
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol.8 , No.6 , September-October 2009

Maddeh Mohamed, Mohamed Romdhani, Khaled GHEDIRA: “Classification of model
refactoring approaches”, in Journal of Object Technology, vol. 8, no. 6, September-October
2009, pp. 143 - 158 http://www.jot.fm/issues/issue_2009_09/article3/

143

Classification of model refactoring
approaches

Maddeh Mohamed, LI3 Ecole Nationale des Sciences de l’Informatique
Campus Universitaire Manouba - Manouba 2010 Tunis, Tunisia
Mohamed Romdhani, INSAT Centre Urbain Nord
Khaled Ghedira, SOIE, Ecole Nationale des Sciences de l’Informatique
Campus Universitaire Manouba - Manouba 2010 Tunis, Tunisia

Abstract
In this paper, we provide a detailed overview of existing researches in the field of
software restructuring and model refactoring, from a formal as well as a practical point
of view. We propose a possible taxonomy for the classification of several existing and
proposed model refactoring approaches. The taxonomy is described with a feature
model that makes the different design choices for model refactoring explicit.

1 INTRODUCTION

Refactoring is a technique to improve the maintainability of software systems by
changing the internal structure of software without altering its external behavioral
properties [Opdyke92]. Especially when automated by a tool, refactoring is an easy,
quick and safe way to improve software systems at the code level, and to assist to identify
errors. In addition, lightweight development methods, such as eXtreme Programming
(XP) [Succi01], have promoted refactoring as a core development practice.

Refactoring is used to improve the quality of the software (e.g., extensibility,
modularity, reusability, complexity, maintainability...). It is also used in the context of
reengineering [Demeyer02], refactoring is needed to convert legacy code or deteriorated
code into a more modular or structured form, or even to migrate code to a different
programming language.

The majority of previous researches on refactoring focus on the code level and are
less concerned with the earlier stages of design. A promising approach is to deal with
refactoring in language independent way. It offers a solution to the reuse possibilities in
the development of the refactoring primitives when they are adapted to new languages.

Considering the model-driven engineering [MDA06] which is an approach of
software engineering where the primary focus is on models, as opposed to source code.

CLASSIFICATION OF MODEL REFACTORING APPROACHES

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Model transformation [RFP02] is considered to be the heart of model-driven engineering.
We can apply the refactoring as a model transformation. We transform an input model
needing a design improvement to a target model using behavior-preserving
transformations. There exist several classifications of model transformations like
classification in “exomorphic”, “endomorphic” and “creational” transformations
[Czarnecki03]. As presented in figure 1, we are interested only on endomorphic
transformation. It deals with models represented at the same level of abstraction, and
where source and target models are instances of the same metamodel. Usages of
endomorphic transformations are numerous. Typical example of this kind of
transformation is refactoring.

Figure 1: Model refactoring process

The remainder of the paper is structured as follows. Section 2 presents the code
refactoring researches. Section 3 presents the model refactoring states of the art. Section 4
gives the model refactoring taxonomy. Section 5 discusses the different classification
features. Section 6 and 7 are reserved for related works and conclusion, respectively.

2 CODE REFACTORING : STATE OF THE ART

This section presents the most relevant works on code refactoring , we try to give an
indicative list of such works.

William Opdyke’s PhD thesis [Opdyke92] was the first major written work using the
refactoring term. He considered refactorings for object-oriented software. For these
refactorings, he described the design prerequisites and automatic program restructurings
required to guarantee preservation of behavior. An important consequence of Opdyke’s
work was the later development of a refactoring tool for Smalltalk. Roberts [Roberts99]
extended Opdyke’s work by providing a more formal basis for composing refactorings
and examined the use of dynamic information in refactoring.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 145

Graph transformations [Corradini02] [Engels96] [Ehrig00] represents another way to
deal with restructuring: the software is represented as a graph, and restructuring
corresponds to the transformation rules .In [Jahnke97], authors suggest the use of graph
transformation in order to replace occurrences of poor design patterns in a legacy
program by good design patterns. In [Lakhotia98], the author present a transformation
called tuck for restructuring programs by decomposing large functions into small
functions. Tuck consists of three steps: Wedge, Split, and Fold. A wedge (i.e. a subset of
statements in a slice) contains computations that are related and that may create a
meaningful function. The statements in a wedge are split from the rest of the code and
folded into a new function.

