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The Discrete Fourier Transform,  
Part 2: Radix 2 FFT 

By Douglas Lyon 

Abstract 
This paper is part 2 in a series of papers about the Discrete Fourier Transform 
(DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is 
on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and 
the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-
known algorithm, called the Radix 2 FFT, and requires that its’ input data be an 
integral power of two in length. 
Part 3 of this series of papers, demonstrates the computation of the PSD (Power 
Spectral Density) and applications of the DFT and IDFT. The applications include 
filtering, windowing, pitch shifting and the spectral analysis of re-sampling. 

1 THE FFT 

Given a sampled waveform 

 vj , j ∈ 0...N −1[ ] (1) 

The Continuous Time Fourier Transform (CTFT) is defined by: 

 V ( f ) = F[v(t)] = v(t)e−2π ift dt
−∞

∞

∫  (2).  

The DFT is given by: 

 Vk =
1
N

e−2π ijk /Nvj
j=0

N −1

∑  (3). 

Direct computation of the DFT takes O( N 2 ) complex multiplications while the FFT 
takes O(N log N )  complex multiplications. The primary goal of the FFT is to speed 
computation of (3). 

This paper describes an FFT algorithm known as the decimation-in-time radix-
two FFT algorithm (also known as the Cooley-Tukey algorithm). The Cooley-Tukey 
algorithm is probably one of the most widely used of the FFT algorithms. Radix 2 
means that the number of samples must be an integral power of two. The decimation 
in time means that the algorithm performs a subdivision of the input sequence into its 
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odd and even members. We are able to perform this subdivision as a result of the 
Danielson-Lanczos Lemma:  

 
 
Vk =

1
N

Vk
e +W kVk

o⎡⎣ ⎤⎦       ∀k∈ 0K N −1[ ]  (4) 

Proof of the Danielson-Lanczos Lemma: 
Let 

 W = e−2π i /N and W jk = e−2π ijk / N  (5) 
so that 

 W jk =W jW j (k−1)  (6) 
Substitute (5) into (3) to obtain 

 Vk =
1
N

W jkvj
j=0

N −1

∑  (7). 

We separate (7) into its odd and even components by altering how the samples are 
indexed: 

 Vk =
1
N

W 2 jkv2 j + W 2 j+1( )kv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥  (8) 

Where (8) shows summations operating over the odd and even indices. For example, 
if  

 j = 0,1,2,3... ,  (9) 

then  

 2 j = 0,2,4,6... and 2 j +1 = 1,3,5... . (10) 

Factoring the exponents in (8) yields 

 Vk =
1
N

W 2 jkv2 j + W 2 jkW kv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥  (11) 

The W k  term in the right most summation is not a function of the index, so that: 

 Vk =
1
N

W 2 jkv2 j +W k W 2 jkv2 j+1
j=0

N /2−1

∑
j=0

N /2−1

∑
⎡

⎣
⎢

⎤

⎦
⎥  (12). 

To reflect the odd and even summations, (12) is rewritten as 

 
 
Vk =

1
N

Vk
e +W kVk

o⎡⎣ ⎤⎦       ∀k∈ 0K N −1[ ]  (13). 

Q.E.D. 
The implications of (13) are that we can divide the sequence into odd and even 

numbered samples. Thus the Danielson-Lancoz lemma enables a divide and conquer 
algorithm to recursively split the sample sequence in half. The computational result of 
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the Danielson-Lancoz lemma is that the O(N 2 )  DFT may be computed in 
O(N log N )  time. 

The Danielson-Lancoz lemma shows that a sequence must be divided up into its 
odd and even subsets. That these subsets must in-turn be divided into their subsets. 
This continues until we have only two members per subset. An illustration of this 
subdivision, for N=8, is shown in Figure 1.  

0-1-2-3-4-6-7
0-2-4-6
0-4 2-6

1-3-5-7
1-5 3-7  

Figure 1 Decimation in time. 

