
Vol. 0, No. 0, Z

Usability of Security Specification Approaches
for UML Design: A Survey ∗

C. Talhi, D. Mouheb, V. Lima, M. Debbabi and L. Wang
Computer Security Laboratory, Concordia Institute for
Information Systems Engineering, Concordia University

M. Pourzandi
Software Research, Ericsson Canada, Town of Mount-Royal, Canada

Since it is the de facto language for software specification and design, UML is the target
language used by almost all state of the art contributions handling security at speci-
fication and design level. However, these contributions differ in the covered security
requirements, specification approaches, verification tools, etc. This paper investigates
the main approaches adopted for specifying and enforcing security at UML design and
surveys the related state of the art. The main contribution of this paper is a discussion
of these approaches from usability viewpoint. A set of criteria has been defined and
used in this usability discussion. The discussed UML approaches are stereotypes and
tagged values, OCL, and behavior diagrams. Extending the UML meta-language or
creating new meta-languages for security specification are also covered by this study.

1 INTRODUCTION

Security is a challenging task in software engineering. Indeed, security has been
widely investigated by the software engineering community during the last decades.
This covers specifying security requirements and enforcing them on software. Soft-
ware security enforcement is generally conducted as an afterthought phase of the
software development life cycle. However, this practice is no longer acceptable for
such an important aspect, especially with the increasing complexity and pervasive-
ness of today’s software systems. Since it is the de facto language for software
specification and design, the Unified Modeling Language (UML) [12] is the target
language used by almost all state of the art contributions handling security at spec-
ification and design level.

Many contributions have been presented in the state of the art for specifying
and enforcing security at UML design [1, 2, 4, 5, 6, 7, 8, 14, 16, 17, 18, 19, 20,
22, 23, 27, 28, 30]. While sharing almost the same objectives, these contributions

Cite this document as follows: http://www.jot.fm/general/JOT template LaTeX.tgz
∗ The research leading to this work was possible due to funding and scientific collaboration
with Software Research, Ericsson Canada.

http://www.jot.fm/general/JOT_template_LaTeX.tgz


USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

adopt different approaches for security requirements specification and enforcement.
Since there is no consensus nor standard on how security should be specified for
UML design, non-security experts designers are feeling lost when it comes to deal
with security aspects of their design. In fact they are looking for precise answers
to many questions where the main important ones are: (1) What are the main
approaches that can be adopted for security specification? (2) How each approach
can be used for security specification? (3) For a given security requirement, what are
the possible specification approaches and if possible what is the best one (if any)?
and (4) What are the limitations of each approach in terms of tool support and
complexity? Unfortunately, as far as we know, the state of the art is not providing
such precise answers. In fact we did not find any contribution covering all these
aspects in the same study providing UML designers with the expected answers.

This paper tries to answer the aforementioned questions by (1) surveying the
state of the art related to UML security specification and identifying the main
adopted approaches, (2) explaining how each approach can be used for security
specification, and (3) defining a set of usability criteria and using them to discuss the
usability of each approach. The set of usability criteria was inspired from the state of
the art of software usability and software security requirements specification. From
studying the state of the art, we identified three main approaches that have been
followed for UML security specification. The first approach is based on using the
language artifacts provided by standard UML: Stereotypes, the Object Constraint
Language (OCL) [11], and behavior diagrams. In the second approach, the UML
meta-language is augmented by new language constructs allowing the specification
of security requirements. The third approach consists in defining a new specification
language to specify security requirements on UML diagrams. These approaches will
be presented and their usability will be discussed in this paper. In the sequel, first,
we briefly present the main classification of security requirements covered by the
study. Then we discuss the related work.

Security Requirements

For reasons of space and time, in the following we do not discuss individual security
requirement. Instead, we classify security requirements and discuss how different
UML approaches can represent them. Numerous classifications can be found in the
literature. The main classifications considered in this paper are the following:

Static vs Dynamic Enforceability Classification: Some security requirements are
classified as statically-enforceable, which means there exists some algorithm that,
when applied on a static representation of the application (design, source code,
abstract representation, etc.), can decide in a finite period of time whether the
application satisfies or not the security requirement [26]. Examples of these secu-
rity requirements are secrecy, integrity, authenticity, etc. When such an algorithm
cannot be defined, a security mechanism should be designed to be deployed as a
controller of the application. It will be executed in parallel to the later and in-

2 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



1 INTRODUCTION

tervene whenever the application is about to violate the enforced requirement [26].
Such security requirements are classified as dynamically-enforceable. To this security
requirements class belong authorization, non-repudiation, and privacy.

Logic Classification: Different logics have been used to formally specify security
requirements. Usually, a security policy is specified using some logic and then a
verification tool (a model checker or a theorem prover) is used to check whether the
design satisfies or not that security policy. Thus we limit the scope of logic classes
studied in this paper to the main logics used by verification tools. These logic classes
are mainly the Linear Temporal Logic and the Branching Temporal Logic[21]. Linear
Temporal Logic includes languages such as LTL, PLTL, etc. Security properties that
belong to this logic such as secrecy, integrity, authentication, fair exchange, non-
repudiation, etc, are expressed based on a linear sequence of states that represent
the system execution events. Branching Temporal Logic such as CTL, CTL* is based
on a branching notion of time, which means the system is viewed as a tree of states
representing all the possible execution paths rather than a linear sequence of states.
To this security requirements class belong secrecy, integrity, and authenticity.