In [Snelting98], Snelting et al. present a framework for detecting and remediating the
imperfect design of a class hierarchy based on concept analysis. Authors analyzes the
class hierarchy along with a set of applications that use it, and constructs a lattice that
provides valuable insights into the usage of the class hierarchy in a specific context and
then generate a restructured class from the lattice.

In the works of Marticorena et al. [Marticorena06], we find another way to deal with
refactoring which is software metrics. At first, authors propose a set of additional criteria
to classify bad smells (define in an informal way code flaws, in order to suggest
refactorings). Then they link the concept of bad smells with the concept of metric
features. The aim of this work is to propose a method to evaluate the suitability of the
tools assisting bad code smell detection, as well as the selection and the implementation
of metrics linked with bad code smells.

In [Melton06], H. Melton and E. Tempero present a tool (Jepends) that analyses the
source code of a system in order to identify classes as possible refactoring candidates.
The tool analysis is based on the identification of the dependency cycles among classes.
After that authors show how dependency cycles detected by the Jepends tool can be used
as the starting point for refactoring.

Another refactoring approach is proposed in [Hadar06]. The Composition
Refactoring Triangle (CRT) unified approach for handling multiple changes across
complex environments. The CRT is a combination of three pillars: the CR Process
(CRP); the CR Management Tool (CRMT); and the code complexity management
procedure and version control, using External and Internal Composition Refactoring
(ECR/ICR) XML markers. The external ones are linked to external visible features or
software requirement changes, and the Internals are a set of uniquely defined refactoring
primitives. Authors propose a practical method for the resolution of the problem,
evaluating and estimating the time and effort required for the refactoring. The approach is
assisted by techniques and tools, allowing the development team in handling multiple
changes using combination of primitive refactorings.

CLASSIFICATION OF MODEL REFACTORING APPROACHES

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

3 MODEL REFACTORING STATE OF THE ART

A recent trend is to apply the concepts of refactoring to higher levels of abstraction.
Consequently, model refactoring is emerging as a desirable means to improve models
design using behavior-preserving transformations. Although it exists many researches on
code refactoring, works on model refactoring are still young. This section presents the
most relevant researches on model refactoring.

In [Biermann06], Enrico Biermann et al. propose to use the Eclipse Modeling
Framework (EMF), a modeling and code generation framework for Eclipse applications
based on structured data models. They introduce the EMF model refactoring by defining
a transformation rules applied on EMF models. EMF transformation rules can be
translated to corresponding graph transformation rules. If the resulting EMF model is
consistent, the corresponding result graph is equivalent and can be used for validating
EMF model refactoring. Authors offer a help for developer to decide which refactoring is
most suitable for a given model and why, by analyzing the conflicts and dependencies of
refactorings. This demarche is closed to the model driven architecture (MDA) paradigm
[MDA06] since it starts from the EMF metamodel applying a transformation rules.

Another work on model refactoring is proposed in [Zhang05], based on the
Constraint-Specification Aspect Weaver (C-SAW)1, a model transformation engine
which describes the binding and parameterization of strategies to specific entities in a
model. Authors propose a model refactoring browser within the model transformation
engine to enable the automation and customization of various refactoring methods for
either generic models or domain-specific models. The transformation proposed in this
work is not based on any metamodel, it is not an MDA approach.

