
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No.6, September-October 2009

Mourad Badri, Linda Badri and Fadel Touré: “Empirical Analysis of Object-Oriented Design
Metrics: Towards a New Metric Using Control Flow Paths and Probabilities”, in Journal of
Object Technology, vol. 8, no. 6, September-October 2009, pp. 123 - 142
http://www.jot.fm/issues/issue_2009_09/article2/

Empirical Analysis of Object-Oriented
Design Metrics: Towards a New Metric
Using Control Flow Paths and
Probabilities

Mourad Badri, Linda Badri and Fadel Touré,
Software Engineering Research Laboratory, Department of Mathematics
and Computer Science, University of Quebec at Trois-Rivieres, Québec,
Canada.

Abstract
A large number of object-oriented metrics have been proposed in literature. They
are used to assess different software attributes. However, it is not obvious for a
developer or a project manager to select the metrics that are more useful.
Furthermore, these metrics are not completely independent. Using several metrics
at the same time is time consuming and can generate a quite large data set, which
may be difficult to analyze and interpret. We present, in this paper, a new metric
capturing in a unified way several aspects of object-oriented systems quality. The
metric uses control flow paths and probabilities, and captures the collaboration
between classes. Our objective is not to evaluate a given design by giving absolute
values, but more relative values that may be used, for example, to identify in a
relative way high-risk classes. We have designed and conducted an empirical study
using several large Java projects. We compared the new metric, using the Principal
Components Analysis method, to several well known object-oriented metrics. The
selected metrics were grouped in five categories: coupling, cohesion, inheritance,
complexity and size. The obtained results demonstrate that the proposed metric
captures, in a large part, the information provided by the other metrics.

1 INTRODUCTION

Software metrics have become a key element in several domains of Software
Engineering [Pressman 05, Sommerville 04]. They are used to assess different
attributes related to the software product or the process. When applied to software,
they allow collecting quantitative data on various aspects related to its attributes.
These data are analyzed, eventually compared to historical data when available, and
used to improve its quality. The true value of software metrics comes from their
association with important external software attributes such as testability, reliability
and maintainability [El Emam 01]. Metrics are then used to predict software quality
[Fenton 96]. A large number of object-oriented metrics (OOM) have been proposed in
literature [Henderson-Sellers 96]. They are used to assess different software attributes

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 124

such as size, complexity, coupling and cohesion. However, there is a little
understanding of the empirical hypotheses and application of many of these metrics
[Aggarwal 06]. Moreover, it is not obvious for a developer, a project manager or
quality assurance personnel to select the metrics that are more useful. Also, these
metrics are not completely independent [Aggarwal 06]. Many of these metrics provide
overlapping information. Using several metrics at the same time, particularly in the
case of complex and large-scale software systems, is time consuming and can
generate a quite large data set, which may be difficult to analyze and interpret. It is
then difficult to draw inferences from provided information. We then must limit the
number of metrics to be used to a subset of relevant metrics providing useful
information.

In this paper, we present a new metric, called Quality Indicator (Qi), for
assessing classes in object-oriented systems (OOS). The metric has no ambition to
capture all aspects related to software quality. The objective is basically to capture, in
a unified way, some aspects related to object-oriented systems testability and
maintainability. This will allow avoiding using several metrics at the same time. The
metric we propose captures, in fact, much more than the simple static structure of a
system. We expect that it can be used in place of several existing object-oriented
metrics. Our aim, in a first step, is to find in which proportions the Qi metric captures
the information provided by some well-known OOM. The measures obtained using
our metric are considered, in fact, in a relative way. Our objective is not to assess a
given design by providing absolute values, but more relative values which can be
used, for example, for: (1) identifying the high-risk classes (in a relative way) that will
require a relatively higher testing effort to insure software quality, (2) identifying the
fault prone classes, or (3) quantifying the impact of a change instantiated on a given
class on the rest of the classes of the system. Testability and maintainability are
particularly important software quality attributes as it has been recognized that
software testing and maintenance activities are costly phases of software life cycle.
With the growing complexity and size of OOS, the ability to reason about such major
issues based on automatically computable metrics capturing various aspects related to
software quality has become important.

The metric we propose is, in fact, multi-dimensional. It captures (indirectly)
various aspects related to different internal software attributes, such as complexity and
coupling (interactions between classes). It is basically based on control flow paths and
probabilities. Size, complexity and coupling are among the most frequently used
metrics in practice. There exists empirical evidence for correlating size, complexity
and coupling with various quality attributes such as fault-proneness, testability and
maintainability. Our objective is, among others, to provide developers and project
managers with a metric unifying several existing OOM. The metric we propose has
been implemented for Java programs. We have designed and conducted a large
empirical study using several Java systems. The analyzed systems vary in size,
structure and domain of application. We compared the new metric, using the Principal
Components Analysis (PCA) method, to some well known OOM. The selected
metrics were grouped in five categories: coupling, cohesion, inheritance, complexity
and size. The obtained results show that the proposed metric captures, in a large part,
the information provided by the other metrics. As mentionned previously, our

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 125

objective, in a first step, was to correlate our metric to some well known OOM,
validated as quality predictors, and to find in which proportions the Qi metric captures
the same underlying properties that these metrics capture. By showing this correlation,
we can expect that the new metric can also be used as a quality predictor with the
advantage of providing, in a unified way, information about different software
attributes. Our aim in this project, as a next step, is to validate the metric as a good
predictor of some external software quality attributes such as testability and
maintainability and use it to support various tasks related to testing and maintenance
activities. The results already obtained from the first experiments we realized in this
way, by correlating directly the new metric to some aspects related to testability and
changeability of OOS, are very encouraging. These issues will be addressed in a futur
paper.

The remainder of the paper is organized as follows: Section 2 gives a brief
definition of the OOM we selected in this study. The proposed metric is presented in
Section 3. Section 4 presents the empirical study we conducted and discusses the
obtained results. Finally, Section 5 gives general conclusions and some future work
directions.

2 SELECTED OBJECT-ORIENTED METRICS

We give, in this section, a brief definition of the OOM we selected for the empirical
study. The selected metrics are: CBO, MIC, MPC, LCOM, TCC, DIT, RFC, WMPC,
LOC, NOO. These metrics are used to assess various OOS attributes. We focus, in
this paper, on the comparison of our metric, in terms of provided information, to the
selected metrics.

Coupling Metrics

CBO (Coupling Between Objects): CBO counts for a class the number of other classes
to which it is coupled [Chidamber 94]. Two classes are coupled when methods
declared in one class use methods or instance variables defined by the other class.
MIC (Method Invocation Coupling): MIC indicates the relative number of classes to
which a given class sends messages.