Related Work

To the best of our knowledge, this is the first work studying the usability of the
main approaches adopted for specifying and enforcing security requirements at UML
design. We found in the literature few contributions that discuss and evaluate the
UML language, UML stereotypes and OCL. However, none of them addresses the
usability of these approaches.

Gogolla and Henderson-Sellers [9] provide an analysis of UML stereotypes and
propose some suggestions to improve the definition and use of stereotypes within
the UML meta-model. They use OCL to define precise stereotypes, and suggest
that the UML meta-model should be adjusted and tool support should be provided
to deal with stereotypes.

Schleicher and Westfechtel [25] discuss and evaluate the UML meta-language.
A classification of stereotypes and a comparison of different approaches of extending
the UML is also given. Finally, the paper proposes various ways to extend the UML
meta-model for better readability, expressiveness, and verifiability of the extensions.

Regarding OCL, [13] discusses a number of issues related to the syntax and
semantics of OCL such as navigation, state models, object creation, etc. In addition,
the paper proposes some solutions for clarification and extension of the OCL.

The remainder of this paper is organized as follows. Section 2 surveys the state
of the art related to specifying security requirements for UML design and classi-
fies the existing approaches. Section 3 starts by defining a set of usability criteria
and then uses them to discuss the usability of each of the security specification ap-
proaches presented in Section 2. Finally, Section 4 concludes the paper with some
summarizing observations.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 3



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

2 SPECIFYING SECURITY REQUIREMENTS FOR UML DESIGN

In this section we investigate security specification for UML design. We start with
surveying the state of the art. According to our survey, there are three main ap-
proaches that are usually adopted: using UML artifacts, extending the UML met-
alanguage, and creating a new metalanguage. Thus, a subsection is dedicated to
present each approach and show how it can be used for security specification.

State of the Art Survey

In this section, we present a survey on the main state of the art contributions that
are related to specifying and designing security for UML.

The UMLSec approach by Jürjens is among the first efforts in extending UML
for the development of security-critical systems [14]. It provides a UML profile
where general security requirements such as secrecy, integrity, fair exchange, etc are
encapsulated using UML stereotypes and tagged values. It also defines a tailored
formal semantics to formally evaluate UML diagrams against weaknesses. In order
to analyze security specifications, the behaviour of a potential adversary that can
attack various parts of a system is formally modeled. However, UMLSec lacks in
expressiveness since security properties are predefined using UML stereotypes and
tagged values. This framework cannot be used to specify user-defined properties.

Pavlich-Mariscal et al. propose an aspect-oriented approach to model access con-
trol policies [20]. They augment UML with new diagrams to represent Role-Based
Access Control (RBAC), Mandatory Access Control (MAC) and Discretionary Ac-
cess Control (DAC) schemes. that are separated from the main design. MAC, DAC
and RBAC are decomposed into security features which represent specific elements
of an access control policy, e.g. permissions, MAC security properties, delegation
rules, etc. This is the only approach that combines MAC, DAC and RBAC into a set
of security diagrams separated from the main design. Modeling security as aspects
reduces the scattering of access control definitions in the entire application. It is
also possible to make changes to the design without impacting the entire security of
the application. Moreover, Pavlich et al. supports an AOP [15] code generation to
enforce access control policies at execution time. However, this approach is limited
to access control policies.

Zisman proposes a framework to support the design and verification of secure
peer-to-peer applications [30]. The design models and security requirements are
specified using UMLSec. The modeling of abuse cases to represent possible attack
scenarios and potential threats helps designers to identify the security properties to
be verified in the system. In addition, this approach artifacts expressing properties
to be verified by defining a graphical template language. It also allows verification
of the models against the properties and visualization of the verification results.

Lodderstedt et al. (SecureUML) propose an approach to model RBAC poli-

4 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



2 SPECIFYING SECURITY REQUIREMENTS FOR UML DESIGN

cies for model-driven systems [17]. It also provides additional support to specify
authorization constraints related to the state of the system. In contrast to other ap-
proaches, SecureUML proposes a general schema for building systems by combining
design modeling languages with a security modeling language; it does not fix one
particular design modeling language. However, it only focuses on specifying RBAC
model, and does not support secure code generation.

The approach of Doan et al. incorporates RBAC, MAC and lifetimes into UML
for time-sensitive application design [6]. The main focus of this approach is that the
process of designing and integrating security in a software application captures not
only the current design state, but allows tracking the entire design evolution process
via the creation and maintenance of a set of design instances over time. The design
tracking allows a software/security engineer to recover to an earlier design version
that satisfies specific security constraints.

Montangero et al. (For-LySa, DEGAS project) present two UML profiles to
model authentication protocols [18]: the Static For-LySa profile which describes
how the authentication protocol concepts (Server, Principals, Keys, Messages, etc.)
can be modeled using UML class diagrams, and the For-LySa profile which models
the dynamic aspects of the protocol in sequence diagrams, as well as the informa-
tion needed to analyze the protocol. In order to validate a protocol, the approach
For-LySa defines a specification language with semantics to write pre/post condi-
tions and invariant constraints. This approach focuses only on the modeling of
authentication protocols.