In [Rui03] Rui, K. and Butler, apply refactoring on use case models, they propose a
generic refactoring based on use case metamodel. This metamodel allows creating several
categories of use case refactorings, they extend the code refactoring to define a set of use
case refactorings primitive. This refactoring is very specific since it is focused only on
use case model, the issue of generic refactoring is not addressed, and these works do not
follow the MDA approach.

R. Marticorena affirms that on one side, all tools such as (IntelliJ IDEA, Eclipse,
Refactoring Browser, JRefactory...) approach the implementation and execution of
refactorings from the scratch, with a solution based on customized libraries, not
supporting reuse to compose and run refactorings on other languages with similar
features. On the other side, the modern software systems often require different modules
developed in different languages. As solution, he proposes in [Marticorena05] an
independent language refactoring based on MOON [Marticorena03] a minimal notation
to support most of the abstract concepts included in a big family of strongly typed object-
oriented languages. Author analyze and define a refactoring catalog based on MOON, he
try to obtain a formal support to the definition of refactoring that can be achieved with

1 Additional information about C-SAW is available at: http://www.cis.uab.edu/gray/Research/C-SAW.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 147

language independence preserving the behavior of the software. This work proposes a
measure the software quality improvement, resulting from the refactoring operations.
This approach is very closed to the MDA paradigm since they start from the MOON as
the equivalent of the MOF, but MOON is not a standard, as matter of fact, it cannot offer
a generic and extensible approach. Using MOON we are faced to an interoperability
problem when moving to another meta-metamodel.

In the line of language independent refactoring and metamodelling, Sander et al.
[Tichelaar00], study the similarities between refactorings for Smalltalk and Java, and
build the FAMIX model. It provides a language-independent representation of object-
oriented source code. It is an entity-relationship model that models object-oriented source
code at the program entity level, with a tool to assist refactoring named MOOSE. FAMIX
[Tichelaar99a] [Tichelaar99b] does not take account neither complex features in strongly
typed languages (this point have been discussed in [Marticorena05]), nor aspects of
advanced inheritance and genericity. This approach is not really independent from
language since the refactoring transformation is achieved directly on the original code.
This alternative forces to implement transformers of specific code for each language.
These code transformers use an approach based on text using regular expressions.

Based on their experience of the FAMIX metamodel Pieter Van Gorp et al. propose
in [Gorp03] an extension of the UML metamodel for resolving inconsistency problems
that arise when performing a model refactoring. This inconsistency occurs between a
design model and the corresponding code. Typical MDA tools using the UML metamodel
consider the whole method body as implementation specific, and when performing a
model refactoring, we do not pay attention to the implementation level to increase the
abstraction level. Consider the simple Rename Class refactoring primitive, at
implementation level the type casts and exceptions, will not be updated accordingly to the
new name. The solution proposed in [Gorp03] is an extension of the UML metamodel for
refactoring with aims of relating a method body to its contained statements and then
leverage the profile mechanism to model language specific features such as conditionals,
exceptions, type casts... as cross-language abstractions that express strictly the
information needed by the refactoring catalog in use. As result, they propose the
GrammyUML metamodel, which reuse UML 1.4 action entity, it contains arguments and
introduces the SingleTargetAction relating the action to its target. Finally they apply an
UML profile for refactoring developed on top of the GrammyUML metamodel. This
approach is not closed to the MDA paradigm, it does not define a meta-metamodel level
and there is no evaluation of the extension proposed with the MOF or any other meta-
metamodel.

Another model refactoring is presented in [Kempen05], based on SAAT (Software
Architecture Analysis Tool). It allows calculating metrics about UML models the metrics
are then used to identify the flaws or anti-patterns. Authors represent the structure using
class diagrams, and the behaviour of each class using statecharts. After that they examine
the metrics for refactoring a centralized control structure into one that employs more
delegation they use csp-based formalism (Communicating Sequential Processes) to

CLASSIFICATION OF MODEL REFACTORING APPROACHES

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

guarantee the behaviour preservation. This work deal with a particular problem of
centralized control structure, it is not based on any metamodel.

