphical debugger, embedded in the Sparrow IDE of the Delta language, we
have also implemented aggregate object browsing through the proposed method.
Additionally, in the game development libraries of the Delta language, we have
incorporated the inspection wrappers for native objects, as previously presented, to
support debug queries for fields of native objects using normal string indices. As
expected, the Zen debugger behaves a little a different than the Disco debugger for
aggregate objects: (a) it creates tree view entries per aggregate object field; and (b) it
queries every individual field, while setting as display content next to the field’s key

VOL. 8, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 179

the received display text, and introducing an extra tree expansion widget (a cross) in
case the field is also aggregate.

Examples showing inspection of different types of values are shown under Figure
13: a standard library object (top left), a game sprite object (bottom left), a game data
object (top right), and a native list object (bottom right). In particular, for the list
object, it is interesting that for the debugger user-interface there is no difference
among string indices and numeric indices. Additionally, the fact that all string indices
of the list object are placed before numeric indices, and that in both cases the indices
are sorted, is due to the logic we have introduced in the backend, when converting
native values to value information. This indicates how ignorant the frontend is
essentially made, and how the complexity of evaluation and field representation is
shifted and entirely hidden in the backend through our method.

7 SUMMARY AND CONCLUSIONS

We have introduced an implementation method for debugger backends supporting
language-independent browsing into aggregate object contents. Our method relies on
the transformation of language-specific native values to language-independent value
information. The latter carries all the necessary information to allow debugger user-
interfaces display individual fields and post further evaluation requests for retrieval of
individual fields that may be aggregate as well. The primary benefit of our technique
is that the debugger user-interface component offering expression watches, or tree and
graph object views, becomes language independent. Our method has been extensively
tested in modeling a wide range of aggregate objects in varying languages, and is
currently implemented by the debugger backend of the Delta language, deployed by
the two interactive debuggers briefly discussed.

As a closing remark, while reviewing numerous frontend interfaces of different
languages, it became evident that the API parts being language-dependent concerned
expression evaluation, since they tend to introduce language-specific value types. In
this context, by eliminating this dependency, we consider our work a big step forward
for building language-generic debugger user interfaces.

REFERENCES

[BoostBython08] ‘Boost.Python’, http://wiki.python.org/moin/boost.python and also
from http://www.boost.org/doc/libs/1_39_0/libs/python/doc/index.html

[Caraveo07] Shane Caraveo, Derick Rethans: ‘DBGP - A common debugger protocol
for languages and debugger UI communication’,
http://www.xdebug.org/docs-dbgp.php#data-types, 2007.

[DDD08] Data Display Debugger. http://www.gnu.org/software/ddd/

[GNU07]. Free Software Foundation: ‘GDB: The GNU Project Debugger’. GDB
Internals. http://www.gnu.org/software/gdb/documentation/, 2007.

SUPPORT FOR LANGUAGE INDEPENDENT BROWSING OF AGGREGATE VALUES BY

DEBUGGER BACKENDS

180 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6

[Ierusalimschy03-1] Romeo Ierusalimschy: ‘Programming in Lua’, Book available on
line from http://www.lua.org/pil/, ISBN 85-903798-1-7, 2003.

[Ierusalimschy03-2] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar
Celes: ‘Lua 5.0 Reference Manual’,
http://www.lua.org/manual/5.0/manual.html, 2003.

[KDBG07] A Graphical Debugger Interface. http://www.kdbg.org/, 2007

[Microsoft07-1] Microsoft Corporation: ‘CLR Debugging Architecture’,
http://msdn.microsoft.com/en-us/library/bb384548.aspx, 2007

[Microsoft07-2] Microsoft Corporation: ‘Debugging in the .NET Framework’,
http://msdn.microsoft.com/en-us/library/bb384289.aspx, 2007

[Nonnenberg05] Scott Nonnenberg: ‘Creating a Debugger Visualizer Using VS 2005
Beta’. http://msdn.microsoft.com/en-us/library/ms379596.aspx, 2005

[Savidis08] Anthony Savidis: ‘An enhanced form of dynamic untyped object-based
inheritance’, in Journal of Object Technology (JOT), Vol. 9, No. 4, May -
June 2008, http://www.jot.fm/issues/issue_2008_05/article2/index.html

[Sun05] Sun Microsystems: ‘Java Platform Debugger Architecture’.
http://java.sun.com/javase/6/docs/technotes/guides/jpda/architecture.html,
2005

Availability information
The Delta language IDE named Sparrow can be downloaded from (installer for
Windows platform): http://www.ics.forth.gr/hci/files/plang/sparrow-setup.exe. It
includes the Zen graphical debugger, the Disco command line debugger, and
numerous examples, including a remake of the classical Snake game entirely in Delta.

About the authors
Anthony Savidis is an Associate Professor of ‘Programming
Languages and Software Engineering’ at the Department of
Computer Science, University of Crete, and a Researcher at the
Institute of Computer Science - FORTH. His e-mail address is
as@ics.forth.gr

Yannis Lilis owns an MSc from the Department of Computer
Science, University of Crete, and is currently a PhD student
collaborating with the Institute of Computer Science – FORTH. His
e-mail address is lilis@ics.forth.gr