The approach of Ray et al. uses parameterized UML diagrams to model RBAC
and MAC frameworks and then compose them manually to produce a hybrid access
control policy [23]. It is the first approach that attempts to combine RBAC and
MAC. However, it focuses only on how to model RBAC and MAC systems in UML
without considering how this approach can be used to design a secure software
system. In another effort [27], Ray et al. integrate RBAC and MAC policies into
an application using an aspect-oriented approach to separate access control features
from other application features.

Alghathbar and Wijesekera (AuthUML) propose a framework to incorporate
access control policies into use case diagrams only [2]. The aim of AuthUML is
analyzing (not necessarily modeling) access control policies during the early stages
of the software development life cycle before proceeding to the design modeling to
ensure consistent, conflict-free and complete requirements.

Popp et al. propose an extension to the conventional process of developing use
case oriented processes [22]. In addition to modeling security properties with UML,
this approach provides a method to incorporate these security aspects into a use
case oriented development process.

Painchaud et al. (SOCLe project) provide a framework that integrates security
into the design of software applications [19]. It also includes verification of UML
specifications and a graphical user interface tool that allows the designer to visu-

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 5



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

alize the verification results and to inspecte the diagrams’ execution graph. But
in this approach, security policies are simply specified using the Object Constraint
Language (OCL) constraints.

Ledru et al. (EDEMOI project) aim at modeling and analyzing airport secu-
rity [16]. The security properties are first extracted from natural language standards
and documents, and integrated into UML diagrams as stereotypes in a UML pro-
file. The UML specifications are then translated into formal models for verification
purposes. This approach is not general enough to be used for software development.

Epstein and Sandhu’s work is one of the first approaches that investigate the
use of UML to model RBAC policies [7]. However, it is limited to only one specific
RBAC model which is the RBAC Framework for Network Enterprises (FNE). The
FNE model contains seven abstract layers that are divided in two different groups.
This approach allows to present each of the FNE model’s layers using UML notation
by defining new stereotypes. This approach can assist the role engineering process,
however, it does not include subtle properties of RBAC such as separation of duty
constraints and it does not provide a method for deriving roles. In addition, there
is no formal semantics for verifying UML models.

Ahn and Shin propose a technique to describe the RBAC model with three views:
static view, functional view and dynamic view using the UML diagrams [1]. This
approach focuses only on the way that UML elements can be used to model RBAC
policies rather than taking a larger view of examining secure software design. It
does not provide a systematic modeling approach that can be used by developers to
create applications with RBAC models.

Brose et al. extend UML models to support the automatic generation of access
control policies for CORBA-based systems [4]. They specify both permissions and
prohibitions on accessing system’s objects since the analysis phase in use case dia-
grams. The UML design is used to generate an access control policy in VPL (View
Policy Language) that is deployed together with the CORBA application.

Vivas et al. propose an approach for the development of business process-driven
systems where security requirements are integrated into the business model [28]. Se-
curity requirements are first stated at the high level of abstraction within a functional
representation of the system given by UML diagrams using tagged values. Next, the
UML specification is translated into XMI representation that allows automatic pro-
cessing of the specification. Finally, the resulting specification is translated into a
formal notation for consistency checking, verification, validation and simulation.

Fernandez provides a methodology to build secure systems using patterns [8].
The main idea of this approach is that security principles should be applied through
the use of security patterns at every stage of the software development process
(requirements, analysis, design and implementation stages). At the end of each
stage, audits are performed to verify that the security policies are being followed.

Chan and Kwok [5] propose a design methodology for e-commerce systems to
specify design details for three processes: Risk, Engineering, and Assurance, which

6 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



2 SPECIFYING SECURITY REQUIREMENTS FOR UML DESIGN

Table 1: The Use of Security Specification Approaches in the State of the Art.
Contributions Stereotypes and OCL Behavior Extending the New

tagged values diagrams UML metalanguage metalanguage
UMLSec [14] X
P. Mariscal et al. [20] X X
SecureUML [17] X X X
Zisman [30] X
SOCLe [19] X
For-LySa [18] X
Epstein and Sandhu [7] X
Brose et al. [4] X
Ahn and Shin [1] X
AuthUML [2] X

represent the main areas of security engineering in the systems security engineering
capability maturity model (SSE-CMM) on which this methodology is based. A
security design patter is used to specify each of those processes.

From the state of the art, three main UML artifacts can be used for security spec-
ification: (1) stereotypes and tagged values, (2) OCL, and (3) behavior diagrams. In
addition, two other approaches can be used: (1) extending the UML metalanguage
or (2) creating a new metalanguage. Table 1 summarizes the use of these approaches
to specify security requirements by the contributions presented above.

