
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 5, July-August 2009

J. Narsoo, M. S. Sunhaloo, R. Thomas: “The Application of Design Patterns to Develop Games
for Mobile Devices using Java 2 Micro Edition”, in Journal of Object Technology, vol. 8, no. 9,
July-August 2009, pp. 153-175 http://www.jot.fm/issues/issue_2009_07/article4/

The Application of Design Patterns to
Develop Games for Mobile Devices
using Java 2 Micro Edition

J. Narsoo, School of Business Informatics and Software Engineering,
University of Technology, Mauritius
M. S. Sunhaloo, School of Business Informatics and Software Engineering,
University of Technology, Mauritius
R. Thomas, School of Business Informatics and Software Engineering,
University of Technology, Mauritius

Abstract
In this paper, we demonstrate the use of design patterns to develop games for mobile
devices on the J2ME platform. We believe that the proposed idea will help J2ME game
developers to write better re-usable code faster. We consider a single player Sudoku
board game which is based on the model-view-controller architecture. The view is
configured with a Game Controller Choice pattern so that different controllers can be
selected. The view and the model implement the Game State Observer pattern. The
Canvas drawing logic is created using the Drawing Template pattern, which ensures re-
usability of the board size computation as well as provides a means for the programmer
to implement game specific drawing functionalities. A generic undo method is provided
using the Game Memento pattern. Setting of the current display is achieved through the
Change Screen pattern. We note that the use of patterns in the Sudoku game makes it
possible to cater for changes without breaking up the overall architecture of the game.
By considering a downgraded version of the standard Soduko game, we show that
patterns allow modifications to be made without opening up too many classes. We also
show how the proposed design of the Sudoku game facilitates the design of other
games.

1 INTRODUCTION

In the early 1970s software was developed using structural paradigms, which separated
procedures or functions from the data. It was difficult to write re-usable software
components using the procedural paradigm. The object oriented approach overcame this
drawback [3].

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Nowadays, the object oriented paradigm has become the norm. However, with the
continued increase in size and complexity of software systems, the concept of design
patterns has emerged to improve software architectures [2,8]. And today, design patterns
are providing generic solutions to commonly occurring problems in software
development [7]. A design pattern describes a design problem, the solution and the
consequences [3].

Recently, the mobile gaming industry has experienced a tremendous growth. As a
result, development of new games may lead to recurring similar design problems. Thus,
design patterns can be used to optimize the design and implementation of games for
mobile devices [5]. For example, design patterns can provide facilities for creating a new
board in a board game, for varying the board dimensions, for maintaining and saving the
game state, for computing the next move, for rendering the display screen and for
managing record stores. Solving these problems using first principles, by duplicating
codes and solutions may not be appropriate, thus leading to the development of
monolithic, inflexible, difficult to maintain, inefficient software with undesirable features
[1].

While mobile games can be developed using different technologies such as Windows
mobile platform, Flash, Python, among others, the Java 2 Micro Edition (J2ME) platform
has been considered. J2ME is a dominant platform in game development for mobile
devices. In this paper, the Gang of Four patterns [3] are used in the context of J2ME
game programming to build scalable, maintainable and robust software. The Sudoku
puzzle and the N-Puzzle, which are single player board games, are selected to illustrate
the application of design patterns to develop games. We note that these games can be
modified into multiplayer games by enabling different players to independently solve the
same puzzle, for example over a wireless network. We have opted for a single player
game so as to focus on the patterns in the design of the game rather than on the advanced
game functionalities.

2 THE SUDOKU GAME

The Sudoku game is a single player board game with 81 square cells distributed as 9 rows
and 9 columns. These 81 cells are divided into 9 boxes with each box containing 9 cells.

Random numbers ranging from 1 to 9 are placed on the board. This arrangement is
what is known as the Sudoku puzzle. The aim of the game is to fill the board with
numbers from 1 to 9, in such a way that, there exists only one instance of the numbers 1
to 9, in every column, row and box on the board. It is interesting to note that every
Sudoku puzzle has one and only one unique solution [4].