An excessive coupling between classes of a system affects its modularity [Briand
99]. To improve modularity and promote encapsulation, coupling between classes
must be reduced [Larman 03]. Well known practices in software engineering tend, in
fact, to promote low coupling between classes in OOS to facilitate evolution [Larman
03, Sommerville 04, Pressman 05]. Furthermore, the more the coupling is high, the
more the system is affected by changes (ripple-effect) and the more its maintenance is
difficult. The comprehension of a highly coupled class is difficult since it implies the
comprehension of the classes it is coupled to. Aggarwal et al. [Aggarwal 06]
addressed recently the correlation between some existing coupling metrics and their
relationship to fault proneness. The defined prediction model shows that coupling
metrics are highly correlated to fault proneness. The measure of coupling is also a
good indicator of testability.

Cohesion Metrics

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 126

 LCOM (Lack of COhesion in Methods): LCOM measures the dissimilarity of methods
in a class [Chidamber 94]. It is defined as follows: Let P be the number of pairs of
methods that do not share a common attribute and Q the number of pairs of methods
sharing a common attribute, LCOM = |P| - |Q|, if |P| > |Q|. If the difference is negative,
LCOM is set to 0.
TCC (Tight Class Cohesion): TCC gives the relative number of pairs of methods
directly connected [Bieman 95]. Two methods are connected if they access a common
instance variable of the class. In a class C, if the number of methods is equal to n, then
NP(c) the number of pairs of methods is given by: n (n-1) /2. Let ND(C) be the
number of pairs of methods of the class that access directly the same instance
variable. TCC is then given by: NP(C) / ND(C).

Class cohesion is considered as one of most important attributes of OOS.
Cohesion refers to the degree of relatedness between members in a class. A high
cohesion in a class is a desirable property [Larman 03]. It is widely recognized that
highly cohesive components tend to have high maintainability and reusability [Li 93,
Bieman 95, Basili 96, Briand 97, Chae 00]. The cohesion of a component allows the
measurement of its structure quality. The cohesion degree of a component is high, if it
implements a single logical function.

Inheritance Metrics

 DIT (Depth of Inheritance Tree): DIT of a class is given by the length of the
inheritance path from the root of the inheritance hierarchy to the class on which it is
measured (number of ancestor classes) [Chidamber 94]. Inheritance allows a better
reusability of the code.

Complexity Metrics

 RFC (Response for a Class): The response set of a class is defined as the set of
methods that can be potentially executed in response to a message received by an
object of that class [Chidamber 94]. A class with a high response set is considered
more complex and requires more testing effort.
WMPC (Weighted Methods Per Class): It represents the sum of the complexities
(normalized cyclomatic complexity) of all the methods of a given class [Chidamber
94]. Only the specified methods in the class are considered. The number of methods
and their complexity are indicators of the effort required to develop, to test and to
maintain the class. Cyclomatic complexity has been validated as a good indicator of
fault proneness. A high complexity is synonym of a higher risk of faults in the class,
also a more difficult comprehension [Basili 96, El Emam 01].

Size Metrics

LOC (Lines Of Code): LOC counts the number of lines of code. A large class is
difficult to reuse, to understand and to maintain, and it presents a higher risk of faults
[El Emam 01]. Size is a significant predictor of maintainability [Dagpinar 03].
NOO (Number of Operations): NOO gives the number of methods in a class
[Henderson-Sellers 96]. If a class has many operations, it is difficult to reuse and
often looses cohesion.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 127

3 QUALITY INDICATOR

The metric we propose, called Quality Indicator (Qi) of classes, is based on control
call graphs, a reduced form of control flow graphs. It takes into account the
interactions between classes (collaboration between classes) and their related control.
It also integrates the probability of call of the methods depending on the control flow
in a program. The Qi metric is normalized and gives values between 0 and 1. The Qi
metric is, in fact, a refinement of the basic metric used by Badri et al. in [Badri 95] to
support OOS integration testing.

Control Call Graphs

A Control Call Graph (CCG) is a reduced form of a Control Flow Graph (CFG). The
nodes representing instructions not leading to method calls are removed. Let us
consider the example of the method M given in figure 1.1. Si represents sequences of
instructions that do not contain method calls. The code of method M reduced to
control call flow is given in figure 1.2. The corresponding call graph is given in figure
1.3. Figure 1.4 gives the control call graph of method M. Contrary to traditional call
graphs (CG), CCG better summarize the control and model the control flow paths that
include interactions between methods. They better capture the structure of calls.

Polymorphism and CCG

Polymorphism is difficult to capture by a simple static analysis of the source code. In
fact, the effective call of a virtual method is done when executing the code (dynamic
binding). In our approach, polymorphic messages that figure in the CCG of a method
are marked. A node corresponding to a polymorphic call is represented by a polygon
of n+1 sides, n being the number of methods that can eventually respond to the call.
The vertices of the polygon are linked by directed arcs to the virtual methods that can
eventually respond to the call. The list of methods that can potentially respond to the
call is determined by static analysis of the code. If we consider, from the example
given in figure 1, that call M2 is polymorphic and that a method M21 can also respond
to the call, the extension of the CCG of method M, while taking into consideration
polymorphism, is given by figure 1.5.

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 128

(1.1) (1.2) (1.3) (1.4) (1.5)

 M ()
 {
 M1();
 If cond1 Then
 M2()
 Else M3();
 While cond2
 { M4();
 M5();
 }
 M6();
 }

M ()
{ IF cond0 Then
 S1;
 Else S2;
 S3;
 M1();
 If cond1 Then
 M2();
 Else M3();
 While cond2
 {
 M4();
 If cond3 Then
S4;
 M5();
 }
 M6();
}

Figure 1: A method and corresponding CG, CCG and polymorphic CCG.