In the following, we present each of those approaches and explain how it can be
used for security specification. The activity diagram of Figure 1 will be used through-
out the following subsections to show how security requirements can be specified for
UML design. The diagram specifies the behavior related to the admission of patients
in a medical institution. This example is a simplified version of the business process
used in [24]. The activity diagram consists of three main partitions: (1) Patient
who starts the activity by filling out an admission request, (2) Administration area
where insurance and cost information are collected, and (3) Medical area which is
responsible for admission tests, exams, medical evaluations and sending the medical
results to the patient.

Security Specification Using UML Artifacts

In this section we show how stereotypes and tagged values, the OCL, and behavior
diagrams can be used for security specification and design.

Stereotypes and Tagged Values

Description: Stereotypes are provided as a mechanism for extending the UML
meta-language. Therefore, a stereotype is considered as a user-defined meta-element.
Its structure matches the structure of an existing UML meta-element which is re-
ferred to as “base class”. In that sense, a stereotype represents a subclass (subtype)
of the base class. It has the same form but with a different intent. A stereotype can

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 7



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

have tagged values used to define the additional information needed to specify the
new stereotype intent. Besides, constraints can be defined on both the base class
attributes as well as the tagged values. Code generators and other tools, such as
those used for verification and validation, reserve special treatment to stereotypes.

Figure 1: An Activity Diagram: Admission of Patients in a Medical Institution.

Use for Security Specification: Security requirements are specified by attaching
stereotypes along with their associated tagged values to selected elements of the
design (e.g., subsystems, classes, etc.). Thus a “security” profile should be created
by some security expert for the specification of these stereotypes. The compiler
used to parse UML diagram is then modified such that it can read and interpret
the stereotypes annotating the design. This interpretation consists in generating
a formal representation of the security requirement corresponding to the security
annotation. This security requirement is generated on the basis of the intent of the
security expert while taking into consideration the specificities of each design. In
addition, a formal semantics is associated with the design. Then, the formal security
requirement together with the formal semantics are provided as inputs to a verifica-
tion tool (usually a model checker or a theorem prover). The result of verifying the
security requirement on the design is translated into some representation that any
non-security expert developer can understand. Some stereotypes are parameterized
over the adversary type. These stereotypes are used to specify security properties
that need to be verified against a specification of an attacker (adversary). Faire
exchange, secrecy, and authenticity are examples of these properties. The adversary
type specifies the adversary’s computation capabilities and initial knowledge.

Figure 2 shows how stereotypes can be used to specify security requirements
on the UML design of Figure 1. The used stereotypes are Privacy, Auditing,

8 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



2 SPECIFYING SECURITY REQUIREMENTS FOR UML DESIGN

Access Control, Critical, Integrity, and NonRepud. For example, the stereo-
type Privacy is attached to the Patient partition to specify that unauthorized dis-
closure of sensitive information about the patient is not permitted.

Figure 2: An Example of Specifying Security Using Stereotypes.

Object Constraint Language (OCL)

Description: The OCL is a formal language used to express constraints over UML
diagrams. These constraints mainly specify those conditions that must be satisfied
by the system being modeled. The OCL is mainly used to specify application-
specific requirements for UML models. In addition it is used to specify invariants
of the UML meta-language. More precisely, the main purposes for which OCL can
be used are the followings: (1) To specify invariants on classes and types in the
meta-language, (2) to specify type invariant for Stereotypes, (3) to describe pre and
post conditions on operations and methods, and (4) to describe guards [11].

Use for Security Specification: Since OCL is a language for constraints speci-
fication, it is natural to be used for security specification. According to the main
usability purposes listed above, OCL has been used for security specification follow-
ing three main directions. First, for the security profiles extending UML for security
specification, OCL is used to define constraints on elements described by stereo-
types and tagged values. Second, for those stereotypes used for the specification of
access control properties, OCL can be used by the designer to define access control
constraints (pre conditions and authorization guards). Third, some OCL extensions

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 9



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

[29] allow the specification of temporal logic formulas and thus are used to specify
security requirements in temporal logics, e.g., LTL, CTL, etc. Figure 2 shows how
OCL can be used to specify a constraint on the action “Fill admission request”.
This constraint restricts the execution of this action to the working hours. This
will protect the system from malicious use during nights. The condition start by
specifying its context, i.e., the method on which it is applied, which is the method
FillAdmissionRequest of the class Admission. Then the constraint specifies the
pre condition to be satisfied before executing the controlled method.

Behavior Diagrams

Description: Behavior diagrams are UML diagrams used to depict the behavior
features of the system under design. These include activity, state machine, and use
case diagrams as well as four interaction diagrams. The later are those diagrams
used to specify interactions between objects inside the system. Interaction diagrams
include communication, interaction overview, sequence, and timing diagrams.