In the next section other works on model refactoring are referenced.

4 DESIGN FEATURES OF MODEL REFACTORING
APPROACHES

Based on the state of the art defined in the section 3 we identified various properties of
the model refactoring domain. Indeed, we elaborated a manual classification which puts
back the main characteristics presented in a unified way. This presentation allows to
highlight the common points between each approach and to consider a variety of potential
combinations over them. Czarnecki et al, proposes a possible taxonomy for the
classification of several existing and proposed model transformation approaches.
Considering the refactoring as a model transformation problem, we extend the feature
diagrams resulting from a domain analysis of existing model transformation approaches
presented in [Czarnecki03].

The taxonomy for the classification of model transformation is valid for model
refactoring but not sufficient. We enlarge this taxonomy by adding new concepts, specific
to the model refactoring domain.

Every concept is then detailed and followed by a comparative table relating the
presence of the concept in the works presented above.

Figure 2: Features diagram for model refactoring

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 149

Figure 2 presents the model refactoring taxonomy. The part in box represents the model
transformation taxonomy proposed by Czarnecki et al [Czarnecki03]. We add the new
features related to the model refactoring domain.

Behaviour preservation

A model refactoring must preserve the observable behaviour of the model it is
transforming. In order to achieve this, we need a precise definition of “behaviour” in
general, and for models in particular.

Figure 3: Features of behaviour preservation

As presented in figure 3, existing refactoring works has generally relied on either a semi-
formal demonstration of behaviour preservation (e.g. approach based on contracts : pre,
postconditions and invariants [Marticorena05]), or indeed no demonstration of behaviour
preservation at all [Biermann06] [Zhang05]. In practice, full behaviour preservation is
very difficult to prove. It may be some tolerance for changing behaviour as long as we are
able to identify precisely how a given model transformation modifies it.

Table 1: The comparison of the various approaches with regard to the properties of behaviour preservation

Refactoring opportunities

The figure 4 presents the refactoring opportunities which contain the possibilities of
detection of the design defects and the possible improvements, this property is crucial for
the creation of automatic refactorisations

The refactoring strategy includes the detection whether the refactoring needs in a
source model. Users can specify the refactoring needs, as response for specific changes.
This is a reactive approach, the programmer detects the suitable refactoring (e.g. the work
presented in [Tichelaar00] do not indicate where apply a refactoring it only explain how
apply a model refactoring primitive). It can also be detected automatically from a

CLASSIFICATION OF MODEL REFACTORING APPROACHES

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

proactive approach (inference), in this case, the system detects the refactoring
opportunities by analyzing the design defects.

Design defects are poor design choices that hinder the maintenance of programs.
They include bad solutions to recurring problems in object oriented design, such as
antipatterns [Brown98] (as opposed to design patterns [Larman02]), defects related to
design and code smells [Fowler99] (symptoms of design defects).

Figure 4: Features of refactoring opportunities

Refactoring opportunities can be identified by analyzing bad smells (e.g. in
[Marticorena05] authors apply a refactoring inference based on metric values and bad
smells) or antipatterns (e.g. in [Kempen05] metrics are used to identify the anti-patterns).
Symptoms serve to detect the model elements susceptible to be refactored, as well as bad
smells. It exist other solution not covered by this classification. As example, in [Moha08],
authors propose an automated approach for suggesting defect-correcting refactorings
using relational concept analysis (RCA). In [Moha06], authors combine the effectiveness
of metrics with formal concept analysis to detect design defect. This approach is not
independent from the language and therefore it can not be generic.