It is natural to implement the decimation in time using recursive calls with odd and 
even sets. It has been shown, however, that a recursive implementation is six times 
slower than a non-recursive implementation [Gonzalez et al.]. Figure 2 shows the 
Cooley-Tukey algorithm using bit-reversal in order to decimate in time without 
recursion. 

N A B C C B A bitr(N)
0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 4
2 0 1 0 0 1 0 2
3 0 1 1 1 1 0 6
4 1 0 0 0 0 1 1
5 1 0 1 1 0 1 5
6 1 1 0 0 1 1 3
7 1 1 1 1 1 1 7  

Figure 2. An Example of how to decimate by bit reversal 

To arrive at the bit reversal, we implement a Java method in the FFT class: 
 int bitr(int j) { 
  int ans = 0; 
  for (int i = 0; i< nu; i++) { 
   ans = (ans <<1) + (j&1); 
   j = j>>1;   
  }   
  return ans; 
 } 

The bitr method works by linking together two software shift-registers, as shown in 
Figure 3. 
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jn jn−1K j1 j0

an an−1K a1 a0

 

Figure 3. The j and a registers are linked with the + operator. 

After the decimation in time is performed, the balance of the computation is 
optimization hacks and housekeeping. For example, a simplification results from Vk  
being periodic in N so thatVk+N = Vk . 

Proof: 
Recall that the DFT is given by: 

 Vk =
1
N

e−2π ijk /Nvj
j=0

N −1

∑  (14) 

so that 

 Vk+N =
1
N

e−2π ij (k+N )/Nvj
j=0

N −1

∑  (15) 

Expanding the exponents and simplifying using  

 Vk+N =
1
N

e−2π ijk /Ne−2π ijN / Nvj
j=0

N −1

∑  (16) 

with e−2π ij = cos(−2π j) + isin(−2π j) = 1 yields: 

 Vk+N =
1
N

e−2π ijk /Nvj
j=0

N −1

∑  (17) 

with  Vk+N = Vk  (18) 

Q.E.D. 
In addition, it can be shown that 

 W k+N /2 = −W k 0 ≤ k ≤ N / 2  (19) 
Proof: 
Using 

 W = e−2π i / N   
So that 

 e−2π i(k+N /2)/N = cos(−2π (k + N / 2) / N ) + i sin(−2π (k + N / 2) / N )  

with 

 
cos(−2π (k + N / 2) / N ) = cos(2πk / N + π ) = − cos(2πk / N )
sin(−2π (k + N / 2) / N ) = sin(2πk / N + π ) = −sin(2πk / N )

. (20) 

this leads to: 
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 W k+N /2 = −W k 0 ≤ k ≤ N / 2  
Q.E.D. 
A further efficiency may be had by the use of the recurrence relation 

 W jW j (k−1) =W jW jk− j =W jW jkW − j =W jk

 (21). 

Proof: 

 

W jk = e−2π ijk /N = cos −2π jk / N( )+ isin(−2π jk / N )

W jk = cos −2π jk / N( )+ isin(−2π jk / N )

W jk = cos −2π j / N( )+ isin(−2π j / N )⎡⎣ ⎤⎦
          ∗ cos −2π j(k −1) / N( )+ isin(−2π j(k −1) / N )⎡⎣ ⎤⎦
W jk =W jW j (k−1)

 (22) 

Alternative Proof: 

 W jW j (k−1) =W jW jk− j =W jW jkW − j =W jk  
Q.E.D. 
The real and imaginary parts of (22) are given by 

 real(z1z2 ) = x1x2 − y1y2   

so that 

 Wr
jk =Wr

jWr
j (k−1) −Wi

jWi
j (k−1)  (23) 

and the imaginary part of (22) is given by: 

 imaginary(z1z2 ) = x1y2 + y1x2   

so that 

 Wi
jk =Wr

jWi
j (k−1) +Wi

jWr
j (k−1)  (24). 