The player is given an unsolved puzzle and is required to solve it by filling the empty
cells with relevant numbers. There are various techniques to solve the Sudoku puzzle but
in this paper credit is given to the design aspect of games rather than these techniques.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 155

The important aspect of playing this game is that the player uses logical deductions
to make a move. The player should not guess the number that has to be placed in a
particular cell. Every puzzle number can be derived by analyzing the puzzle’s current
play state and applying logical deductions.

The implementation of the Sudoku game involves two stages. Firstly the generation
of the Sudoku puzzle making sure that only one solution exists and secondly solving of
puzzle. Sudoku puzzle generation and solving is an NP complete problem [4]. There
exists no, known best algorithm for its generation. Different implementers use different
techniques for generation. All known generation techniques take considerable time and so
it would not be advisable to implement a generation module for the Sudoku game on a
J2ME enabled device. This is because of the low processor power and memory
constraints. The implemented game, has a database of generated puzzles along with their
solutions, the player can solve the puzzle which will then be validated against an existing
solution.

3 GAME DESIGN

The main components of the Soduku game are the model, view and controller
components, which together make up the Model-View-Controller (MVC) pattern [9] as
shown in Figure 1.

These components are the main parts of the application. The MVC architecture
makes it possible to loosely couple the graphical representation from the core logic of the
game. There could possibly be more that one view in an application. The controller uses
the MenuFactory component to create Displayable components, which are objects that
can be displayed on the device screen. The model makes use of the PuzzleStore and
Storage classes. The PuzzleStore component contains a list of unsolved puzzles and their
solutions. When a new puzzle is requested by the player, the model generates a random
number and uses this to select the puzzle that is stored in the puzzle list. By decoupling
the puzzle list from the model, the design ensures that the PuzzleStore can be extended
for changes without affecting the other components. For example it is this design that
makes it possible to extend the Sudoku game to download the puzzles via bluetooth or
wireless mobile device.

Figure 1 – The Model-View-Controller Architecture.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Model

The model is represented by the SudokuGameModel class. This class implements the
GameModel interface. It is important to represent the model in an abstract form so that it
can be re-used in other games. The GameModel interface declares common
functionalities of single player board based games that have to be implemented by
Concrete classes. The GameModel interface listing is given as follows:

1 public interface GameModel
2 {
3 Object createMemento () ;
4 void setMemento (Object memento) ;
5 void r e g i s t e r (Canvas view) ;
6 void i n i t i a l i z eMo d e l () ;
7 void selectGameData (boolean savedGameExists) ;
8 void setGameLevel (byte l e v e l) ;
9 byte getGameLevel () ;
10 byte getBoardDimension () ;
11 void set PuzzleState (int row , int col , byte value) ;
12 byte [] [] g e tPuz z l eSt a t e () ;
13 void saveGame () ;
14 byte [] getOriginalGameData () ;
15 boolean isValidMove (int indexOfDataValue) ;
16 boolean i s S t a t e F i l l e d () ;
17 boolean isGameOver () ;
18 public boolean doesSavedGameExist () ;
19 }

Lines 3 and 4 are the methods of the memento pattern. These abstract methods do not
refer to any concrete class implementations. The Object class of the Java platform is used
to represent concrete objects polymorphically. This enables designers to use the model
interface for other games. Lines 6 to 17 are required for game playing and for the
controller and view classes to interact with the model.

The concrete class SudokuGameModel stores the game state and contains game
specific methods for the Sudoku game. It implements the GameModel interface.

The state of the Sudoku Game is a two dimensional byte array that represents the
puzzle numbers. In addition the SudokuGameModel also encapsulates the index of the
current puzzle selected from the list of stored puzzles. The model uses a number of

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 157

classes, which are required to provide functionalities to the overall game. These include
the PersistentStorage, SudokuPuzzleStore and SudokuMemento classes. The
PersistentStorage class provides functionality to save an unfinished game. The
SudokuPuzzleStore contains a list of puzzles along with their solutions. The
SudokuMemento captures the game state.