Generating the Qi metrics

Generating the Qi metrics is done in three major stages:
Stage 1: Extracting, by static analysis of the source code of the program, the CCG of
each method.
Stage 2: Transforming the CCG of each method in a model that will allow the
evaluation of its Qi. The Qi of a method is expressed, in fact, in terms of several
intrinsic parameters of the method such as its unit testing coverage and its cyclomatic
complexity, as well as the Qi of all the methods it calls. We start from the principle
that the quality of a method, in particular in terms of reliability, depends also on the
quality of the methods with which it collaborates to accomplish its task. In OOS, the
objects collaborate to achieve their respective responsibilities. A method of low
quality, presenting for example faults, or a low testing coverage, can have an impact
on the methods that use it (directly or indirectly) depending on the control flow. In
other words, its low quality can affect the quality of other methods collaborating with
it. There exists here a propagation that needs to be captured (interference between
classes). For example, if we consider two classes with (let us suppose) the same
complexity but used in two different ways. The first one may be used lowly and the
second one used highly in the system. The impact of a poor quality of the second one
risk being more important than the first one. It is not obvious, particularly in the case
of complex and large software systems, to identify intuitively this type of interference
between classes. This kind of information is not captured by the selected OOM. The
Qi of each method is expressed under the form of an equation. The details relative to
this step will be presented in what follows. As mentioned previously, the obtained
values are mainly considered in a relative way. They allow determining, among other
things, the most critical parts (in a relative way) of a program. The Qi of each class is
calculated in function of the Qi of its methods. We obtain a system of n equations (n
being the number of methods in the program).
Stage 3: Finding a solution to the system of equations to obtain the values of the Qi of
the classes (by going through the ones of the methods) of the system.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 129

Assigning Probabilities

The CCG of a method can be seen as a set of paths that the control flow can cross.
Taking a path depends on the conditions in the control structures. To capture this
probabilistic characteristic of the control flow, we assign a probability to each path
defined in the CCG as follows: For a path Ck,

() ()

0

kn

k i
i

P C P A
=

=∏

where Ai are the directed arcs composing the path Ck.
By supposing, to simplify the analysis and the calculations, that the conditions in

the loop structures are independent, the P(Ai) becomes the probability of an arc of
being taken when exiting a control structure. The P(Ck) are then reduced to a product
of the probabilities of the state of the conditions in the control structures. To simplify
our experiments, we assigned probabilities to the different control structures
according to the rules given in Table 1. These values are assigned automatically
during the static analysis of the source code when generating the different Qi models.
This is done by a tool we developed. As an alternative way, the probability values
would also be obtained by dynamic analysis (according to the operational profile of
the program), or assigned by programmers from the knowledge of the program.
Dynamic analysis will be considered in a future work.

Nodes Probability Assignment

(If, else)

0.5 for the exiting arc « condition
= true »

0.5 for the exiting arc
« condition=false »

while

0.75 for the exiting arc
« condition = true »

0.25 for the exiting arc
« condition = false »

(Do, while)
1 for the arc: (the internal

instructions are executed at least
once)

(Switch,case) 1/n for each arc of the n cases.

(?, :)

0.5 for the exiting arc « condition
= true »

0.5 for the exiting arc « condition
= false »

for 1 for the arc

(try, catch)
0.75 for the arc of the « try » bloc
0.25 for the arc of the « catch »

bloc

Polymorphism 1/n for each of the eventual n
calls.

Table 1: Assignment rules of the probabilities.

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 130

Quality Indicator

For a method Mi, we define its Qi as a kind of estimation of the probability that the
control flow will go through the method without any “failure”. The Qi of a method,
such as mentioned previously, is calculated in function of the Qi of the methods it
calls, of the probability of those methods to be called, and of an intrinsic constant of
method Mi called Intrinsic Quality Indicator (or Intrinsic Qi) of the method. The
intrinsic Qi of a method regroups basically some parameters related to its testability.
The Qi of a method Mi is given by:

()*

1

i

i i k

n
i

M M j M
j k

Qi Qi P C QI
σ= ∈

⎛ ⎞
= ∗ ∗⎜ ⎟

⎝ ⎠
∑ ∏

With : QiMi : Quality Indicator of the method Mi
Qi*

Mi : Intrinsic Quality Indicator of the method Mi
P(Cj

i): Probability of following path Cj
i of the method Mi

QiMk : Quality Indicators of the methods included in the path Cj
i

ni : Number of paths of the CCG of the method Mi
Card(σ)=mj : Number of the methods included in the path Cj

i.

Intrinsic Quality Indicator

The Intrinsic Quality Indicator of a method Mi, noted Qi*
Mi, regroups some

parameters characterising in an intrinsic way the method. These parameters are related
to the cyclomatic complexity and testing effort of the method. It informs somewhere
on the quality (in terms of level of confidence that we can have towards the method)
that this method would have if all the methods it calls have a high quality (completely
tested for example). It allows informing on the confidence that we can give to the
method and also on the risk that its execution may present (on the system or on some
parts of the system). In other words, we can have a high level of confidence towards a
method having a high complexity but tested completely. Towards the same method, if
for example it has been tested partlialy (testing coverage of 25 %), will have a relative
low level of confidence. As mentioned previously, the measures obtained using the Qi
metric are basically considered in a relative way. One of our main objectives is to
determine, for example, the high-risk parts of a program on which a supplementary
testing effort (relative to the other elements) should be relevant. The dependencies
between methods (and at a high level between classes) play an important role in this
context. In fact, if we consider for example two methods M1 and M2 of low quality
(with comparable complexities and testing coverages), and M1 strongly used in the
system relatively to M2, M1 will probably have an impact more likely important than
M2. Classes in OOS collaborate to accomplish their tasks. These classes have in
general different complexities, as well as different roles in the system, depending on
their intrinsic characteristics and responsibilities. Some classes are more “important”
than others (key classes). Instantiating changes on these classes, for example, can
have more consequences (impact sets and reliability particularly) on the system (or
parts of the system) than another classes.

The Intrinsic Quality Indicator of a method Mi includes its cyclomatic
complexity as well as its unit testing coverage and is defined as:

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 131

*

m ax

1
i

i
M

tfQ i
tf

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

With: tfi = cci * (1 – tci),
cci : Cyclomatic complexity of the method Mi,
tci : Unit testing coverage of method Mi, Є [0, 1] ()max 1

max ii N
tf tf

≤ ≤
=

Complexity can help software engineers determining a program’s inherent risk. In
fact, cyclomatic complexity is a good indicator of fault proneness. Studies show a
correlation between a program’s cyclomatic complexity and its error frequency. A
low cyclomatic complexity contributes to a program’s understandability. Cyclomatic
complexity is also recognized as a strong indicator of testability. The more the
cyclomatic complexity of a method is high, the more likely its testing effort would be
high. We assume in our approach that a testing coverage of 1 corresponds to a
completely tested method. A testing coverage of 0 corresponds to a method not tested
at all. The Quality Indicator of a method that does not call any other method is
reduced to its Intrinsic Quality Indicator. A method that does not call any other
method, and that was completely tested for example, would have a Quality Indicator
value of 1.

System of equations: Resolution

By applying the previous formula to each method, we obtain the following system of
equations:

()*

1

1....

i

i i k

n
i

M M j M
j k

Qi Qi P C Qi

i N
σ= ∈

⎧ ⎛ ⎞
= ∗ ∗⎪ ⎜ ⎟

⎨ ⎝ ⎠
⎪ =⎩

∑ ∏

The obtained system of equations is not linear. Its size is equal to the number of the
methods of the program. It is composed of several multivariate polynomials. We use
an iterative method to solve it (method of successive approximations). The system is
reduced to a fixed point problem. For reasons of space limitation, we do not give the
details corresponding to the demonstration of the existence of the solution. We
compute the n iterations to be done to obtain an error in the order of 10-5. We define
the Qi of a class as the product of the Qi of its public methods. The calculation of the
Qi is entirely automated by an Eclipse plug-in tool that we developed in Java. We also
use the scientific calculation software Scilab.