Equations (23) and (24) form the basis of the recurrence relationships that enables the 
quick computation of the next W jk  based on the previousW jk . An implementation of 
(24) follows: 

1.          // (eq 23) and (eq 24) 
2.          wtemp = Wjk_r; 
3.          Wjk_r = Wj_r * Wjk_r  - Wj_i * Wjk_i; 
4.          Wjk_i = Wj_r * Wjk_i  + Wj_i * wtemp; 

Line 2 shows the introduction of wtemp, a temporary variable that facilitates the 
computation of the multiplication of the two complex numbers. 
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2 THE FFT CLASS 

The grapher package provides a simple interface to make an automatically scaled 
graph. Generally only a single method is invoked. This is best shown by the following 
example: 

public void makeHanning () { 
 double window[]; 
  window = makeHanning(256);  
  Graph.graph(window, 
      "The Hanning window","f"); 
 } 

Where the “The Hanning window” string appears along the x-axis and “f” appears on 
the y-axis. The Graph.graph may be invoked directly because the graph method is 
static. Also, it only graphs an array of type double. 

2.1. Class Summary 

package lyon.audio; 
import java.io.*; 
import java.awt.*; 
import grapher.Graph; 
import futils.bench.Timer; 
public class FFT extends Frame { 
public FFT(int N)  
public FFT()  
public void graphs()  
public void graphs(String t)  
public void setTitle(String t)  
public static double getMaxValue(double in[])  
public static int log2(int n)  
public static double[] arrayCopy( double [] in)  
public double [] computePSD ()  
public double[] dft(double v[])  
public double[] idft()  
public double [] getReal()  
public double [] getImaginary()  
public void forwardFFT(double in_r[], double in_i[])   
public void reverseFFT(double in_r[], double in_i[])  
public void printArray(double[] v,String title)  
public void printArrays(String title)  
public void printReal(String title)  
public static void main(String args[])  
public static void timeFFT()  
public static void testFFT()    
public static void testDFT()  
} 

 

2.2. Class Usage 

The FFT class maintains internal data arrays that are stored as doubles. These arrays 
are private and are used to assist computations. Further, the in-place Cooley-Tukey 
algorithm employed for the fast transform is destructive for the original data. The FFT 
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class in the lyon.audio package uses doubles for all computations. This class is for 1-
D (audio) transforms. 

Suppose the following variables are predefined: 
FFT f; 
int N = 8; 
double inputArray[]; 
String title = "My data title"; 
double aDoubleArray[]; 
double in_r[]; 
double in_i[]; 

To make a new instance of the FFT class, and allocate two internal arrays of double, 
each of length N: 

f = new FFT(N); 

To make a new instance of the FFT class, with no memory allocation: 
f = new FFT(); 

To graph the real and imaginary data arrays: 
f.graphs(); 

To graph the real and imaginary data arrays with a title: 
f.graphs(title); 

To set the title for the graphs: 
f.setTitle(title); 

To get the maximum value of an inputArray: 
FFT.getMaxValue(inputArray); 

To compute the floor of the log of an int to base 2: 
int numberOfBits = FFT.log2(N); 

To copy an array of double: 
aDoubleArray = FFT.arrayCopy(inputArray); 

To compute the psd (power spectral density) of the last dft or fft: 
aDoubleArray = f.computePSD(); 

To non-destructively compute the dft of an input array and return the psd: 
aDoubleArray = f.dft(inputArray); 

DFT, IDFT, FFT and IFFT alter the internal data structures in an instance of the FFT 
class. To get the real part of the last transform: 

aDoubleArray = f.getReal(); 

To get the imaginary part of the last transform: 
aDoubleArray = f.getImaginary(); 

To take the idft of the internal data and return the real part: 
aDoubleArray = f.idft(); 

To take the forward fft on two input arrays, destructively: 
f.forwardFFT(in_r, in_i); 

To take the inverse FFT on two input arrays, destructively 
f.reverseFFT(in_r, in_i); 
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To print an array of double, with a title: 
f.printArray(aDoubleArray, title); 

To print the internal real and imaginary arrays, with a title: 
f.printArrays(title); 

To print the internal real array, with a title: 
f.printReal(title); 

To test the DFT, IDFT, FFT and IFFT: 
FFT.main(); 

To time the FFT: 
FFT.timeFFT(); 