View

The GameView, BoardView and Cell classes together represent the View part.
GameView class extends the J2ME abstract Canvas class.

Figure 2 – View.

The GameView class is responsible for painting the screen and for capturing player
moves and delegating it to controller. It contains a reference to the BoardView class. The
BoardView class contains the drawing functionalities like, drawing the board, puzzle
numbers and the cursor. The BoardView aggregates the cells whose number depends on
the dimension of the board, which in turn is a state of the model. The relation between the
BoardView class and the Cell class is illustrated in Figure 2.

The draw method of the BoardView class contains a number of steps and the design
of this draw method is opened for extensions. Choosing this way of design makes the
painting of the Canvas simpler, as shown in the following code.

1 protected void paint (Graphics g)
2 {
3 i f (! isGameOver ())
4 {
5 board . draw(this , g) ;
6 }

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

7 el se
8 {
9 drawAnnoucement () ;
10 }
11 }

In Board games, a board is divided into a number of cells which contains attributes that
represent the border color, fill color, the size of the cell and data to be displayed inside
the cell. In the Sudoku game, the data are the puzzle numbers. The GameView class
registers itself with the model. When the state of the model changes the GameView class
receives notifications from the model to update itself.

Controller

The GameMidlet Class, the main class or the entry point, together with the
SudokuGameController class constitute the controller part of the architecture. The
SudokuGameController class is programmed to the interface GameController. This has
the advantage that the GameMidlet class does not need to reference a concrete
implementation, meaning that if there are any changes to be done to the
SudokuGameController class, it will not affect the GameController class. This adheres to
the principle of loosely coupled and highly cohesive modules. The
SudokuGameController class could be replaced with another concrete implementation of
the GameController interface, without affecting other classes. The
SudokuGameController class functionalities could have been directly included in the
midlet class itself, but that would have made the design too monolithic. It would also
have resulted with the midlet class being overburdened with multiple responsibilities. It is
desired, in the interest of good design, that every class is responsible for one operation.
Though this may lead to many number of classes in the design, but ultimately a balanced
has to be reached. In this design, the SudokuGameController class was necessary so that
the game control logic could be separated from the overall midlet management. Thus, the
midlet class manages the game as a whole, interacting with the java virtual machine and
the SudokuGameController class controls the user actions with respect to the game. The
GameController interface is as shown below.

1 public interface GameController
2 {
3 public abstract MenuFactory getMiFactory () ;
4 public abstract void handleKeyEvent (int keyCode, int rowCursorPos , int colCur
sorPos);
5 public abstract void handleSaveEvent () ;
6 abstract void doCleanup () ;
7 }

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 159

The controller classes and their relationship is shown in Figure 3.

Figure 3. – The Controller Classes.

Figure 3 – The Controller Classes.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

4 MVC COLLABORATIONS

The collaboration diagram for the model view and controller objects is shown in Figure 4.

Figure 4 – Collaboration Diagram for the MVC.
An example scenario to illustrate the collaboration among the different classes is when
the player enters a number in an empty board cell. The sequence of events is as follows:

1. The player presses a key and the view calls the handleKeyEvent method of the
controller.

2. If it is a valid keycode, the controller updates the cursor position variables in the
view class.

3. The controller then checks whether the board cell data can be modified. This is
necessary to prevent the player from overwriting the original puzzle numbers. If
the data can be written, the controller asks the model to create a memento object.

4. The model creates the memento object as requested by the controller. In this step,
the model saves its state in the memento object.

5. After creating the memento object, the model returns it to the controller.
6. The controller asks the model to change its state. The model takes the number

entered by the player and assigns it to the particular index of the array that
represents the model’s state.

7. The model notifies the view of the change in its state.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 161

8. The GameView asks the BoardView to update the cell.
9. The BoardView delegates the updating of the data in the cell, to the relevant Cell

object.
10. The controller checks if the game is over by checking the model’s state.
11. If the game is over, the model notifies the view about it.
12. The GameView asks the board to draw itself on the screen.