(E. Biermannet
al., 2006)

(Zhang et al.,
2005)

(Raul et
al., 2005)

(Marc et al.,
2005)

(Moha et al.,
2008)

(Ragnhild et
al., 2006)

(Slavisa.,
2004)

(Sander et
al., 2000)

(Rui et al.,
2003)

(Pieter et al.,
2003)

Table 2: The comparison of the various approaches with regard to the properties of refactoring

opportunities

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 151

Opportunities detection

As presented in figure 5, in case when the detection of model refactoring opportunities is
achieved automatically from a proactive approach, it then necessities a prerequisite
analyze. We distinguish two analyzing ways, the first one is focused on code level and
then applied on model (e.g. [Tichelaar00] [Moha08] [Moha07]) , the second one perform
analysis on model (e.g. [Kempen05] [Straeten06] [Straeten03]).

Figure 5: Features of opportunities detection

This approach is more difficult since model level contains less information to analyze
than the code level, although it has the advantage to offer a generic and reusable
refactoring independent from any platform.

Table 3: The comparison of the various approaches with regard to the properties of opportunities detection

Synchronization

The Model refactoring operation must guarantee the consistency between a design model
and the corresponding code.

Figure 6: Features of synchronization

CLASSIFICATION OF MODEL REFACTORING APPROACHES

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

We decompose in figure 6 the maintaining model consistency feature in two orthogonal
aspects: horizontal consistency must be maintained between design diagrams like UML
static and dynamic diagrams (e.g. [Straeten06] [Straeten03]) and vertical consistency
between model and code. Model transformation is based on the metamodel level, and the
whole method body is considered in the MDA paradigm as implementation specific
related to the code level. Therefore, when model is refactored it can cause an
inconsistency problem. Consider the simple Rename Class refactoring: class names may
be used within protected areas like in type declarations, type casts and exceptions, and the
new name will not be updated accordingly [Gorp03], since this information are not stored
in model level.

Face to this problem we can adopt two strategies, the first one is to try to relate the
model to its code and then apply the profile mechanism to model the language specific
features such as conditionals, exceptions, and type casts, (e.g. [Gorp03]). Her we have a
compromise between maintaining consistency and the reusability, since relating model to
code offer a specific solution not applicable to other platforms.

The second one is related to the MDA process which starts from model arriving to
the code by automated transformations. Performing a model refactoring is done at
Platform Independent Model (PIM) or Platform Specific Model (PSM) levels and then
code will be regenerated reflecting the new features on the refactored model. This
approach is based on both model-to-model and model-to-code transformations and offer a
generic and reusable refactoring independent of any platform.

Table 4: The comparison of the various approaches with regard to the properties of refactoring strategy

Refactoring strategy

As presented in figure 7, although model refactoring can be done manually using any
graphical tool. It is possible to do that for small applications, but when we move to large
systems this operation will be hardest and time consuming, needing effort and
experience. Works presented in this paper try to resolve this problem by offering an
automated and a semi automated refactoring.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 153

Figure 7: Features of refactoring strategy

Automated refactoring, deal with the automated detection and correction of design
defects. The programmer has just to execute the refactoring (e.g. [Straeten06]). Semi-
automated refactoring relay on the interaction with programmer. We can propose a list of
model refactoring primitives, and user can apply any primitives depending on his
preferences (e.g. [Sunye01]). Markovic in [Markovic04] presents a set of refactoring
rules that can be checked, reused and composed. Author offer an algorithm to compute
the description of sequentially composed transformations allowing users to check if a
sequence of transformations is successfully applicable for a given model.

Table 5: The comparison of the various approaches with regard to the properties of refactoring strategy

5 DISCUSSION

Although there are satisfactory solutions for the code refactoring, (such as IntelliJ IDEA,
Eclipse, Refactoring Browser, JRefactory), the models refactoring still in the stage of
research and development. In this context, several propositions emerge, certain try to
supply a structured demarche, the others propose ad-hoc solutions. Our study aims to
classify these various approaches to be able to compare them, possibly to combine them
she also allows to identify future challenges. According to the analysis of the various
tables presented in the section 3 we notice that for the properties of:

• The behaviour preservation: most of the works do not offer formal proofs to
validate the refactored model and guarantee that it offers the same behavior of the
source model. Some works are not interested at all to this property although it is
fundamental.