To test the FFT: 
FFT.testFFT(); 

To test the DFT: 
FFT.testDFT(); 

2.3. Testing the FFT and IFFT 

The FFT class has a static method that permits the testing of the DFT, IDFT, FFT and 
IFFT. It also performs timing for a transform of 2048 doubles. To run this test, you 
must invoke  

FFT.main(); 

The code for the FFT.main method follows: 
 public static void main(String args[]) { 
  testDFT(); 
  timeFFT(); 
  testFFT(); 
 } 

The test methods are run on an 8 point input array consisting of a linear ramp. This is 
to provide a short sequence of input data that can be verified by printing. The timing 
is performed on 2048 samples stored in two arrays of 2048 doubles each (real and 
imaginary). The output of the main method follows: 
 

Executing DFT on 8 points... 
Executing IDFT on 8 points... 
j x1[j] re[j] im[j] v[j] 
0 0 3.5 0 -3.10862e-15 
1 1 -0.5 1.20711 1 
2 2 -0.5 0.5 2.00000 
3 3 -0.5 0.207107 3 
4 4 -0.5 0 4 
5 5 -0.500000 -0.207107 5 
6 6 -0.500000 -0.5 6 
7 7 -0.5 -1.20711 7 
fft: bit reversal 
Time for 2048point fftTime 0.178000 sec 
fft: bit reversal 
Time for 2048point ifftTime 0.164000 sec 
Starting 1D FFT test... 
fft: bit reversal 
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fft: bit reversal 
j x1[j] re[j] im[j]v[j] 
0 0 3.5 0 0 
1 1 -0.5 1.20711 1.00000 
2 2 -0.5 0.5 2.00000 
3 3 -0.500000 0.207107 3.00000 
4 4 -0.5 0 4 
5 5 -0.5 -0.207107 5 
6 6 -0.5 -0.5 6 
7 7 -0.500000 -1.20711 7 

The reader will see that the input and output are highly correlated for both the DFT 
and FFT. The surprising thing is how accurate these two radically different algorithms 
and implementations are. Also, recall that the execution times for the DFT was 
benchmarked at 55 seconds. The FFT implementation is run in 0.178 seconds, a 308 
times speed up. Keep in mind, at 8000 samples per second, the 2048 samples 
represent 0.256 seconds of data. Also, on a limited data rate connection (such as a 
28.8 kbps modem) the time to transmit the data is 2048*8 bits /28800 bits/sec = 0.56 
seconds. We suggest that many dial-up users experience a slower connection than the 
maximum their modem permits. Thus, there is a window of opportunity for devising a 
real-time codec (IN JAVA!!) able to perform FFT based compression algorithms. An 
algorithm based on transform compress typically takes the original data, performs the 
forward transform, selects coefficients, quantizes and then transmits. Data is 
recovered by taking the coefficients and performing an inverse transform. Very Low 
Bit Rate Voice Compression (VLBRVC) is a rich and growing field that lies beyond 
the scope of this paper. See http://www.bdti.com/faq/dsp_faq.htm for an FAQ that 
relates to this and other DSP topics. 

2.4. Implementing the FFT.testFFT 

The following code shows how to use the FFT class to perform a forward and inverse 
FFT. The static nature of the testFFT method indicates that invocation may be 
performed without making an instance of the FFT class. 

Line 3 makes an instance of the FFT class, without performing any allocation for 
the internal data structures. Thus the allocation and copying of arrays is performed 
outside of the forwardFFT methods. This is due, in part, to the destructive nature of 
the in-place Cooley-Tukey FFT algorithm. The trade-off is that the programmer must 
keep track of the data that is being processed by the forwardFFT. The alternative is to 
automatically copy arrays, perform the in-place forwardFFT, then return the copies. 
Our findings indicate that the dynamic allocation of memory (particularly during the 
image processing, seen later in this book) can slow performance by up to 100 times! 
Thus, the house keeping chores performed by the programmer are warranted by a leap 
in performance. 

