
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 5, July-August 2009

John McGregor: “Goal-driven Product Derivation”, in Journal of Object Technology, vol. 8, no. 5,
July - August 2009, pp. 7-19 http://www.jot.fm/issues/issue_2009_07/article1/

Goal-driven Product Derivation
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
The purpose of a software product line organization is to produce products. Some
organizations adopt the software product line approach because they want better quality
products, some want the products faster, and some want to produce the products using
fewer resources. There are many different ways to produce products and which way is
the best depends on which of many goals are the ultimate objective. In this issue of
Strategic Software Engineering I will discuss how the specifications of goals for the
production system during strategic planning affect how products are derived in a
product line organization. (By the way, remember to visit www.splc.net to see what is
happening at SPLC 2009)

1 CONTEXT

As this column is published I will have just finished presenting a keynote address on
product derivation at WIRE 2009. I am using the same topic for both this column and the
address to provide myself the opportunity to examine derivation from the twin
perspectives of strategy and implementation. In this issue of Strategic Software
Engineering I will investigate the implication of “goal-driven” for how products are
derived and I will bring several threads, which I have written about previously, together
into a coherent whole.

Goal-driven derivation seeks to optimize the set of specified goals of the derivation
process and the resulting products. The production goals are derived from the goals stated
in the business case by thinking of the qualities the production capability of the product
line should possess. For example, “easily extended” is a generally desirable quality for
the products derived from a product line. This is often addressed by a very modular
design. The production capability must then have sufficient automation to manage a large
number of modules that will be mixed and matched to derive a specific product.

Product derivation is the focus of a software product line organization and its exact
form contributes heavily to the achievement of targeted goals. Deelstra, Sinnema, and
Bosch define product derivation by, “A product is said to be derived from a product
family if it is developed using shared product family artifacts. The term product
derivation therefore refers to the complete process of constructing a product from product
family software assets. [Deelstra 05]” Interestingly, this definition emphasizes the

GOAL-DRIVEN PRODUCT DERIVATION

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

commonality, the shared assets, among the products where much of the product line
literature seems to focus on the variability among products.

The typical goals of a software development organization can be summarized as
faster, cheaper, better. Software product line organizations usually have more focused
goals such as reducing the cost of entry into a new market. The product line’s business
case defines exactly what the goal means and the business justification for allocating
resources specifically for this goal.

The business case for a software product line uses a cost/benefit calculation to justify
the investment in assets for the software product line. These assets include asset
development and product building tools required to derive a product. For example, the
business case for the organization might justify the development of a plug-in for the
OSATE AADL toolkit to compute their specific measure of extensibility.

The costs for product derivation can be allocated to the major cost divisions in the
SIMPLE economic model, shown in Figure 1 [Böckle 04]: per-product line (fixed) costs,
and per-product (variable) costs.

The per-product line costs include organizational and core asset costs. The
organizational costs include training costs for the derivation tools. The core asset costs
include acquisition of derivation tools. Most of the derivation tools are per-product line
costs since they will be used for all products.

The product-specific costs include the costs of selecting the appropriate variants.
The benefits include the value of a bigger market share but it should also include the

value of the option presented by increased productivity of the development teams. Often
the achievement of the strategic business goals brings specific benefits.

Figure 1 - SIMPLE

There are usually many ways in which the assets can be developed and the products built.
Often the alternatives to the current way of doing business are not explored before a new
effort is started. Planning for the production capability presents the opportunity to
examine possibilities. Some derivation tools cost more than others and some tools will
require more skilled personnel. During production planning, scenarios can be developed
that are used to compare the costs and benefits of these different methods. The SIMPLE
model supports comparing these scenarios and selecting the optimal one.

Figure 2 provides a mindmap that I have been working on. I make no claims for
completeness, but it has been a help to me as I have thought about product derivation.
The major nodes form the major divisions in this article. Product derivation actions in a
product line organization begin with production planning and populate the twin threads of
domain engineering and application engineering.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 9

Figure 2 MindMap for Product Derivation

2 CONCEPTS

Our discussion of product derivation takes place in the context of a software product line
being created and maintained by a software product line organization. I have quoted the
definition for a software product line [McGregor 04] before and will present it without
discussing it:

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way.
[Clements 01]

There are several implications of that definition for product derivation. The
“managed set of features that satisfy the specific needs of a particular market” focuses the
domain sufficiently to allow for improvement in the quality of the reusable assets. The
“common set of core assets” increases productivity dramatically, allowing cheaper
products, because the assets have been designed with specific uses in mind. The
“prescribed way” is embodied in a production plan that gives a detailed process for
producing products from the core assets. Tailoring the production process gives the
opportunity to select technologies, models, and processes that support the long-term
goals.