4 EMPIRICAL STUDY

We present, in this section, the empirical study we conducted to evaluate the Qi
metric and the selected OOM. We describe in what follows the methodology used to

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 132

collect and analyze the metrics data for the selected systems. The experiments,
performed on several Java projects, had essentially for objective (in the context of this
paper) to evaluate the capacity of the Qi metric to capture the information provided by
the other metrics.

Methodology and Data Collection

The selected OOM have been computed using the Together tool (Borland). The Qi
have been computed using the Eclipse plug-in tool we developed. For our
experiments, we fixed the unit testing coverage to 75% for each of the methods of the
analyzed systems. Furthermore, we evaluated other values of testing coverage. The
obtained results where substantially the same (in a relative way). The statistical
computations were done using the 2007 XLSTAT tool. The methodology followed for
the first series of the experiments we performed in this project is based on a Principal
Components Analysis (PCA). The analysis is done on the entire data set of the
considered metrics, including the Qi values. We evaluated the percentage of capture
of the information provided by the OOM by the Qi. We selected seven open source
Java projects from various domains:

• JFlex (http://jflex.de/): a lexical analyzer generator. We selected 13 versions of
JFlex.

• JMol (http://jmol.sourceforge.net/): a software for visualizing molecules for
students, educators and researchers in chemistry and biochemistry. We
selected 9 versions of this software.

• GnuJSP v1.0.1 (http://www.klomp.org/gnujsp/): an implementation for the
JSP servers of Sun.

• Oro v 2.0.8, Lucene v 2.2.0 (http://www.apache.org): Oro is a word processor
library, and Lucene is a complete library that allows textual search. Their
development is supported by « Apache Software Foundation ».

• Snark v 0.5 (http://www.klomp.org/snark/): it is a client for downloading and
sharing files for the BitTorrent protocol.

• FreeCs v1.2.2 (http://freecs.sourceforge.net/): an online discussion server (chat
server).

Descriptive Statistics

Table 2 gives some descriptive statistics on the analyzed systems. The 29 analyzed
programs totaled approximately 400 000 lines of code, 4000 classes and 21 600
methods. For the systems selected in several versions (JFlex, JMol), only the last
version is given in Table 2. Inheritance is also present in the set of selected systems.
In fact, 8.7 % of classes inherit from a basic class other than Java Object class. This
will allow us to evaluate the Qi metric in presence of inheritance. Furthermore, the
number of public and private variables in the analyzed systems indicates the
encapsulation of data. We also wanted to evaluate how the Qi behave regarding this
aspect. Table 3 gives descriptive statistics (minimum, maximum, mean value) on the
selected metrics.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 133

Table 2: Descriptive statistics of the analyzed systems.

Table 3: Descriptive statistics on the selected metrics.

Principal Components Analysis

Principal Component Analysis (PCA) is a standard technique to identify the
underlying orthogonal dimensions that explain relations between variables (our
metrics here) in a data set. Principal Components (PCs) are linear combinations of the
standardized independent variables. PCA is one of the most used multivariate data
analysis method. There exist several applications of PCA. We focus in this paper on
the study and visualization of correlations between variables. PCA is based on a
projection principle. It projects the observations from a space at p dimensions of the p
variables to a space at k dimensions (k < p) such that a maximum of information is
kept on the first dimensions. The information is measured here through the total
variance or a cloud of points. If the information associated to the first 2 or 3 axes
represents a sufficient percentage of the total variance of the cloud of points, we then
can represent the observations on a graph with 2 or 3 dimensions. This simplifies the
interpretation. This is an important element of software measurement, since it allows
determining the basic elements that provide most information. PCA uses a matrix that
indicates the degree of similarity between variables to calculate the matrices that will
allow projecting the variable into a new space. It is common to use as a similitude
indicator the Pearson correlation. When the PCA stage will be completed, our
approach will consist on computing the global contribution of each metric on the first
components representing 95% of provided information. We will compute the

Systems LOC #Clas. #Meth. % Pub. %Pri. %ChilCl.
FreeCS 15141 128 848 49.69% 50.31% 37.50%
Oro2.0.8 6642 86 353 11.36% 86.36% 11.63%

Gnujsp-1.0.1 5136 81 463 0.00% 97.48% 18.52%
Lucene2.2.0 22940 322 1859 6.24% 79.43% 7.45%

Snark-05 4793 33 243 0.95% 99.05% 6.06%
Jflex1.4pre5 9887 60 477 39.15% 54.04% 3.33%

JLFEX All vers. 113957 628 4866 19.90% 70.23% 9.16%
Jmol 8 30288 315 1732 23.21% 70.54% 7.94%

JMOL All vers. 227387 2567 12477 16.03% 77.40% 7.11%

 JFLEX JMOL FREECS GNUJSP LUCENE ORO SNARK

Qi 0.17 / 1 / 0.94 0.01 / 1 / 0.81 0.04 / 1 / 0.72 0.01 / 1 / 0.82 017/ 1 / 0.94 0.1 / 1 / 0.90 0.1 / 1 / 0.54

CBO 0 / 29 / 5.11 0 / 104 / 11.1 0 / 61 / 8.94 0 / 37 / 3.69 0 / 45 / 5.9 0 / 25 / 4.75 0 / 3 1 / 8.1

DIT 0 / 5 / 1246 0 / 7 / 2.26 0 / 4 / 1.47 0 / 4 / 1.52 0 / 5 / 1.7 0 / 5 / 1.4 0 / 4 /1.1

LCOM 0 / 674 / 37.56 0 / 32168 / 121.2 0 / 3514 / 62.52 0 / 420 / 24.88 0 / 24.45 / 42.25 0 / 186 / 11.65 0 / 76 / 11.6

LOC 2 / 2539 /166.19 3 / 2275 / 151.2 3 / 872 / 125.13 9 / 66 / 936.7 3 / 1233 / 95.9 0 / 1253 / 81.2 4 / 481 / 141.2

MIC 0 / 26 / 3.92 0 / 20 / 1.78 0 / 43 / 3.53 0 / 11 / 0.92 0 / 10 / 0.91 0 / 15 / 2.0 0 / 22 / 8.12

NOO 0 / 48 / 7.82 0 / 283 / 8.5 0 / 91 / 7.0 0 / 38 / 6.01 0 / 69 / 7.76 0 / 26 / 4.3 0 / 24 / 7.36

MPC 0 / 233 / 25.23 0 / 426 / 4.23 0 / 235 / 33.85 0 / 289 / 17.61 0 / 253 / 22.0 0 / 146 / 13.8 0 / 99 / 29.9

RFC 0 / 435 / 45.74 1 / 627 / 130.26 0 / 117 / 48.5 0 / 153 / 32.03 0 / 180 / 34.55 1 / 358 / 28.9 1 / 88 / 37.4

TCC 0 / 100 / 12.67 0 / 100 / 11.51 0 / 100 / 5.31 0 / 100 / 45.51 0 / 100 /10.20 0 / 100 / 8.4 0 / 100 / 14.15
WMPC 0 / 234 / 24.75 1 / 317 / 21.4 0 / 202 / 26.28 0 / 138 / 13.3 0 / 282 / 20.78 0 / 266 / 15.4 1 / 87 / 22.82