Use for Security Specification: Behavior diagrams can be used for security
specification in two ways. The first one is to specify the behavior that ‘MUST’ be
observed by the system and the second one is to specify the behavior that ‘MUST
NOT’ be observed by the system. The later has been investigated by some recent
contributions [30] where the used diagrams are called “Abuse cases diagrams”. Fig-
ure 3 shows an example of an activity diagram specifying the behavior that must be
followed by the system after filling the cost information until sending the medical
evaluation to the patient. This behavior is required for enforcing faire exchange
between patients and the medical institution. Enforcing this behavior inside the
original design of Figure 1 results to the new design presented in Figure 4. This
represents one possible scenario of using behavior diagrams to enforce security re-
quirements. A non-security expert designer will use this “safe design” and integrate
it inside its original design. Another possible scenario is when the behavior diagram,
specifying a security requirement, is used to verify, through model checking or the-
orem proving, whether the design satisfies or not the security requirement. In this
case, the diagram is translated into a (1) transition system (finite state machine or
automata, etc.) or (2) a logic formula, both expressed in the input language of the
target verification tool. Indeed, many contributions establishing the correspondence
between transition systems and temporal logics can be found in language theory [3].
A third possible scenario is the use of behavior diagram to specify security aspects.
Indeed, aspects [15] are usually defined by specifying a behavior that is inserted
before or after some execution point. Thus this behavior can easily specified by a
behavioral diagram. However, the weaving of aspects and the original design can
be performed on the level of design by weaving UML diagrams or postponed to the
implementation phase. In the later case, the weaving is performed on selected files
of the source code and the actual aspects expressed in existing aspect languages,
e.g., AspectJ, and resulting from the refinement of their initial behavior diagrams.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



2 SPECIFYING SECURITY REQUIREMENTS FOR UML DESIGN

Figure 3: Fair Exchange Requirement Inside Medical Applications.

Security Specification by Extending the UML Meta-language

This section shows how the UML metalanguage can be extended to specify security.
Description: In this approach, the UML meta-language is directly extended by a
meta-language specification language as MOF (the Meta-Object Facility) [10]. The
MOF defines a simple meta-metamodel, and the associated semantics, allowing the
description of metamodels in various domains including the domain of object design
and analysis. Extending the UML meta-language (meta-model) is usually needed
when extension mechanisms provided by UML (mainly stereotypes) are not appro-
priate for the target extension or when the resulting complexity is not tolerated.

Use for Security Specification: The two reasons stated above are the same mo-
tivating the extension of UML meta-language for security specification. Although,
stereotypes allow the specification of a wide range of security requirements, they are
not appropriate for specifying structured security policies: Those that are usually
specified using well structured specification languages. Access control properties and
security aspects are the main requirements for which it is better to have dedicated
meta-elements than using standard UML meta-elements annotated by stereotypes
and tagged values.

Security Specification by Creating New Meta-languages

This section shows how new metalanguages can be proposed for specifying security.

Description: In this approach, a new meta-language is defined using a meta-
language specification language as MOF. The motivations of crating a new meta-
language are the same as those of extending the UML meta-language. The vocab-
ulary used by the meta-elements defined by the new meta-language have domain-
specific intuition and are much more precise than the one used for UML meta-
elements. Thus, the interfaces needed for manipulating the new meta-elements are

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 11



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

Figure 4: Enforcing the Security Requirement of Figure 3 in the Activity Diagram
of Figure 1.

too simpler compared to the those required for UML design.

Use for Security Specification: The motivations of creating new meta-languages
for security specification are exactly the same of extending the UML meta-language
for security specification. Indeed, the approach is used for the same objectives and
allows the specification of almost the same security requirements.

3 USABILITY DISCUSSION

This section discusses the usability of each security specification approach on the
light of our survey of the state of the art. First we define a set of usability criteria
that will be used later to discuss the different security specification presented in the
previous section. For the first approach, we discussed separately the usability of
each of the three UML artifacts used for security specification. The results of the
usability discussion of all the approaches are summarized in Table 2.

Usability Criteria

Inspired from the state of the art of software usability and software security require-
ments specification, we defined the following usability criteria:

• Expressiveness : Refers to the ability of specifying security requirements. This

12 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



3 USABILITY DISCUSSION

is a discriminatory criterion since it leads to the rejection of any approach that
fails to specify the desired security requirements. Regarding this criterion, any
specification approach will be given two ranks. The first rank is related to the
covered security requirements and can take one of the following values:

– Static Reqs : if it allows the specification of the majority of statically
enforceable security requirements.

– Dynamic Reqs : if it allows the specification of the majority of dynami-
cally enforceable security requirements.

– All Reqs : if it allows the specification of almost all the security require-
ments.

The second rank is related to the logic classification of the security require-
ments that can be specified. It can take one of the following values:

– LTL Logic if security requirements belonging to LTL logic can be specified
by the evaluated approach.

– CTL Logic if security requirements belonging to CTL logic can be spec-
ified by the evaluated approach.

– All logics if the specifiable security requirements can belong to any logic
class.

• Tool Support : Refers to the availability of tools for specification and verifica-
tion of security requirements, which is of paramount importance. Tools are
mainly used to (1) artifacts the specification and (2) compile and store the
specification in a useful intermediate representation (for verification and/or
code generation). Tool support will be ranked by using one of the following
three values: (1) Standard when tools are provided by any standard UML
modeling framework, (2) HighlyPortable when they are not supported by all
standard UML frameworks but can be easily ported (e.g., plugged in), or (3)
WeaklyPortable when the tools are almost unportable.