Figure 3 shows that each core asset has an “attached process” that is the user’s
manual for the asset. The attached process for any asset that will be used to build a
product is added to the production plan to help form the product-specific production plan.
The attached process is the secret weapon in trying to reduce the costs associated with

GOAL-DRIVEN PRODUCT DERIVATION

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

reusing an asset. The attached process reduces the learning curve and speeds up the
production process.

Figure 3 - Core assets and attached processes

3 PRODUCTION PLANNING

Production planning ensures that the product derivation process achieves the goals of the
organization. Production planning coordinates the activities of the builders of reusable
assets and the builders of products to reduce the risk associated with building these
products. Production planning, which I discussed in [McGregor 06] [Chastek 09], treats
the production capability as a system. Figure 4 shows a general use case diagram for such
a production system.

Figure 5 shows the sequence of steps in production planning: production strategy,
production method, and production plan. The production strategy is formed using Porter’s
Five Forces model for strategy development [Porter 98]. Each force is balanced by
strategic actions. These actions are chosen to satisfy the production goals for the specific
product line. For example, the plug-in architecture style makes it possible for users of a
product to extend the base product themselves by downloading and installing plug-ins.
This late binding approach adds a meta-feature, the ability to add features, to the product
making it more attractive to users and making it more difficult for potential entrants to
develop products that are competitive. This style was chosen by the Eclipse Foundation
for their IDE and is a major factor in achieving the goals for that organization.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 11

The second step is to use the strategic actions from the production strategy as the
foundation for the production method by which products will be derived. I have written
about method engineering previously and shown how it can be used to support a goal-
driven approach [McGregor 04b]. How we want products to be assembled – who, how,
where - will determine how assets should be implemented. Later binding of variants will
require different mechanisms from earlier bindings. These different mechanisms will also
have different properties. For example, runtime binding will usually degrade performance
of the system and increase the risk of a product failure.

Specify product

Establish infrastructure

Extend product

Configure product
Customer

Sales/Marketing

Domain Expert

Developer

Figure 4 Use case diagram for production system

GOAL-DRIVEN PRODUCT DERIVATION

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Figure 5 - Production planning

Deelstra, Sinnema, and Bosch identified several problems with product derivation by
studying several industry efforts [Deelstra 05]:

Experts are overloaded
False positives on component compatibility
Configuration parameter errors due to large number of implicit dependencies
Redundant errors across projects due to failure to resolve dependencies explicitly
Over explicit documentation leads to traceability errors
The production method should address these problems and others. Method

engineering provides techniques for tailoring a development method to fit the exact needs
of the development organization [McGregor 04]. For example, the problem of experts
being overloaded can be partially mitigated by capturing domain knowledge in a domain
specific language (DSL). By associating pieces of semantics with the domain vocabulary,
we tradeoff early heavier involvement of domain experts for future reductions in the use
of domain experts.

The final step is to develop a template for the product production plan. The template
is filled in with the attached processes from the assets that are selected to be a part of the
product. The template can be implemented in a number of ways. The JET language
[Eclipse 09b] provides a means of manipulating text, but the XML-based Variant Control
Language (XVCL) [Jarzabek 03] provides a more powerful mechanism for combining a
wider variety of types of information. There are many different types of information
because the variations appear in the product assets as well as the supporting assets such as
plans, tools, and process definitions.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 13

4 VARIABILITY MANAGEMENT

Variability is easy, commonality is hard. It is easy to see the differences between two
modules. It is much harder to talk about the parts of those modules that are the same or
could be the same with refactoring. Even though we talk about commonality and
variability analysis as though it is a classification scheme that divides the world into two
parts, many assets have a part that is common and some part that can vary. In other words
there are assets that are included in every product but that have significant variation
within that asset.

Maybe variability isn’t so easy. To derive a product includes selecting the variants
that are bound prior to the product being deployed to customers and providing
mechanisms by which the variants that are bound later can be selected. If the feature
model has not been fully formed and validated, dependencies may have been missed. The
resulting configuration may not be a valid product specification. As features are selected
for a product, the software modules that are selected as a result determine the variation
points. Feature modeling tools support the selection of features and create a model which
captures the instantiation of the feature model. This is shown in the bottom half of the
feature model in Figure 6.