• Refactoring Opportunities: although there are several works which allow
identifying the possible design defects, most of the approaches do not reuse the
experiences of the designers such as the design patterns. An interesting way to be

CLASSIFICATION OF MODEL REFACTORING APPROACHES

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

investigated would be to try to integrate these experiences for the automatic
detection of the refactoring opportunities.

• Synchronization: the various approaches proposed in the literature ignore the
horizontal aspect of the synchronization although its importance to maintain the
coherence between the various static and dynamic diagrams. Some works try to
maintain a consistency between the model and the code. Validating these
approaches and generalizing them still a challenge.

• Refactoring Strategy: to propose a totally automatic refactoring does not have to
exclude the intervention of the designer. Most of the approaches propose a semi-
automatic and manual solution. We suggest integrating the approaches of
refactoring opportunities detection to offer automatic solutions in a complete
framework.

6 RELATED WORK

Czarnecki et al. propose in [Czarnecki03] a classification of model transformation
approaches. This classification is applicable for model refactoring since model
refactoring is an endomorphic model transformation. Although, model refactoring
introduces new concepts not covered in such taxonomy. This taxonomy is based on a set
of features identified from the model transformation domain analysis.

Tom Mens et al. offer in [Mens05] another taxonomy of model transformation based
on the discussions of a working group on model transformation of the Dagstuhl Seminar
on Language Engineering for Model Driven Software Development. The two works are
relatively similar since we find the same concepts. Mens et al. focuses on helping the
developer choosing a particular transformation language by answering crucial questions
for model transformation they proposes. In [Mens03] Tom Mens propose a list of the
most important challenges in model refactoring that could be investigated.

Although, this works surround the model refactoring area, it is necessary to define a
well established classification of model refactoring approaches this paper provide a set of
classes in which we can catalogue each work dealing with model refactoring.

7 CONCLUSION

Model refactoring is a young area, although it is related to and builds upon the more
established fields of program transformation and meta-programming. Many approaches
to model refactoring have been proposed over the last years, but little experience is
available to assess their effectiveness in practical applications. In this respect, we are still
at the stage of exploring possibilities and eliciting requirements. In this paper we
presented the most relevant works on model refactoring based on our intuition and the
application examples published together with each approach. We classified the existing
model refactoring approaches relating to refactoring features we proposed. A depth

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 155

comparison based on benchmark problems would be the next step to evaluate each
approach.

REFERENCES

[Corradini02] Corradini A., H. Ehrig, H.-J. Kreowski and G. Rozenberg, editors,”Graph
Transformation” Lecture Notes in Computer Science 2505, Springer-Verlag,
2002.

[Czarnecki03] Czarnecki K., Helsen S. “Classification of Model Transformation
Approaches” . In online proceedings of the 2nd OOPSLA’03 Workshop on
Generative Techniques in the Context of MDA. Anaheim, October, 2003.

[Roberts99] Donald Roberts. “Eliminating Analysis in Refactoring”. PhD dissertation,
University of Illinois at Urbana-Champaign, Department of Computer
Science, 1999.

[Engels96] Engels G., E. Hartmut and G. Rozenberg, editors, “Special Issue on Graph
Transformations” Fundamenta Informaticae 26(3,4), IOS Press, 1996.

[Biermann06] E. Biermann, K. Ehrig, G. Kuhns, C. Köhler, G. Taentzer, and
E.Weiss.”EMF Model Refactoring based on Graph Transformation
Concepts”, Electronic communications of the east, Volume 3, 2006.

[Ehrig00] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Theory and
Application to Graph Transformations” Lecture Notes in Computer Science
1764, Springer-Verlag, 2000.

[Hadar06] Ethan Hadar, Irit Hadar, “The Composition Refactoring Triangle (CRT)
Practical Toolkit: From Spaghetti to Lasagna”, OOPSLA 2006, Portland,
Oregon, USA. ACM 1-59593-491-X/06/0010.