1. public static void testFFT()   { 
2. System.out.println("Starting 1D FFT test..."); 
3. FFT f = new FFT(); 

Line 4 may be altered to any number of samples, N, but a large N will result in a large 
printout. 

4.    int N = 8; 
5.    int numBits = f.log2(N); 
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Lines 6-8 set up the input data to be a ramp that varies from 0 to N. 
6.    double x1[] = new double[N];   
7.  for (int j=0; j<N; j++) 
8.   x1[j] = j; 

Now the housekeeping. The programmer, interested in keeping copies of the original 
data, the result of the forward FFT and the result of the inverse FFT, must allocate 
four arrays! This is an unusual case, as it requires that all intermediate results be kept 
for checking purposes. Normally, production code would not have to keep all 
intermediate results. 

9.    double[] in_r = new double[N]; 
10.    double[] in_i = new double[N]; 

The in_r and in_i arrays are copies of the input data, with the imaginary component 
equal to zero. Real data (like audio data) often has a zero imaginary component. There 
are algorithms that can save significant time by taking advantage of the zero 
imaginary part of the input data. This requires a different FFT implementation. 

11.    double[] fftResult_r = new double[N]; 
12.    double[] fftResult_i = new double[N]; 
 
13.    // copy test signal. 
14.    in_r = arrayCopy(x1); 

Line 14 copies the input data into in_r. 
15.    f.forwardFFT(in_r, in_i); 

Line 15 replaces in_r and in_i with the forward FFT results. 
16.    // Copy to new array because IFFT will  
17.    // destroy the FFT results. 
18.    fftResult_r = arrayCopy(in_r); 
19.    fftResult_i = arrayCopy(in_i); 
20.    f.reverseFFT(in_r, in_i); 
21.    System.out.println("j\tx1[j]\tre[j]\tim[j]\tv[j]"); 
22.    for(int i=0; i<N; i++) { 
23.         System.out.println( 
24.          i + "\t" +  
25.          x1[i] + "\t" + 
26.          fftResult_r[i] + "\t" + 
27.            fftResult_i[i] + "\t" + 
28.            in_r[i]); 
29.    } 
 
30. } 
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N dft rate fft rate
2 65 25
4 250 65
8 500 64

16 1000 103
32 2000 344
64 2000 821
128 4129 1174
256 1641 2753
512 1561 10894

1024 992 5044
2048 512 32508
4096 260 65016
8192 127 256000
16384 61 207392
32768 30 300624
65536 15 595782  

Figure 1. Run Rate of the DFT vs the FFT 

Figure 1 shows the rate of the DFT and FFT as a function of array length. The rate is 
given in floating point sample, per second, on a T2300 Intel CPU running at 1.66 Ghz 
with 504 MB of RAM under JDK 1.5. We ran the benchmarks again in Figure 2 

N dft fft
2 286 83
4 444 129
8 889 104

16 1778 485
32 3200 561
64 3556 1085

128 3459 1208
256 3413 2226
512 2498 2860

1024 1513 4146
2048 803 6282
4096 409 4506
8192 204 7628

16384 100 7907
32768 49 5221
65536 25 6369  

Figure 2. Run Rate of the DFT vs the FFT 

Figure 2. shows Intel  Core 2 CPU T7200 @2.00GHz with 1 GB RAM running JVM 
1.6.0_07”. We also see a great deal of variation in the benchmarking between the 
different JVMs and machines. 
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Figure 3. Comparing FFT vs DFT, Log scale 

Figure 3 shows a crossover that exists between the DFT and the FFT. Plotted on a log 
scale, as a function of N, for values below 512 samples, the DFT is faster than the 
FFT, and should be the preferred means of performing the Fourier transform. 

3 SUMMARY 

This paper demonstrates that, for small numbers of samples (less than 512) the DFT is 
preferred over the FFT. We have also seen a great deal of variation in the performance 
of the benchmark, as we change from one JVM to another. Finally, we have created a 
new means of measuring the rate of the transform, the number of samples per second 
processed. This is of direct concern to those who are interested in real-time processing 
of signals as well as those who are interested in faster algorithms. 
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