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 134

percentage of capture of the information provided by each metric by Qi. This will
allow us to see to what degree Qi can be used to replace certain metrics.

0

0.2

0.4

0.6

0.8

1

1.2

CBO
LCOM
DOIH
LOC
Qi

CBO 1 0.805295 0.728656 0.53107 0.460375 0.332133 0.428044

LCOM 1 0.515773 0.095992 0.348529 0.309649 0.205275 0.096141

DOIH 1 0.649735 0.48189 0.751325 0.550353 0.670936 0.621466

LOC 0.909593 0.752936 0.873941 0.576875 1 0.401349 0.488802

Qi 0.807 0.723 0.54 0.939 0.943 0.819 0.904

Jmol Freecs Snark Lucen Jflex Gnujsp Oro

Figure 2: Tendencies of the major metrics.

Figure 2 shows the tendencies of some of the selected OOM, as well as the Qi.
Following are the observations made from the first results:

• The highest coupling values (CBO) are observed for JMOL, FREECS and
SNARK with respectively 11.104, 8.94 and 8.09. The rest of the analyzed
systems present average values lower than 6.0. Coupling is, therefore, low for
GNUJSP and ORO with respectively 3.69 and 4.75.

• High values of cohesion (low LCOM) are observed for SNARK and ORO
with 11.64 and 11.65 respectively. The lowest cohesion is observed in JMOL
with 121.22 and FREECS with 62.52.

• The average size of the compilation units vary between 81.23 lines of code for
ORO and 166.19 lines of code for JFLEX.

• The use of inheritance is more present in JMOL with an average value of
2.264. However, it is almost equal for the other programs, where the lowest
value is found in SNARK with 1.09.

• For Quality Indicators, the mean values are observed between 0.54 for
SNARK and 0.94 for JFLEX.

Data Analysis and Results

The values in bold in the following tables (4 – 10) are significantly different from 0
(with alpha = 0.05) for all correlation matrices. The negative signs of the correlations
detain all their respective meaning. According to the definition of Qi, as quality
indicators, we expect that a high value of Qi (near 1) is a sign of good design (in a
relative way) for a class. The correlation signs all show that Qi decreases, with: (1)
The increase of coupling (CBO, MIC); (2) The decrease of cohesion (increasing
LCOM and decreasing of TCC); (3) The increase of the depth of inheritance (when it
is significant, JMOL has the highest level of inheritance of all the analyzed projects

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 135

with 2.264); (4) The increase of cyclomatic complexity (WMPC, RFC); and (5) The
increase of size (increase of LOC, NOO, RFC).

JFLEX (Table 4) shows significant correlations between Qi and all the other
metrics, except the DIT metric. The low sensitivity of Qi against DIT can be
explained by a weak usage of inheritance in JFLEX (the second lowest value after
SNARK). This seems indicating that a moderated usage of inheritance does not affect
Qi. Qi and LOC are highly correlated. The negative sign of this correlation shows that
the increase in lines of code (size) degrades the value of Qi, which confirms our
hypotheses. We then can see that a high and significant correlation between Qi and
LCOM is observed for all systems. In our model, Qi do not take into consideration
explicitly the data flow. From that fact, we can think that there is no link between
cohesion (in the LCOM sense) and Qi. However, Qi captures the interactions
between methods, which could partially explain this correlation.

JMOL (table 5) is a graphical application where the design is highly based on
inheritance. The descriptive statistics indicate that it is the system that contains the
most depth inheritance structures (2.264 in average) among the analyzed systems. The
effect of this structure on the decreasing value of Qi is denoted by the appearance of a
significant correlation of -0.34. The negative sign implies a degradation of Qi with the
increasing of DIT. In the case of FREECS (table 6), the non significant correlation
between Qi and DIT seems confirming that the low usage of inheritance (0.65) has no
incidence on Qi.

GNUJSP (table 7) presents significant correlations between Qi and the other
metrics, except for DIT. Once again, the inheritance structure of GNUJSP seems
reasonable when looking at the descriptive statistics given earlier. The other systems
present similar results as for GNUJSP. However, we can note that for these systems,
the correlation between Qi and TCC is not significant. This seems, however,
indicating that TCC and LCOM do not capture the same dimension of cohesion in
certain cases. This aspect was also mentioned in some papers addressing cohesion in
OOS.

For the correlation matrices of GNUJSP, ORO, LUCENE, FREECS and
SNARK, the observations made regarding JFLEX and JMOL are confirmed, meaning
that of the correlations with DIT, always non significant, are explained by the use of a
little deep hierarchy in these programs. Furthermore, we can note the following: (1)
The correlation between TCC and Qi is significant and high for GNUJSP. (2) The
correlation between RFC and TCC is difficult to interpret since it is significant in
certain projects and of changing signs: 0.24 for ORO and -0.58 for JSP. (3) The high
correlation that exists between DIT and RFC makes the RFC metric difficult for
interpretation. In fact, this metric is too sensitive to DIT. Since a high value and a too
low value of DIT are not desirable, RFC becomes difficult to interpret, since it must
be minimized for a better testability.

Variability of the PCs

To have at least 95% of the information captured by the metrics, which is largely
sufficient, we will retain the first 6 principal components. We give in what follows the
observed variability for two systems (figures 3 and 4). The distribution of
information on the first components is uniform enough for the different projects.

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 136

However, it is more concentrated on the first components for GNUJSP. In what
follows, the other components will be ignored.