• Verifiability : Refers to the efforts needed to verify the design against the
security requirements. These cover (1) associating a semantics to the UML
design, (2) formally specifying security requirements, (3) actually verifying the
design against the security requirements, and (4) interpreting and presenting
the verification results. Verifiability will be ranked using one of the following
three values: (1) Comp Verif for complex verifiability, (2) Good Verif for
verifiability with acceptable efforts, and (3) Ease Verif for ease verifiability.

• Complexity : Refers to the amount of security-relevant information added to
a UML design and its impact on its readability. Complexity will be evalu-
ated using one of the following three values: (1) High Comp when the added
security information seriously deteriorates the readability of the design, (2) Ac-
ceptable Comp when the it is tolerated, or (3) Low Comp when it is negligible
compared to the original design complexity.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 13



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

Security Specification Using UML Artifacts

Stereotypes and Tagged Values:

In the following we discuss the usability of stereotypes and tagged values for security
specification.

• Expressiveness : UML artifacts provided by standard UML mainly stereotypes
and tagged values are the most used by the majority of the contributions.
Among these contributions, we can cite: UMLSec [14] by Jürjens which pro-
vides a UML profile and an open-source tool for specifying security require-
ments such as secrecy, integrity, authenticity, fair exchange, role-based access
control, secure communication links, and secure information flow. Stereotypes
are used by Pavlich-Mariscal et al. [20] and Basin et al. [17] for specifying
access control policies and by Montangero et al. [18] for modeling authentica-
tion protocols. These contributions show that various security requirements
have been specified using stereotypes and tagged values.

• Tool Support : Has an excellent tool support since any standard UML modeling
framework supports profile specification.

• Verifiability : A lot of work is done in background to generate a formal seman-
tics for the UML design, formally specify the security requirement, verify the
property against the design, and show the verification result to the end user
(UML designer). The later usually consists in displaying counter examples
and providing advices to improve the design and fix the vulnerabilities.

• Complexity : The complexity of the information related to stereotypes and
tagged values added for security specification, depends on the number of
stereotypes and tagged values attached to each UML element. For example,
if different security stereotypes are associated with the same UML element
then it will be complex for the user to select all these stereotypes and edit
the associated tagged values. In this case, the security profile designer has the
responsibility of compacting as possible the architecture of his profile design.

OCL

The OCL is also used by many of the surveyed contributions to express formal con-
straints in the specification of security properties. This is due to the fact that OCL
is part of the UML standard, and by its formal nature, it allows precise specification
of security constraints. The approach of Painchaud et al. (SOCLe project) [19]
is based on temporal logic extension of OCL for security specification. OCL has
been also used by [17] to specify additional authorization constraints related to the
state of the system. As we mentioned above, it is natural to use OCL for security
specification. However, it is important here to distinguish between using OCL as

14 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



3 USABILITY DISCUSSION

a support for some security specification artifact as stereotypes and behavior dia-
grams, and using it as security specification language. In the former case, the use of
OCL improves the usability of any specification artifact by allowing the definition
of constraints over the UML design entities. Accordingly, we focused our usability
evaluation on the later case. In the following we discuss the usability of OCL for
security specification.

• Expressiveness : As a security specification language, the standard OCL [11]
is limited to specifying pre and post conditions and invariants that should be
satisfied by the application behavior. However, some OCL extensions allow
the specification of temporal logic properties.

• Tool Support : Standard OCL benefits from the support of different tools pro-
vided by standard UML modeling frameworks. However, the usability of OCL
extensions is limited by the availability of tools supporting the specification
and the compilation of security requirements.

• Verifiability : Once compiled and analyzed by the tool, security requirements
specified using OCL extensions are systematically provided as input formulas
for verification tools (model checkers and/or theorem provers). However, as
for stereotypes, a lot of work is done in background to generate a formal
semantics for the UML design, verify the properties against the design, and
show the verification result to the end user (UML designer).

• Complexity : The complexity introduced by this approach depends on the num-
ber of OCL expressions added to specify security properties and wether they
are crosscutting the application functionalities design or separated from them.

Behavior Diagrams

We notice the lack of using behavioral diagrams for security specification among the
surveyed approaches. In fact, only the approach of Zisman et al. [30] that proposes
the modeling of abuse cases to represent possible attack scenarios and potential
threats to the system security. In the following we discuss the usability of behavior
diagrams for security specification. We distinguish in our discussion between the
use of behavior diagrams to specify security requirements for the sake of verification
and their use to specify security aspects for the sake of security enforcement or
hardening.

• Expressiveness : Is limited to specify those security requirements that are nat-
urally expressible via transition systems. These include mainly attack scenar-
ios and dynamically enforceable security requirements. As for security aspects
specification, behavior diagrams are very useful for specifying advices behavior.
However, stereotypes should be defined to allow the specification of patterns
needed for the definition of pointcuts.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 15



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

• Tool Support : Behavior diagrams benefit from a wide tool support. However,
tool support for this approach depends also on the tool support of stereotypes.