5 DRAWING THE SCREEN

The repaint method is used to redraw the Canvas. The J2ME framework provides two
overloaded methods for this purpose. The first one can repaint the entire screen and the
second, which is more efficient can be used to repaint part of the screen by specifying the
location, width and height [10]. The entire display screen does not need a repaint in this
game. For example, as shown in Figure 5, if the cursor is at the top left cell, and if the
player moved the cursor to the right, the only area to be repainted is that comprising of
the cells where the cursor was previously and the new position of the cursor.

Figure 5 – Soduku Board.

The area to be repainted is specified as follows. The cell under which the cursor is
currently displayed is known and the area of this cell is computed. Then, in another call
to the repaint method, the area of the cell, where the cursor is to be moved is calculated.
The repaint method takes the total area specified in the multiple repaint method calls.
This effectively reduces the size of the screen to be refreshed.

When the state of the model changes the view is also updated by calling appropriate
view methods. This should have the effect of the view being re-drawn instantaneously, to
show the change in the model’s state. In J2ME game programming, drawing the screen is
achieved by the paint() method which is defined in the Canvas class. To be able to use it,
the game developer needs to subclass the Canvas class and implement the paint() method.
The platform determines, for efficiency reasons when the screen needs to be repainted
[10]. Therefore it is not possible for the SudokuGameModel class to directly make a call

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

to the paint(), to update the screen. To tackle this problem, the model updates the view as
its state changes before the second call to the repaint() method is encountered.

6 PERSISTENTSTORAGE CLASS

The Sudoku game allows saving an unfinished game and reverting back to the saved
game. This functionality is implemented in the PersistentStorage class. It uses the
RecordStore class. The latter implements the Singleton pattern. The RecordStore
provides storage and retrieval methods that act upon a single dimensional array of bytes.
The state of the Sudoku game is maintained in a two dimensional byte array. Therefore
there is the issue of converting the two dimensional array into a single dimensional array,
before the puzzle state is written to a record and vice-versa when the saved puzzle has to
be retrieved from the record. Another consideration is that there is a need to store the
puzzle number, so that it can be checked with its corresponding solution when the puzzle
is being played.

Currently the game allows a single puzzle to be saved. Therefore if a saved puzzle
exists, we overwrite it with the new puzzle to be saved. The puzzle number is stored as
the last byte in the array.

7 RANDOM PUZZLE SELECTION

The functionality to generate a random number with an upper limit is available in MIDP
2.0. To enable a larger number of devices to use the game, the configuration is set up for
MIDP 1.0.

8 FILE FORMAT

The StandardSudoku class stores a number of generated Sudoku puzzles along with their
solutions. The puzzles are stored in a specific format that aids adding new puzzles. In
deciding on the format of the file to represent the puzzles, a simple approach is needed.
This enables users of the game, to add additional puzzles or delete puzzles from the list of
stored puzzles. The puzzle numbers are represented as a sequence of strings starting from
number that should appear in the first cell up to the last cell of the board. For every
puzzle, the unsolved puzzle, along with its solution are stored in separate arrays.

An example of an unsolved puzzle is as shown.
06402000000340900009001050640009201020000000503054000270508003000020

1900000030250
An example of the same puzzle with the solution is as shown.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 163

16482537957346912889231754645769281328917346563154879272598463134625
1987918736254

A zero indicates an empty cell. This is later used in the model to validate for a valid
player move. The game over status can be checked by comparing the puzzle state
maintained by the model to that of the stored solution.

9 J2ME CONFIGURATION AND PROFILE

Applications programmed on the J2ME platform are called midlets. All applications
programmed on the J2ME platform contain a class that extends from the abstract class
MIDlet [12]. In the Sudoku game, the GameMidlet class provides the functionality of a
MIDlet class. The Sudoku game is compatible with CLDC 1.0 and MIDP 1.0.

10 GAME PATTERNS

The following sections describe the patterns which we have used in the Soduko game [6].

