
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 5, July-August 2009

Dave Thomas, “Functional Programming – Crossing The Chasm?”, in Journal of Object
Technology, vol. 8 no. 5, July-August 2009, pp. 45 - 48
http://www.jot.fm/issues/issue_2009_07/column4/

Functional Programming – Crossing
The Chasm?

Dave Thomas

1 INTRODUCTION

Once again the computing community is coming to appreciate the expressive power
of functional programming (FP) [1, 2]. Technical gatherings are buzzing with talk
and, of course, debates about Haskell, Lisp/Scheme, Erlang and their younger hybrid
cousins O’Caml, Scala, F# and Clojure. At the same time, popular OO languages Java
and C# are being extended to support functional constructs with even C++ adding
lexical closures. Why would even state full sinners stray away from their much loved
object-oriented languages? The answers, of course, are multi-core parallelism and
massive cloud databases.

Parallelism is plagued by shared state, hence pure functional programming and
immutability promise increased concurrency. First class functions support popular
idioms such as map reduce, which allow the program to be “sent” to the data and
evaluated there as opposed to “sending” all of the data to the function for evaluation.
Map Reduce [Google, Hadoop] provides a simple expression of data parallelism
which elegantly hides the complexity of the data distribution and parallel execution.

Increasingly, business and science are relying on massive data sets and smart
algorithms as a means for information and even for discovery. Complex data queries
can be concisely expressed using functional combinators and higher order functions.
Haskell machinery underpins MS LINQ extensions for C# and VB, enabling unified
access to relational and non-relational data sources. It also enables more expressive
query languages such as Q, which extends SQL via functions to be a computationally
complete language.

Lazy evaluation enables the elegant expression of programs that compute over
infinite streams of data using only a small sliding window of computation. It also
provides a mechanism for deferring unnecessary computations. Complex Event
Processing systems are increasingly turning to streaming SQL dialects to be able to
express the queries needed for processing web and packet logs, RFID streams and
financial market feeds.

CLOUD COMPUTING – BENEFITS AND CHALLENGES!

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

2 FP PHOBIA – FP FEAR, UNCERTAINTY AND DOUBT

Since John Backus’ famous Turing Award lecture, Functional Programming has been
the Holy Grail as it promises to reduce the problems introduced by Von Neumann
machines and to leverage the power of Mathematics for program correctness.
Research has clearly shown that it is possible to develop efficient implementations of
functional languages ranging from APL and Lisp to Haskell. However, like with
dynamic object languages, many still believe that procedural languages are required
for applications to be efficient.

Pure functional programming is exemplified by Hope and Haskell. Since these
languages have strong mathematical routes it is natural that they have a concise
expressive form natural to that discipline. This, however, strikes fear into many who
are intimidated by the unfamiliar Domain, Range, Map, Combinator, Comprehension,
Closure, Higher Order Function, Continuation, Monad vocabulary. This,
compounded with lazy evaluation, powerful but complex type systems and few real
world examples, makes FP a high barrier language for most developers.

Unfortunately, modern CS education doesn’t help, as most schools don’t teach
Scheme, Haskell, Prolog etc. favoring instead commercial OO languages and
concepts. FP programs are models expressed in terms of rich data and function
abstractions and their compositions, which is a land very unfamiliar to most
developers.

Further, functional programming naturally supports concise nested expressions,
which while compact, efficient and elegant, require a decoder ring for those
uninitiated in the art of FP.

It is common to find FP programs which look very much like proofs using
variables x, y and z and functions f, g and h. Many have observed how difficult it is to
understand OO programs, especially those in dynamic languages, because they can’t
see the types and only see the program in methods. FP readers experience
disorientation trying to read functional programs. While FP idioms are largely the
inspiration for design patterns, there is no FP kata of idioms to allow one to gradually
go from white belt to black belt. The situation is further compounded by the lack of
clear guidelines and examples for literate functional programming.

The recent focus on a single powerful idiom, map reduce, illustrates both the
power of a single idiom as well as the challenge in the thinking required to rethink
programs using this pattern. Functional extensions of SQL are another means to
leverage better known select, project and join operations with more powerful FP
capabilities.

VOL. 8, NO. 3. JOURNAL OF OBJECT TECHNOLOGY 47

3 MULTI-PARADIGM (POLYGLOT) VERSUS MULTIPLE
LANGAGES

One of the tensions of embracing a new paradigm is the decision to a) use a new
language, b) implement as best as can be done in the existing language, or c) extend
an existing language so that it supports the paradigm. Clearly, being able to use one’s
favorite language is very appealing since it, in principle, lowers the barrier of entry
and allows one to be more expressive while still using one’s current tool chain etc.

Implementing FP in a popular existing language is unfortunately problematic for
two reasons. First, it requires the developer to implement the FP mechanisms, and
second, the code leveraging the implementation is often unreadable as it is “hand
translated” from an FP language. Hence the only effective way to support FP in a non
FP language is to extend the language. This approach is used with LINQ and other
extensions to C#. Unfortunately, language extension is fraught with the risk of
additional complexity due to feature interaction and delays due to multi-vendor
implementation and adoption as people using a paradigm are typically reluctant to
adopt new features.

In our opinion, the best approach is to use the right language for the job and to
improve multi-language interoperability. Scala, F# and Clojure are new functional
languages that provide interoperability Java and CLR tools and runtime. Loose
coupling via services further enables multi-paradigm computing.

4 SUMMARY

There is clear opportunity for functional programming to cross the chasm and enter
the mainstream. In order to benefit from functional programming, our best developers
need to be educated on the concepts and effective idioms. The FP community needs
to reach out to those outside their domain to illustrate the simplicity and elegance of
their thought process and its broad applicability. Finally there is a major opportunity
to leverage FP under the hood to provide new, powerful end user tooling.

REFERENCES

[1] Why Functional Programming Matters
http://www.cs.chalmers.se/~rjmh/Papers/whyfp.pdf

[2] Why Functional Programming Still Matters
http://channel9.msdn.com/shows/Going+Deep/Erik-Meijer-Functional-
Programming/

CLOUD COMPUTING – BENEFITS AND CHALLENGES!

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3.

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding
director of the Agile Alliance (www.agilealliance.com). He is an
adjunct research professor at Carleton University, Canada and the
University of Queensland, Australia. Dave is the founder and past

CEO of Object Technology International (www.oti.com) creator of the Eclipse IDE
Platform, IBM VisualAge for Smalltalk, for Java, and MicroEdition for embedded
systems. Contact him at dave@bedarra.com or www.davethomas.net.