In most cases just selecting a feature is not sufficient. Even manadatory features have
variations in the details. Many of these are resolved very late in the product life cycle,
maybe even during product execution at a deployment site. One useful way to think of
this binding is in the context of partial evaluation [Consel 98].

The term “platform,” as used by many software product line organizations, refers to
the common portion but this gives the impression that the platform is unchanging from
product to product. In most cases the platform is a portion of the product whose
variability is controlled by parameters that are altered during initial configuration or
between executions. The platform is an asset that has many variation points but that is
thought of as a common element across products.

GOAL-DRIVEN PRODUCT DERIVATION

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Figure 6 - Feature model

5 DOMAIN ENGINEERING

Domain engineering is the activity in which the product production capability of the
product line organization is realized. This facet of the product line organization produces
the reusable assets that will be used to build products. Whether or not the people who
fulfill this role are integrated into the teams that actually build products or whether they
are gathered into a group dedicated to building pieces, their output populates the product
line architecture with software core assets.

Domain engineering is of strategic importance to the organization because it
produces a set of core assets that are of sufficient scope and quality to handle all of the
products envisioned for the product line. Product derivation will not be successful if the
assets are incompatible with each other or require extensive rework due to
shortsightedness. The strategic goals for the product line will almost always be stated in
terms of product production but domain engineering will be critical to meeting those
goals.

There are several road blocks to making product building efficient that can be
addressed in the design and implementation of the core assets:

Dependencies among features or modules
Decisions among variants

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 15

Stability of the domain
Diversity and complexity of domain
These issues are partially addressed during the definition of the production

capability. The production method will define techniques for capturing and representing
dependencies among features and for relating decisions among variants to those features.
Direct dependencies among features are usually captured during feature modeling.
Selecting one feature may require the inclusion of another feature because of a “uses”
relation and selecting one feature may require that another feature be excluded. These
relationships capture some of the semantics of the domain. If there is a large number of
dependencies, it may be possible to refactor the feature model, reducing the scope of
some of the features, to eliminate some of the dependencies and to localize others.

The assets related to derivation include the software core assets, the product line
architecture, the production plan, and derivation tools. The derivation tools needed
include tools associated with the variation mechanisms that are selected for use, software
development tools, and supporting tools such as configuration management tools.

Due to the ability to amortize effort over multiple products, domain specific
languages (DSLs) are attractive core assets. Once developed, a DSL can be used by
persons with much less domain knowledge than the language developers. This supports a
product derivation process implemented by less expensive people, often taking less labor
time total than comparable products. Eclipse provides support for creating DSLs [Eclipse
09]. In a previous paper we provided a detailed example that not only used a domain
specific language, it was used for both requirements and test cases [Chastek 05]. DSLs
make automation of a number of engineering tasks much easier because the language is
more limited than the general modeling language from which it is derived and is based on
a formal meta-model that makes transformations more straightforward.

Topcased, built on top of Eclipse, provides very accurate implementations of the
SysML, UML, and AADL standards [Topcased 09]. (They all continue to evolve.) These
languages and supporting tools facilitate producing a sequence of models of the system
from use cases for system engineers to detailed architectures for architects from which
code can be generated. This very detailed modeling provides support for quality control
from the beginning to the end of a project.

6 APPLICATION ENGINEERING

Application engineering is the activity of operating the product production capability.
Regardless of the flavor of software product line strategy the organization adopts, the
goal is to maximize the efficiency of product derivation. Rather than begin with a blank
slate the team is operating within the environment provided by the domain engineering
function. That environment contains assets and methods that ensure the products meet the
goals of the product line organization.

GOAL-DRIVEN PRODUCT DERIVATION

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Application engineering is obviously of strategic importance since product production is
the focus of the organization. The production capability has been shaped to support the
creation of products in ways that meet the goals of the organization. Operating that
capability provides the product line organization with the anticpated benefits.

The production plan provides the application engineer with the instruction manual
for building a new product. The attached processes of the selected core assets become
part of the production plan and specialize the plan based on these selections. In the best
case each attached process contributes a portion of an automated script that builds the
product. At the least the attached process reduces the learning curve for a product builder
who must manually integrate the asset into a product.

Application engineering is a straight-forward activity that can not help but achieve
the goals. The production method, and the core assets, is imbued with the qualities
required to achieve the business goals due to the production planning phase. Assembling
the product may be a time consuming process in some cases, but the outcome is made to
order.