[Succi01] Giancarlo Succi, Michele Marchesi, “Extreme Programming Examined”,
Addison-Wesley, 2001.

[Sunye01] Gerson Sunye, Damien Pollet, Yves Le Traon, and Jean-Marc Jezequel,
“Refactoring UML Models”, In Proceedings of UML 2001, Volume 2185.
Springer Verlag, 2001.

[Larman02] Graig Larman, “UML et Design Patterns”, 2002.

[Melton06] Hayden Melton, Ewan Tempero, “Identifying Refactoring Opportunities by
Identifying Dependency Cycles”, Twenty-Ninth Australasian Computer
Science Conference (ACSC2006), Hobart, Tasmania, Australia ,Vol. 48,
January 2006.

[Jahnke97] Jahnke J. H. and A. Zündorf, “Rewriting poor design patterns by good design
patterns”, in: S. Demeyer and H. Gall, editors, Proc. of ESEC/FSE '97

CLASSIFICATION OF MODEL REFACTORING APPROACHES

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Workshop on Object-Oriented Reengineering, Technical University of
Vienna, 1997.

[Lakhotia98] Lakhotia A. and J.-C. Deprez, “Restructuring programs by tucking
statements into functions”, in: M. Harman and K. Gallagher, editors, Special
Issue on Program Slicing, Information and Software Technology 40, Elsevier,
1998.

[Kempen05] Marc Van Kempen, Michel Chaudron, Derrick Kourie, Andrew Boake,
“Towards Proving Preservation of Behaviour of Refactoring of UML
Models”, in proceedings of SAICSIT 2005, Pages 252.

[MDA06] MDA Guide Version 1.0.1, omg/2003-06-01, 12th June 2003. Accessed on Jan
2006.

[Fowler99] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, “Refactoring:
Improving the Design of Existing Code”, Addison-Wesley, 1999.

[Moha08] Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, and Yann-
Gael Gueheneuc “Refactorings of Design Defects using Relational Concept
Analysis”, ICFCA, 2008.

[Moha06] Naouel Moha, Jihene Rezgui, Yann-Gael Gueheneuc, Petko Valtchev, and
Ghizlane El Boussaidi, “Using FCA to Suggest Refactorings to
CorrectDesign Defects”, CLA, 2006.

[Moha07] Naouel Moha, “Detection and Correction of Design Defects in Object-Oriented
Designs”, OOPSLA, October 2007.

[Gorp03] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. “Enabling and
using the UML for model driven refactoring”. 4th International Workshop on
Object-Oriented Reengineering (WOOR), (Germany), July 21st, 2003.
Technical Report 2003-07 of the University of Antwerp (Belgium),
Department of Mathematics & Computer Science, 2003.

[Marticorena06] Raul Marticorena, Carlos Lopez, and Yania Crespo, “ Extending a
Taxonomy of Bad Code Smells with Metrics”, WOOR’06, Nantes, 4th July,
2006.

[Marticorena05] Raul Marticorena, “Analysis and Definition of a Language Independent
Refactoring Catalog”, 17th Conference on Advanced Information Systems
Engineering (CAiSE 05). Portugal., page 8, jun 2005.

[Marticorena03] Raul Marticorena and Yania Crespo. “Refactorizaciones de
especializacion sobre el lenguaje modelo MOON”. Technical Report DI-
2003-02, Departamento de Informatica. Universidad de Valladolid,
septiembre 2003.

[Straeten06] Ragnhild Van Der Straeten, Maja D’Hondt “Model Refactorings through
RuleBased Inconsistency Resolution”, SAC’06 Dijon, France 2006.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 157

[Straeten03] Ragnhild Van Der Straeten, Jocelyn Simmonds “Detecting Inconsistencies
between UML Models Using Description Logic”, International Workshop on
Description Logics, Rome, Italy September 5-7, 2003.