Change Screen

Intent
The Change Screen pattern, as shown in Figure 6, defines an interface that enables
changing of the current Display item in a MIDlet. The actual Displayable item is selected
by the subclasses.

Motivation
In game development on the J2ME platform, providing a standard menu interface is very
common. When the midlet starts, the user is given a series of options to choose in the
form of a menu. Depending on the user’s selection, it is required to change the current
displayable item to what the user has selected in order to change the screen. It is first
necessary to create the displayable item. The Change Screen pattern provides a solution
to create these different displayable items at runtime and then changes the display screen
to the user’s choice.

Applicability
The Change Screen pattern is used when the actual item to be displayed is not known till
runtime.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Structure

Figure 6 – Change Screen Pattern.

Participants

• Displayable

o abstract class that groups together all Displayable items.

• MainMenu, SudokuForm, GameView

o concrete classes that inherit from Displayable.

• MenuFactory

o abstract class that declares a change screen method. Calls the change screen
method to create a Displayable object that has to be used as the current
Display object.

• SudokuMenuFactory

o overrides the createMenuItem method to create and return an instance of a
MainMenu, SudokuForm or GameView object.

Collaborations
The MenuFactory relies on the SudokuMenuFactory to return a concrete instance.

Implementation
The Displayable class represents all objects that can be displayed on the screen. This

class is part of MIDP and is defined in the package lcdui. There is no need for it to be
defined by the user. The name of the object to be created is passed as a String.

The pattern allows for the creation of a generic menu. By allowing MainMenu,
SudokuForm and GameView classes to be known by a common abstract class, the
implementation is not bound to a concrete implementation of a Displayable. The user is
free to extend this pattern and to add other concrete classes. Letting the subclass decides the
concrete instantiation, also allows the attachment to another MenuFactory if requirements
change.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 165

Game Momento

Intent
This pattern as shown in Figure 7, captures, stores the state of the game model and can
revert the model back to the previous sate.

Motivation
In many scenarios, it is necessary to save the state of a game, so that the player can revert
back to particular playing level or just undo the latest move made. This might be possible
by implementing the logic into the core application itself, but this will result in high cost
in the maintainability of the code. It is probable that encapsulation will be violated. The
Game Memento pattern provides a way to keep track of an object’s internal state and at
the same time provides an undo mechanism.

Applicability
The Game Memento pattern is used when there is a need to undo changes made to an
object’s state or to revert back to a previous game level.

Structure

Figure 7 – Game Memento Pattern.

Participants

• SudokuMemento

o stores the internal state of the SudokuGameModel object.

• SudokuGameModel

o creates a snapshot of its state and also uses this stored state to restore its state.

• SudokuGameController

o provides the undo mechanism.
Collaborations

When the user makes a move, the SudokuGameController requests a memento from the
SudokuGameModel, which creates the memento and returns the instance back to the
SudokuGameController. If the player requests for an undo, the SudokuGameController
passes the memento object to the SudokuGameModel, which uses it to revert back to its
previous state.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Implementation
Capturing the current game state is provided by the SudokuGameController. This is
because the controller is responsible for decoding the player input for the model.

When using the memento pattern there is also a trade off in terms of efficiency. For
every move that the user makes, a SudokuMemento object is created by
SudokuGameModel, and this object must be returned to the SudokuGameController. To
limit this potential overhead, the game has been implemented to support a single undo
level.

The SudokuGameController holds a reference to the memento object. In the
handleKeyEvent method, the key code for undo is checked before calling the undo
method. Similarly, a snapshot of the originator object is created. Care should be taken to
first create the snapshot of the state and then update the SudokuGameModel’s state with
the new value entered by the player otherwise the state captured will be the same as the
values by which the model was updated.

Game Controller Choice

Intent
The Game Controller Choice pattern, as shown in Figure 8, defines a unified interface for
concrete game controller classes so that they can be interchangeable.