Realistically there is almost always a portion of the product that is new and different
and cannot be realized directly from existing assets. The production capability has to be
sufficiently powerful to support evolving an asset to meet this new need and sufficiently
flexible to integrate newly developed software with the pre-existing assets.

7 SUMMARY

Product derivation is the focus of a software product line organization. “Goal-driven
product derivation” adds the intent to design a derivation process, which has specific
qualities, that aids the organization in achieving specific goals. In several columns and
other papers I have described pieces of product derivation. In this column I have tried to
tie these together into a process for preparing for product derivation. The process begins
early in the life of the product line with production planning - strategy, method, and plan.
The intent of this process is to define a production capability that facilitates product
derivation while achieving the goals attributed to product production.

Once a plan for the production capability is defined, the organization establishes that
capability by implementing the core assets referred to as product parts. The completeness
of that base, before the first product is derived, depends on the adoption strategy chosen
by the organization. Most often the core asset base will evolve toward completeness as
more products are built.

Deriving a product, given the production capability, is simply operating that
capability. This sequence of events is not random, it is a strategy that takes advantage of
designing “overhead” actions like planning, which will occur infrequently, to be
sufficiently heavyweight to allow derivation of individual products, which will occur
very frequently, to be very lightweight.

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 17

Products are of strategic importance to a software product line organization and
systematically planning, creating, and operating a production capability faciliates meeting
the strategic goals of the organization.

GOAL-DRIVEN PRODUCT DERIVATION

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

REFERENCES

[Böckle 04] Guenter Böckle, Paul Clements, John D. McGregor, Dirk Muthig and Klaus
Schmid, “Computing Return on Investment for Software Product Lines”,
IEEE Software, July/August 2004.

[Chastek 09] Gary J. Chastek and John D. McGregor. Modeling Variation in Production
Planning Artifacts, VaMoS 2009.

[Clements 01] Paul Clements and Linda Northrop: Software Product Lines: Practices and
Patterns, Addison-Wesley, 2001.

[Clements 05] Paul Clements, John D. McGregor, and Sholom G. Cohen. The Structured
Intuitive Model for Product Line Economics (SIMPLE), Software
Engineering Institute, CMU/SEI-2005-TR-003.

[Consel 98] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volanschi, J.
Lawall, and J. Noyé. Partial evaluation for software engineering, ACM
Computing Surveys (CSUR) Volume 30 , Issue 3 (September 1998).

[Deelstra 05] Sybren Deelstra , Marco Sinnema and Jan Bosch. Product derivation in
software product families: a case study, Journal of Systems and Software,
Volume 74 , Issue 2 (January 2005).

[Eclipse 09] Eclipse Foundation, www.eclipse.org.

[Eclipse 09b] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/,
2009.

[Jarzabek 03] S. Jarzabek, P. Basset, H. Zhang, and W. Zhang. XVCL: XML-based
variant configuration language. In Proc. Int. Conf. on Software Engineering,
ICSE03, pages 810–811, Portland, OR, May 2003.

[Jensen 09] Paul Jensen. Experiences With Software Product Line Development,
Crosstalk, January 2009.

[McGregor 07] John D. McGregor "Openness", in Journal of Object Technology, vol. 6,
no. 6, July - August 2007, pp. 7-14.
http://www.jot.fm/issues/issue_2007_07/column1/

[McGregor 06] John McGregor: “Planning before plans”, in Journal of Object
Technology, vol. 5, no. 2, March-April 2006, pp. 27-34.
http://www.jot.fm/issues/issue_2006_03/column3/

[McGregor 04] John D. McGregor: “Software Product Lines”, in Journal of Object
Technology, vol. 3, no. 3, March-April 2004, pp. 65-74.
http://www.jot.fm/issues/issue_2004_03/column6/

VOL. 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 19

[McGregor 04b] John D. McGregor. Factors in Engineering Strategically Significant
Software Development Methods, OOPSLA Workshop on Method
Engineering, 2004.

[McGregor 04c] John D. McGregor. Product Production,
http://www.jot.fm/issues/issue_2004_11/column7/, 2004.

[Porter 98] Michael E. Porter. Competitive Strategy, Free Press, 1998.

[Topcased 09] Topcased, www.topcased.org.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a visiting scientist at the Software Engineering Institute, and a partner in
Luminary Software, a software engineering consulting firm. His research interests
include software product lines and component-base software engineering. His latest book
is A Practical Guide to Testing Object-Oriented Software (Addison-Wesley 2001).
Contact him at johnmc@lumsoft.com.