[RFP02] Request for Proposal: MOF 2.0 Query /Views /Transformations RFP, OMG
Document: ad/2002-04-10.

[Rui03] Rui K. and Butler, G. (2003). “Refactoring Use Case Models : The Metamodel”.
In Proc. Twenty-Sixth Australasian Computer Science Conference
(ACSC2003), Adelaide, Australia. CRPIT, 16. Oudshoorn, M.J., Ed. ACS.
301-308.

[Tichelaar00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, Oscar Nierstrasz. “A
Meta-model for Language-Independent Refactoring”, published in the
proceedings of ISPSE 2000.

[Tichelaar99a] Sander Tichelaar, Serge Demeyer and Patrick Steyaert. Famix 2.0 – the
famoos information exchange model. URL: http://www.iam.unibe.ch/
famoos/FAMIX/, 09 1999.

[Tichelaar99b] S. Tichelaar, FAMIX Java language plug-in 1.0, Technical, Report,
University of Berne, September 1999.

[Demeyer02] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengineering
Patterns, Morgan Kaufmann and DPunkt, 2002.

[Markovic04] Slavisa Markovic, “Composition of UML Described Refactoring Rules,
OCL and Model Driven Engineering”, Lisbon, Portugal, October 12, 2004.

[Snelting98] Snelting G. and F. Tip, “Reengineering class hierarchies using concept
analysis”, in: Proc. Foundations of Software Engineering (FSE-6), SIGSOFT
Software Engineering Notes 1998.

[Mens03] Tom Mens, First international workshop on refactoring : achievements,
challenges, and effects, 2003.

[Mens05] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp, “A Taxonomy of
Model Transformations”, Dagstuhl Seminar Proceedings, 2005.

[Opdyke92] William F. Opdyke. “Refactoring Object-Oriented Frameworks”. PhD
dissertation, University of Illinois at Urbana-Champaign, Department of
Computer Science, 1992.

[Brown98] William J. Brown, Raphael C. Malveau, William H. Brown, Hays W.
McCormick III, and Thomas J. Mowbray. Anti Patterns: “Refactoring
Software, Architectures, and Projects in Crisis”. John Wiley and Sons, 1st
edition, March 1998.

[Zhang05] Zhang J., Lin, Y. and Gray, J. (2004) “Generic and Domain-Specific Model
Refactoring using a Model Transformation Engine”, Model-driven Software

CLASSIFICATION OF MODEL REFACTORING APPROACHES

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Development – Research and Practice in Software Engineering, accepted for
publication in 2005.

About the author
Mohamed Maddeh (maddeh_mohamed@yahoo.com) PhD. Student in
National Institute of Computer Sciences of Tunis (ENSI). Member of
LI3. Member of Tunisian association of Artificial intelligence (ATIA).

Prof. Khaled GHEDIRA (khaled.ghedira@isg.rnu.tn) is Engineer
ENSEEIHT and ENSIMAG, he was DR in the Institute of Computing
and Artificial intelligence of Neuchâtel in Swiss and consultant at
British Telecom. He was the director of the National Institute of
Computer Sciences of Tunis (ENSI) and president of the ATIA. He is
the founder and responsible of the Research Unity SOIE (Strategies of

Optimization of the engineering of the Information and the knowledge) actually LI3. His
research interests include the AI more particularly the Multi-agents systems and the
Constraints Satisfaction Problems (CSP), the logistics problems and\or the industrial
automation (supply chain, VRP), the optimization multi-criteria, the stochastic
optimization and\or heuristics (RS, AG, RT, ACF etc.). He is member of several
committees of diverse conferences and journals.

Dr. Mohamed ROMDHANI (Mohamed.Romdhani@insat.rnu.tn) is a
Doctor in computer sciences at INPG (Polytechnic National institute of
Grenoble, France). He is teaching within the National Institute of
Applied sciences and Technologies of Tunis (INSAT) and responsible
of the programs of computing science and in particularly Software
Engineering.