• Verifiability : When used for security requirements specification, behavior di-
agrams are translated to transition systems or logical formulas in order to be
verified on the system design. While the former translation is almost sys-
tematic, the later is limited to those diagrams satisfying some structural con-
straints (e.g., determinism) and constrained by the availability of translation
algorithms in language and logic theory. As for stereotypes and OCL, a lot of
work is done in background to generate a formal semantics for the UML de-
sign, verify the properties against the design, and show the verification result
to the end user (UML designer). When used for security aspects specification,
as for the first approach, a lot of work is done in background to (1) identify di-
agram entities (e.g., methods/actions) matching the specified patterns and (2)
weaving diagrams specifying advices and those specifying the system behavior.

• Complexity : Relatively acceptable since the behavior diagrams specifying se-
curity requirements are separated from those specifying the system behavior
and are easily distinguishable from them. The complexity of security aspects
specification is comparable to that of security requirements specification.

Extending the UML Metalanguage

Only few contributions [20] have investigated the extension of the UML meta-
language for security specification. This is due to the fact that this kind of modifi-
cation requires a high expertise and knowledge of the UML meta-language and its
objectives. Indeed, the extension may require the modification of the whole meta-
language which is too complex. In the following we discuss the usability of extending
the UML metalanguage for security specification.

• Expressiveness : Comparable to that of stereotypes.

• Tool Support : The extension is heavyweight so that “may require one to extend
the CASE-tool itself, in particular the storage components, i.e., the repository,
and the visualization components” [17]. This impacts negatively the portabil-
ity of any extension since any UML modeling framework is heavily modified
to allow the use of the new meta-elements and their interpretation.

• Verifiability : A lot of work is done in background to generate a formal seman-
tics for the UML design, verify the properties against the design, and show
the verification result to the end user. However, if the extension targets some
low-level policy specification language or AOP language, then the effort spent
in background is limited to parsing the specification and translating it to the
target language.

• Complexity : The complexity is comparable to that of using behavior diagrams.

16 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



4 CONCLUSION

Table 2: Usability Evaluation of Security Specification Approaches.
Stereotypes and OCL Behavior Extending UML Creating New
tagged values Diagrams Meta-language Meta-languages

Expressiveness All Reqs,
All Logics

All Reqs,
All Logics

Static Reqs,
LTL Logic

Static Reqs,
All Logics

All Reqs,
All Logics

Tool Support Standard HighlyPortable Standard HighlyPortable WeaklyPortable
Verifiability Comp Verif Good Verif Good Verif Good Verif
Complexity Low Comp to

High Comp
Acceptable Comp Low Comp Acceptable Comp Acceptable Comp

Creating a New Metalanguage

As for the previous approach, only few contributions [17] have investigated the
creation of new meta-languages for security specification. In the following we discuss
the usability of creating a new metalanguage for security specification.

• Expressiveness: Comparable to the expressiveness of extending the UML met-
alanguage.

• Tool Support : Better than that of extending the UML metalanguage and com-
parable to that of stereotypes. In addition, the compiler needed to parse the
specification can be easily plugged in to the UML modeling framework.

• Verifiability : Better than that of the verifiability of extending the UML met-
alanguage. Indeed, the security specification is exclusively based on the new
meta-elements and thus is easier to parse and translate.

• Complexity : Comparable to the complexity of extending the UML metalan-
guage.

4 CONCLUSION

This paper investigates the main approaches adopted for specifying and enforcing
security requirements at UML design and surveys the related state of the art. The
main contribution of this paper is a discussion of these approaches from usability
viewpoint. We distinguish between those approaches that are based on the artifacts
provided by the standard UML specification and those that require explicit extension
of the UML meta-language. This mainly allow one to understand when it is better
to use UML artifacts and when it is useful to extend the its meta-language. We
defined a set of criteria that we used in our usability discussion. In the following we
provides the conclusions of our discussion:

• Stereotypes are the most usable for security specification since they are the
extension mechanism provided by UML. They allow the specification of almost

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 17



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

all security requirements that are usually specified and enforced on software.
In addition, they are easy to learn and use and benefit from a high portability.
However, it is difficult to associate a formal semantics to stereotypes which
can affect the verifiability of the specified security requirements.

• Using OCL for security specification is not a good approach since the security
requirements that can be expressed using OCL are limited to pre and post
conditions and invariants. Although OCL can be extended to allow the speci-
fication of security requirements in temporal logics, it remains more usable as a
complementary capability for stereotypes. We strongly believe that temporal
logic should be used on background and not exposed to UML designers.

• UML behavior diagrams seem to be extremely usable for security requirements
specification and aspect design. However, few efforts have been spent in the
literature to investigate their use.

• Extending the UML meta-language is a too constraining approach, though it
has its motivation. Creating a new meta-language should be then an appro-
priate alternative.

• The efforts needed for verifying the design against a security requirement is
often very important regardless of the adopted approach.

REFERENCES

[1] G-J. Ahn and M. E. Shin. Role-based authorization constraints specification us-
ing object constraint language. In WETICE ’01: Proceedings of the 10th IEEE
International Workshops on Enabling Technologies, pages 157–162, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[2] K. Alghathbar and D. Wijeskera. Consistent and complete access control poli-
cies in use cases. In UML 2003 - The Unified Modeling Language. Model
Languages and Applications. 6th International Conference, San Francisco, CA,
USA, October 2003, Proceedings, pages 373–387, October 2003.