Motivation
In the model-view-architecture, the view delegates to the controller the action that needs
to be taken for any user’s input. The view should be independent of the controller. There
could be more than one controller or that future enhancements require building a
completely new controller. By implementing the Game Controller Choice pattern, the
view is decoupled from the model and it is possible to modify the controller for future
changes without the need to change the view class.

Applicability
The Game Controller Choice pattern is used when there is a need to choose from different
game controllers or when a decision is to be made to select an object from different
objects implementing the same interface.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 167

Structure

Figure 8 - Game Controller Choice Pattern Structure.

Participants

• GameController

o the interface that defines common functionalities of controllers.

• SudokuGameController

o concrete controller that implements the GameController interface.

• GameView

o the context that is configured with a concrete controller object.
Collaborations

GameView and the SudokuGameController interact together to select the controller to be
used to process user requests.

Implementation
The GameView class extends the Canvas class. The GameController interface is
programmed to define the control actions necessary when the user does some action like
moving to the next cell in the board, entering data, saving and exiting the game.

The SudokuGameController implements the GameController interface. We can
substitute another game controller if requirements change. The GameView need not be
aware of the changes done.

Game State Observer

Intent
The Game State Observer pattern, as shown in Figure 9, provides a means to update
dependent objects when the state of the game model changes.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Motivation
In many cases it becomes necessary to separate the visual display part of an application
from that of the business logic or core logic. Essentially the idea is to decouple them, so
that changes in the model can be done without modifying the display classes and vice-
versa. It is also possible that a business model or game logic may have more than one
display elements, in which the data that is displayed relates to the same game logic. The
observer pattern allows the decoupling of the display and the core game logic. When the
state of the logic changes, the various display elements are notified of the changes and
asked to update themselves.

Applicability
The Game State Observer pattern is used when the display part of a game has to be
decoupled from the game logic.

Structure

Figure 9 – Game State Observer Pattern.

Participants

• GameModel

o defines an interface for all concrete implementations of a game model.

• SudokuGameModel

o contains game model core state information.

o notifies its dependents when its state changes.

• Canvas

o defines an interface for game displays based on the Canvas class.

• GameView

o concrete implemenation of an observer.

o updates itself upon receiving notification from the SudokuGameModel.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 169

Collaborations
The GameView registers itself with the SudokuGameModel. It may also request for state
information. When the SudokuGameModel notifies the GameView about a change in its
state, the GameView updates itself to reflect the new state.

Implementation
The Canvas class is an abstract class and need not be implemented by the programmer.
The update method is user defined and is therefore not a member of the Canvas class.
This implies that the programmer has to define the update method in the concrete
GameView class which is used for presenting the state information. The programmer
could have defined a new class and let the GameView class inherits from this new class.
However this could have unnecessarily increased the total number of classes in the game,
for no benefits.

Loose coupling is achieved between the model and the view due to the Game State
Observer Pattern.

Drawing Template

Intent
Figure 10 shows the Drawing Template pattern. This defines a generic drawing algorithm
which consists of several steps, but let subclasses define certain steps of the algorithm.

Motivation
The display screen has to be rendered with the visual representation. For example, the
board has to be displayed on the screen along with the game data which could be puzzle
numbers. The cursor needs to be displayed too, which indicates the current position of the
player. Programmers can have their own way to draw the board, the game data and the
cursor. By providing a generic algorithm for drawing purpose, programmers can extend
this generic algorithm to suit the need of their particular game.

Applicability
The drawing template pattern is used to draw the visual components of the game onto the
display.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

Structure

Figure 10 – Drawing Template Pattern.

Participants

• Drawing

o implements the draw() method which defines a generic algorithm, with steps
that can be overridden or implemented by subclasses.

o contains abstract methods that subclasses implement to define the steps of the
algorithm.

o Drawing is an abstract class.

• BoardView

o implements the abstract methods defined in the Drawing class
Collaborations

The Drawing class cannot be used on its own. The BoardView class has to implement the
abstract methods, which are essentially the steps of the algorithm.

Implementation
The Drawing class requires the dimension of the board as this information is used in
calculating the individual cell size.