Metrics Qi CBO DIT LCOM LOC MIC MPC NOO RFC TCC WMPC
Qi 1

CBO -0.545 1
DIT 0.052 0.236 1

LCOM -0.540 0.387 -0.043 1
LOC -0.922 0.609 -0.033 0.609 1
MIC -0.554 0.867 0.001 0.363 0.570 1
MPC -0.557 0.812 0.027 0.659 0.640 0.784 1
NOO -0.638 0.660 -0.048 0.804 0.696 0.621 0.883 1
RFC -0.159 0.568 0.767 0.160 0.206 0.269 0.372 0.284 1
TCC 0.147 -0.097 -0.035 -0.170 -0.088 -0.146 -0.162 -0.175 -0.048 1

WMPC -0.579 0.690 -0.086 0.711 0.692 0.705 0.921 0.924 0.219 -0.160 1

Table 4: Correlation matrix for JFLEX.

Metrics Qi CBO DIT LCOM LOC MIC MPC NOO RFC TCC WMPC
Qi 1
CBO -0.632 1
DIT -0.336 0.549 1
LCOM -0.226 0.145 -0.028 1
LOC -0.716 0.540 0.216 0.226 1
MIC -0.493 0.711 0.140 0.227 0.398 1
MPC -0.772 0.803 0.391 0.295 0.881 0.584 1
NOO -0.561 0.312 0.072 0.826 0.464 0.322 0.533 1
RFC -0.422 0.629 0.921 0.104 0.332 0.230 0.519 0.225 1
TCC 0.169 -0.096 -0.061 -0.047 -0.107 -0.075 -0.110 -0.132 -0.054 1
WMPC -0.693 0.388 0.066 0.539 0.648 0.458 0.657 0.839 0.198 -0.144 1

Table 5: Correlation matrix for JMOL.
Metrics Qi CBO DIT LCOM LOC MIC NOO MPC RFC TCC WMPC
Qi 1
CBO -0.538 1
DIT -0.169 -0.019 1
LCOM -0.395 0.270 -0.099 1
LOC -0.769 0.632 -0.114 0.500 1
MIC -0.398 0.852 0.048 0.179 0.386 1
NOO -0.570 0.510 -0.199 0.870 0.756 0.341 1
MPC -0.667 0.774 -0.072 0.469 0.902 0.507 0.749 1
RFC -0.690 0.789 0.191 0.489 0.793 0.542 0.719 0.912 1
TCC 0.179 0.016 -0.142 -0.042 -0.013 -0.071 -0.023 0.045 0.027 1
WMPC -0.749 0.599 -0.133 0.605 0.946 0.353 0.814 0.882 0.783 -0.022 1

Table 6: Correlation matrix for FREECS.

Metrics Qi CBO DIT LCOM LOC MIC NOO MPC RFC TCC WMPC
Qi 1

CBO -0.796 1
DIT -0.121 0.216 1

LCOM -0.767 0.468 0.185 1
LOC -0.840 0.858 0.163 0.588 1
MIC -0.801 0.892 0.132 0.540 0.867 1
NOO -0.851 0.595 0.099 0.731 0.621 0.507 1
MPC -0.844 0.885 0.179 0.599 0.984 0.892 0.624 1
RFC -0.836 0.820 0.484 0.652 0.822 0.723 0.773 0.841 1
TCC 0.497 -0.496 -0.512 -0.335 -0.381 -0.394 -0.444 -0.364 -0.583 1

WMPC -0.915 0.749 0.099 0.676 0.887 0.761 0.797 0.857 0.817 -0.419 1

Table 7: Correlation matrix for GNUJSP.
Metrics Qi CBO DIT LCOM LOC MIC NOO MPC RFC TCC WMPC
Qi 1
CBO -0.604 1
DIT 0.051 -0.005 1
LCOM -0.563 0.572 -0.084 1
LOC -0.920 0.595 -0.073 0.589 1
MIC -0.587 0.868 0.061 0.555 0.564 1
NOO -0.737 0.720 -0.170 0.796 0.743 0.608 1
MPC -0.716 0.857 -0.002 0.695 0.750 0.755 0.831 1
RFC -0.654 0.829 0.196 0.587 0.645 0.757 0.786 0.872 1
TCC 0.090 -0.068 -0.010 -0.089 -0.095 -0.008 -0.136 -0.087 -0.071 1
WMPC -0.926 0.553 -0.106 0.589 0.964 0.529 0.757 0.699 0.599 -0.087 1

Table 8: Correlation matrix for LUCENE.

Metrics Qi CBO DIT LCOM LOC MIC NOO MPC RFC TCC WMPC
Qi 1
CBO -0.374 1
DIT 0.108 -0.056 1
LCOM -0.727 0.156 -0.121 1
LOC -0.860 0.295 -0.075 0.751 1
MIC -0.485 0.751 -0.087 0.303 0.425 1
NOO -0.763 0.175 -0.209 0.874 0.739 0.377 1
MPC -0.843 0.505 -0.036 0.702 0.894 0.618 0.748 1
RFC -0.330 0.544 0.414 0.236 0.358 0.348 0.273 0.485 1
TCC 0.050 -0.071 0.276 -0.076 -0.029 -0.098 -0.006 -0.016 0.241 1
WMPC -0.855 0.227 -0.090 0.770 0.979 0.369 0.763 0.821 0.299 -0.030 1

Table 9: Correlation matrix for ORO.
Metrics Qi CBO DIT LCOM LOC MIC NOO MPC RFC TCC WMPC
Qi 1
CBO -0.763 1
DIT -0.062 0.024 1
LCOM -0.621 0.660 -0.070 1
LOC -0.837 0.792 -0.001 0.666 1
MIC -0.611 0.675 0.171 0.463 0.656 1
NOO -0.727 0.625 -0.210 0.659 0.767 0.507 1
MPC -0.810 0.838 -0.005 0.654 0.892 0.608 0.823 1
RFC -0.756 0.775 0.278 0.499 0.780 0.807 0.660 0.829 1
TCC -0.057 -0.159 -0.030 -0.180 -0.117 -0.081 -0.242 -0.170 -0.097 1
WMPC -0.848 0.729 -0.041 0.601 0.901 0.618 0.867 0.909 0.763 -0.162 1

Table 10: Correlation matrix for SNARK.

GNUJSP

0

1

2

3

4

5

6

7

8

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

axe

Va
le

ur
 p

ro
pr

e

0

20

40

60

80

100

Va
ria

bi
lit

é
cu

m
ul

ée
 (%

)

SNARK

0

1

2

3

4

5

6

7

8

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

axe

Va
le

ur
 p

ro
pr

e

0

20

40

60

80

100

Va
ria

bi
lit

é
cu

m
ul

ée
 (%

)

 Figure 3: Variability for GNUJSP Figure 4: Variability for SNARK

While performing a PCA on the same data set, but without Qi, we can observe a
decrease in the variability of the first components. This seems indicating that Quality

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 137

Indicators capture the information provided by several metrics, but they also bring in
more information. This has for effect to better center the information on the first
component. Table 11 shows the percentage of the informational data of the first
principal component (PC1) before and after the integration of the Quality Indicators in
the analysis.