[3] A. Bogdanov, S. J. Garland, and N. A. Lynch7. Mechanical translation of i/o
automaton specifications into first-order logic. In In proceedings of the 22nd
IFIP WG 6.1 International Conference Houston, pages 364–368, 2002.

[4] G. Brose, M. Koch, and K. P. Lohr. Integrating access control design into
the software development process. In Proceedings of the sixth biennial world
conference on the Integrated Design and Process Technology, IDPT, Pasadena,
CA, June 2002.

[5] M-T. Chan and L-F. Kwok. Integrating security design into the software devel-
opment process for e-commerce systems. Information Management & Computer
Security, 9(3):112–122, 2001.

18 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0



4 CONCLUSION

[6] T. Doan, L. D. Michel, and S. A. Demurjian. A formal framework for secure
design and constraint checking in UML. In Proceedings of the International
Symposium on Secure Software Engineering, ISSSE’06, Washington, DC, Mars
2006.

[7] P. Epstein and R. S. Sandhu. Towards a UML based approach to role engineer-
ing. In Proceedings of the 4th ACM Workshop on Role-Based Access Control,
pages 135–143. ACM Press, 1999.

[8] E. B. Fernández. A methodology for secure software design. In Software Engi-
neering Research and Practice, pages 130–136, 2004.

[9] M. Gogolla and B. Henderson-Sellers. Analysis of uml stereotypes within the
uml metamodel. In UML ’02: Proceedings of the 5th International Conference
on The Unified Modeling Language, pages 84–99, London, UK, 2002.

[10] Object Management Group. Meta object facility (mof) specification, version
2.0, 2006.

[11] Object Management Group. Uml 2.0 ocl specification, version 2.0, 2006.

[12] Object Management Group. Unified modeling language: Superstructure, ver-
sion 2.1.2, 2007.

[13] A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell. Reflections on the
Object Constraint Language. In The Unified Modeling Language, UML’98 -
Beyond the Notation. First International Workshop, Mulhouse, France, pages
137–145, 1998.

[14] J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2004.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

[16] Y. Ledru, R. Laleau, M. Lemoine, S. Vignes, D. Bert, V. Donzeau-Gouge,
C. Dubois, and F. Peureux. An attempt to combine UML and formal methods
to model airport security. In Forum of the 18th International Conference on
Advanced Information Systems Engineering, pages 47–50, Luxembourg, 2006.

[17] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A uml-based modeling lan-
guage for model-driven security. In Proceedings of the International Conference
on the Unified Modeling Language, UML’2002, pages 426–441, 2002.

[18] C. Montangero, M. Buchholtz, L. Perrone, and S. Semprini. For-lysa: UML for
authentication analysis. In Global Computing: IST/FET International Work-
shop, GC’2004, pages 93–106, 2005.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 19



USABILITY OF SECURITY SPECIFICATION APPROACHES FOR UML DESIGN: A SURVEY ∗

[19] F. Painchaud, D. Azambre, M. Bergeron, J. Mullins, and R. M. Oarga. Socle:
Integrated design of software applications and security. In Proceedings of the
10th International Command and Control Research and Technology Symposium,
ICCRTS’2005, McLean, VA, USA, 2005.

[20] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. Enhancing UML to model
custom security aspects. In Proceedings of the 11th International Workshop on
Aspect-Oriented Modeling, 2007.

[21] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–57, 1977.

[22] G. Popp, J. Jürjens, G. Wimmel, and R. Breu. Security-critical system develop-
ment with extended use cases. In Proceedings of the 10th Asia-Pacific Software
Engineering Conference, APSEC, pages 478–487, 2003.

[23] I. Ray, N. Li, D. K. Kim, and R. France. Using parameterized UML to specify
and compose access control models. In Proceedings of the 6th IFIP TC-11
WG 11.5 Working Confrence on Integrity and Internal Control in Information
Systems, IICIS’03, Lausanne, Switzerland, November 2003.

[24] A. Rodriguez, E. Fernandez-Medina, and M. Piattini. Security requirement
with a uml 2.0 profile. In ARES ’06: Proceedings of the First International
Conference on Availability, Reliability and Security, pages 670–677, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[25] A. Schleicher and B. Westfechtel. Beyond stereotyping: Metamodeling ap-
proaches for the uml. In HICSS, 2001.

[26] F. B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and Systems Security, 3(1):30–50, 2000.

[27] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and R. Alexander. Verifi-
able composition of access control and application features. In Proceedings of
the 10th ACM Symposium on Access Control Models and Technologies, SAC-
MAT’05, pages 120–129. ACM, 2005.

[28] J. L. Vivas, J. A. Montenegro, and J. Lopez. Towards a business process-driven
framework for security engineering with the UML. In Proceedings of the 6th
Information Security Conference, ISC’03, pages 381–395, Bristol, U.K., 2003.

[29] P. Ziemann and M. Gogolla. An extension of ocl with temporal logic. pages
53–62, September 2002.

[30] A. Zisman. A static verification framework for secure peer-to-peer applica-
tions. In Second International Conference on Internet and Web Applications
and Services, ICIW’07, page 8, 2007.

20 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0