The Drawing class provides a good reuse technique. The computeBoardLenth()
method is used to calculate the usable part of the displayable screen, in a most optimal
manner. This can be used in other games that require display screen size computations.

The BoardView class overrides all the abstract methods thus implementing the steps
of the drawing algorithm. The GameView class acts as client and uses the draw
algorithm.

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 171

Singleton

Intent
The singleton, as shown in Figure 11, provides a single instance of the PersistentStorage
class.

Motivation
The player may wish to save the game state and play at a later stage. The state of the
game needs to be saved to a persistent storage device. Ideally for such scenarios, there is
a need for just a single connection to the filesystem or store. Opening a new connection to
the store for every request from the client, is not an efficient solution as this requires
more memory. The Singleton pattern provides this functionality by ensuring that there is
only one connection to the storage.

Applicability
The singleton pattern is used to get access to the unique instance of an object.

Structure

Figure 11 – Singleton pattern.

Participants

• PersistentStorage

o defines a class method or instance operation for getting a reference to its
unique instance.

o provides a constructor to create the unique instance.
Collaborations

Clients such as the SudokuGameModel class get access to the store through the class
method.

Implementation
The instance variable should be static and the constructor should be made private to
prevent multiple instances. Controlled access to the persistent storage is possible as a
result of the method that returns the instance and keeps track of this instance. Since one
connection to the recordstore is opened, it is easy to manage compare to multiple
connections.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

11 JUSTIFICATION OF PATTERNS USED

In this paper, it is shown how the patterns can be used in games. The importance of
design patterns has been described in the Sudoku puzzle. It is shown that, the existing
design can accommodate for the change in dimension to accommodate for children’s
sodoku.
Since the standard Sudoku and the junior Sudoku games are virtually similar, the later is
not implemented as a separate game, but is implemented as an option in the main game.
Secondly, a different board game, the number puzzle game is implemented. The patterns
used in the Sudoku game design are re-used in the number puzzle game. Thirdly it is
shown how these patterns can be re-used if the game model changes. This is shown by
explaining the design of a two player board game.

Junior Sudoku

To cater for the additional functionality of a 4×4 Sudoku board size, a state variable is
maintained in the SudokuGameModel class. This variable keeps track of the dimension of
the board, based on the gamer’s selection. Since the stored puzzles were of 9×9 size,
there has to be way to make the model independent of the puzzle size. This is achieved by
incorporating the strategy pattern. The SudokuPuzzleStore defines an interface that all
stores must implement. The StandardSudoku and JuniorSudoku are concrete
implementations of the store. They contain puzzle sizes of 9×9 and 4×4 respectively.
Depending on the user’s selection, the model aggregates a different size puzzle. The
option to select a differently sized puzzle is provided by means of a menu option as
shown in Figure 12. The view classes adjust themselves, to either a 9x9 or a 4x4 board
size.

Figure 12 – Soduku menu option.

Number Puzzle Game

Based on the Sudoku game design, the number puzzle game has been designed and
implemented. This is also known as the 15 puzzle game. Most of the components of the

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 173

Sudoku game remain the same in this second game too. The overall model view
controller architecture is preserved. This game too, has a menu that is presented to the
user. For this purpose the classes MainMenu, SudokuForm and GameView are re-used by
changing the display text to reflect the N-Puzzzle game requirements. This is the only
thing that has changed. The structure of these classes and their relation does not change at
all. This implies that the Abstract Factory method pattern is also used in the N-Puzzle
game.

An interesting thing to note is that the GameView class remains the same. The code
for the paint() method remains the same and so does the key-Pressed method. The view
and the model still implement the Observer pattern which was illustrated earlier in the
Sudoku game.

The BoardView class and the Drawing class together implement the drawing
template pattern. The model interface in the Sudoku game has abstracted the features of a
single player board game and so the same interface has be used in the N-puzzle game. A
concrete model class has to be implemented to take into consideration the state and
behavior relevant to the new game. This technique holds true for the controller class too.