 JFLEX JMOL FREECS GNUJSP LUCENE ORO SNARK
W/O Qi 53,944 45,768 55,952 65,879 59,464 48,725 60,821
With Qi 53,965 47,742 56,077 67,967 60,627 51,615 62,240

Gain 0,021 1,974 0,125 2,088 1,163 2,890 1,418

Table 11: Variability of the first component without and with the values of Qi.

 PC1 PC2 PC3 PC4 PC5 PC6
Qi 10.017 1.340 1.971 5.334 7.556 6.049

CBO 10.307 6.296 6.889 4.249 5.683 10.196
DIT 0.025 44.593 8.649 17.478 3.330 6.364

LCOM 6.572 4.961 9.642 15.419 26.937 16.333
LOC 13.738 1.692 2.730 4.913 8.542 6.036
MIC 5.660 4.495 8.495 9.049 19.722 21.454
NOO 11.903 5.236 5.508 1.115 10.861 9.779
MPC 14.352 0.709 3.201 1.642 2.244 5.885
RFC 13.541 18.912 3.033 1.981 5.958 11.587
TCC 0.019 7.395 49.258 35.839 2.940 0.551

WMPC 13.865 4.371 0.625 2.981 6.228 5.767

Table 12: Mean contributions of the metrics on the PCs.

Contribution of the metrics

PCA gives the contribution of each metric on the obtained components. While
interested in the first components and considering what was mentioned previously
(95% of the total information), we can list the set of metrics captured by the Qi and
quantify in terms of percentage their capture by Qi on the level of each principal
component (PC) and on a global level while considering the first principal
components together.
Table 12 shows the quantity of information (mean value for the selected systems)
provided by each metric on the PCs. We can calculate, for each PC, the quantity of
information that the Quality Indicators Qi provide and that the other metrics provide.
Inspired from recent work of Aggarwal et al. [Aggarwal 06], we can associate each
PC to a quality attribute.

• PC1 is a component that regroups primarily size metrics. We associate PC1 to
size. The metrics that are regrouped are LOC and RFC. However, other
metrics that are correlated to LOC and to RFC also have a significant
contribution. It is the case for MPC, which is another coupling metric, and for
WMPC, a complexity metric.

• DIT is the only metric giving a constant contribution to the informational data,
even if certain other metrics (in some projects) have a significant gain. It is the

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 138

case for RFC for projects ORO, JMOL, JFLEX and for TCC for project
GNUJSP. We then associate PC2 to inheritance.

• PC3 regroups a large quantity of information from the TCC metric, which is a
cohesion metric (86.60% with SNARK, 25.65% with ORO, 91.26% with
LUCENE, 43.17% with FREECS, 91.46% with JFLEX). In projects GNUJSP
and JMOL, LCOM represents the highest scores, respectively 27.90% and
24.51%. We then associate PC3 to cohesion.

• PC4 associates a cohesion metric (TCC) and an inheritance metric (DIT).
Moreover, in this component, coupling per invocation metric brings
information in some cases. We then do not associate this component to any
attribute. However, it remains highly tainted with cohesion.

• PC5 and PC6 are not easy to explain, since the irregular contributions of the
different metrics in their composition.

Coverage of the selected metrics

In this section, we illustrate how we compute the coverage ratio of the selected OOM
metrics by the Quality Indicators Qi.

() ()
6

1
(/) /

ki k PC i
k

TC Q OOM Cont PC TC Q OOM
=

= ∑ i

()

(/)
1 1

(/)
/

(/)
 otherwise

(/)

k

i k

k
PC i

i k

k

Cont Q PC
si

Cont OOM PC
TC Q OOM

Cont Q PC
Cont OOM PC

⎧ ≥⎪
⎪= ⎨
⎪
⎪⎩

With: Cont(PCk) being the percentage of the contribution of component PCk on the
entire data set, Cont(Qi/PCk) the percentage of the contribution of the Quality
Indicator Qi in component PCk, and Cont(OOM/PCk) the percentage of contribution
of the OOM metric in component PCk. Table 13 gives the obtained results for each
project as well as the average for all projects.

 JFLEX JMOL FREECS GNUJSP LUCENE ORO SNARK Average
CBO 69.70 70.60 75.06 87.19 80.54 57.16 89.47 75.67%
DIT 72.49 68.67 70.67 77.30 69.77 56.28 73.34 69.79%

LCOM 81.65 62.11 81.04 81.58 89.21 55.51 73.96 75.01%
LOC 80.22 66.06 80.85 84.55 90.56 63.36 87.53 79.02%
MIC 82.04 74.07 73.69 82.29 75.07 57.08 73.14 73.91%
MPC 77.11 67.37 77.74 83.64 85.77 55.96 79.02 75.23%
NOO 78.17 69.27 80.17 84.34 86.44 91.13 85.24 82.11%
RFC 78.31 68.64 73.51 82.29 87.21 53.68 80.65 74.90%
TCC 85.70 68.61 72.47 76.75 87.29 60.03 74.83 75.10%

WMPC 78.44 77.04 77.93 86.76 89.98 58.96 77.64 78.11%
Average 78.38 69.24 76.31 82.66 84.18 60.91 79.48

Table 13: Coverage of the selected metrics by the Qi.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 139

• For CBO: according to the obtained results, this coupling metric can be
replaced by Qi, since Qi captures up to 75.67% of the information it provides.
This is explained by the consideration (in an implicit manner, according to the
formulation of the Qi model) of the effective coupling through method calls by
the Qi model. The remainder of the not captured information is found into the
following: (1) Coupling due to data flow, coupling that Qi do not capture.
Note that GNUJSP and SNARK have the highest capture levels of CBO by Qi.
In fact, GNUJSP and SNARK have few public variables (0% for GNUJSP and
1% for SNARK). Therefore, all flow exchanges between classes (effective
coupling) are done through method calls. (2) Coupling with system libraries,
which are also ignored by Qi.

• For DIT: This metric is partially captured (69.8%) by Qi. However, we
mentioned previously that Qi becomes sensitive to DIT solely when the
inheritance is very present in the project. The obtained results seems indicating
that Qi can be used instead of DIT to detect the effects of a very complex
inheritance mechanism in a project.

• LCOM: Qi not having a direct relation to cohesion in the sense of LCOM, the
good coverage of Qi observed for this metric (75.01%) can be explained by the
interactions between methods that Qi captures, and also possibly by the
indirect use of a coupling metric. By admitting also that a low cohesion leads
to a high coupling, this decreases Qi. The (negative) relationship that exists
between coupling and cohesion was the subject of a recent paper of Badri &
al. [Badri 08].

• LOC: The size of a system varies in the same way that complexity does, and
certain of other metrics; this can explain the 79.02% coverage by Qi.

• WMPC represents the cyclomatic complexity. It is present in the Quality
Indicator model through the Intrinsic Quality Indicator of the methods, which
explains a capture ratio of 78.11%. The remaining information on complexity
is composed of the arcs of the graph that do not lead to method calls, therefore
ignored by our model.

• We observe that the higher coverage values of Qi are for the projects Gnujsp,
Snark and Lucene, with respectively 82.6, 79.48 and 84.1. This seems to be
related to the fact that in these projects the percentage of public variables is
low. This means that in the case of these projects the control flow is much
more important than the data flow.

5 CONCLUSIONS

We presented, in this paper, a new model that can be used to assess several attributes
of OOS. The model, called Quality Indicator, uses control flow paths and
probabilities, and captures the collaboration between classes. We conducted an
empirical study using several Java projects. The collected data set was enough large.
We compared the new model, using the Principal Components Analysis method, to
several well known OOM. The metrics where grouped in five categories (coupling,
cohesion, inheritance, complexity and size).

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 140

The obtained results show that the proposed model captures more than 75% of
the information provided by the selected metrics (CBO, MIC, LCOM, TCC, DIT,
RFC, WMPC, LOC and NOM). For some metrics, the capture is done directly. In
fact, WMPC, NOM and CBO are indirectly included in the Qi model. Furthermore,
the Qi capture DIT only if the inheritance is significant in the analyzed system. We
noted also that the encapsulation of data is very important to give sense to the results
provided by the Qi model. Encapsulation of data is a desirable property of object-
oriented systems.

We believe that the model captures much more than the simple static structure of
a system. It presents the advantage, compared to other OOM, of unifying various
aspects related to OOS attributes. We plan to replicate our study on other large
projects to be able to give generalized results. We also plan to evaluate the Qi model
as predictor of testability, fault proneness and maintainability. The results already
obtained from the first experiments we realized in this way are very encouraging. Our
aim is to use the model for supporting various activities related to testing and
maintenance of OOS.

ACKNOWLEDGEMENTS

This work was supported by a NSERC (Natural Sciences and Engineering Research
Council of Canada) grant.

REFERENCES

[Aggarwal 06] K.K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra: “Empirical study
of object-oriented metrics”, In Journal of Object Technology, vol. 5, no. 8,
November-December 2006.

[Badri 95] M. Badri, L. Badri and S. Layachi: “Vers une stratégie de tests unitaires et
d’intégration des classes dans les systèmes orientés objet” , Revue Génie
Logiciel, no. 38, Décembre 1995.

[Badri 08] L. Badri, M. Badri and A.B. Gueye: “Revisiting class cohesion: An
Empirical Investigation on Several Systems”, In Journal of Object
technology, vol. 7, no. 6, July-August 2008.

[Basili 96] V.R. Basili, L.C. Briand, and W.L. Melo: “A Validation of Object-
Oriented Design Metrics as Quality Indicators”, IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751-761, October 1996.

[Bieman 95] J.M. Bieman, B.K. Kang: “Cohesion and Reuse in an Object-Oriented
System”, Proceedings of the ACM Symposium on Software Reusability,
April 1995.

[Briand 97] L.C. Briand, J. Daly and J. Wurs: “The dimensions of coupling in object-
oriented systems”, Proceedings of OOPSLA, 1997.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 141

[Briand 99] L.C. Briand, J. Wüst, and H. Lounis: “Using Coupling Measuremen tfor
Impact Analysis in Object-Oriented Systems”, Proc. of the IEEE
International Conference on Software Maintenance (ICSM), pp. 475-482,
Aug./Sept. 1999.

[Chae 00] H.S. Chae, Y.R. Know and D.H. Bae: “A cohesion measure for object-
oriented classes”, Software Ptractice and Experience, no. 30, 2000.

[Chidamber 94] S.R. Chidamber, C.F. Kemerer: “A metrics Suite for Object Oriented
Design”, IEEE Transactions on Software Engineering, Vol.20, No.6, June
1994.

[Dagpinar 03] M. Dagpinar and J.H. Jahnke: “Predicting Maintainability with Object-
Oriented Metrics – An Empirical Comparison”, Proceedings of the 10th
Working Conference on Reverse Engineering, 2003.

[El Emam 01] El Emam, K.; Benlarbi, S.; Goel, N. and Rai, S. N.: “ The confounding
effect of class size on the validity of object-oriented metrics”, IEEE
Transactions on Software Engineering, 27(7): 630-650, 2001.

[Fenton 96] N. Fenton et al.: Software Metrics : “A Rigorous and Practical
Approach”, International Thomson Computer Press, 1996.

[Henderson-Sellers 96] B. Henderson-Sellers: “Object-Oriented Metrics, Measures of
Complexity”, Prentice Hall, 1996.

[Larman 03] G. Larman: Applying UML and Design Patterns, An introduction to
object-oriented analysis and design and the unified process, second
edition, Prentice-Hall, 2003.

[Li 93] W. Li and S. Henry: “Object-Oriented metrics that predict Maintainability”,
Journal of Systems and Software, vol. 23, 1993.

[Pressman 05] R.S. Pressman: Software Engineering, A practitionner’s approach,
sixth edition, Mc Graw Hill, 2005.

[Somerville 04] I. Sommerville: Software Engineering, 7th edition, Addison Wesley,
2004.

EMPIRICAL ANALYSIS OF OBJECT-ORIENTED DESIGN METRICS: TOWARDS A NEW

METRIC USING CONTROL FLOW PATHS AND PROBABILITIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6. 142

About the authors
Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of
the University of Quebec at Trois-Rivières. He holds a PhD in
computer science (software engineering) from the National Institute
of Applied Sciences in Lyon, France. His main areas of interest
include object and aspect-oriented software engineering, software

 quality attributes, and formal methods.

Linda Badri (Linda.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of
the University of Quebec at Trois-Rivières. She holds a PhD in
computer science (software engineering) from the National Institute
of Applied Sciences in Lyon, France. Her main areas of interest
include object and aspect-oriented software engineering, software

 quality attributes, software maintenance, and web engineering.

Fadel TOURÉ (Fadel.Toure@uqtr.ca) is a student of computer
science at the Department of Mathematics and Computer Science of
the University of Quebec at Trois-Rivières. He finished his master in
computer science at the University of Quebec at Trois-Rivières. His
main areas of interest include object-oriented programming and
metrics as well as various topics of software engineering.