A screen shot of the N-puzzle game, with a 4x4 board is shown in Figure 13.

Figure 13 - N-Puzzle.

Two Player Board Game

The patterns described and implemented in this paper can also be implemented in a two
player board game. The Change Screen pattern can be used to provide efficient change
screen functionality. The controller would change and the model interface would change
too, to reflect the abstractions of two player games. Since the earlier model interface was
defined for a single player board game, it will not suit for a two player game. Therefore it
is required that a new model interface be defined. Alternately the model interface could
be adapted to the two player game. The drawing logic can be re-used and the programmer
can define game specific drawing.

THE APPLICATION OF DESIGN PATTERNS TO DEVELOP GAMES FOR MOBILE DEVICES

USING JAVA 2 MICRO EDITION

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 5

12 CONCLUSION

In this paper, we have described the usage of patterns to design and implement games on
the J2ME platform. The patterns are catalogued and explained by using a template. It has
been demonstrated by sample game implementations how patterns can be effectively
applied to single player board based games. The design of the games has been tested for
changes in requirements and it is shown how it can be modified easily to reflect these
new changes.

Overuse of patterns can make the MIDlet size to grow considerably and may result
in bloatable software. Some mobile devices limit the size of the jar file that can be loaded
on a mobile device using the J2ME platform. This limit is usually specified in the device
specifications given by the manufacturers. The games described and implemented in this
paper were tested on a NOKIA n-gage gaming device with unlimited jar file size. Over
use of patterns also may include additional classes to the design, which may increase the
collaborations between them and likely affect the gaming performance. Developers
should find a compromise between the usage of design patterns and the memory and
processing power requirements for memory scarcity and low computational power
mobile devices.

Finally, it can be noted that although the patterns designed and described in this
paper are based on a single player, they can also be used in multi-player games and other
non gaming applications built on the J2ME platform. The patterns discussed can be
extended to solve commonly occurring problems in other sub-domains of computer
science, like distributed computing, database applications among others [11].

VOL. 8, NO.5 JOURNAL OF OBJECT TECHNOLOGY 175

REFERENCES

S. Bennett, S. McRobb and R. Farmer. Object-Oriented System Analysis and Design.
McGraw Hill, 2006.

S. Bjork, S. Lundgren and J. Holopainen. Game design patterns. Proceedings of Digital
Games Research Conference, 2003.

E. Gamma, R. Helm, R. Johnson and J. Vlissedes. Design Patterns Elements of Resuable
Object oriented software. AddisonWesley, 1995.

Z. W. Geem. Harmony Search Algorithm for Solving Sudoku. Knowledge-Based
Intelligent Information and Engineering Systems, Lecture Notes in Computer
Science.

B. Hui. Big design patterns for small devices, 2002.

B. Kreimeier. The case for game design patterns, 2002.

S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik , S. Bromling and K. Tan. Generative
Design Patterns. Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, 2002.

K. Menzel, M. Keller and K. Eisenblätter. Context sensitive mobile devices in
architecture, engineering and construction, ITcon Vol. 9, Special Issue
Mobile Computing in Construction , pg. 389-407, 2004.

D. Nguyen and S. Wong. Design pattern for games. Special Interest Group on Computer
Science Education SIGCSE, 2002.

R. Riggs, A. Taivalsaari and J. Van Peursem. Programming Wireless Devices with the
Java 2 Platform Micro Edition. Addison-Wesley, second edition, 2003.

S. Stephen and A. Singh. Design Patterns for Parallel Computing Using a Network of
Processors. The 6th IEEE International Symposium on High Performance
Distributed Computing, 1997.

K. Topley. J2ME in a Nutshell. O’Reilly, 2002.

About the authors
J. Narsoo holds an M.S.c Computational Science and Engineering and is a Lecturer at
the University of Technology, Mauritius.
M. S. Sunhaloo holds a Ph.D. degree and is a Senior Lecturer at the University of
Technology, Mauritius.
R. Thomas holds an M.Sc. Computational Science and Engineering from the University
of Technology Mauritius.

