"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2008

Vol. 8, No. 5, 2009

UML Extensions for Aspect Oriented Soft-
ware Development

Francisca Losavio, Universidad Central de Venezuela, Venezuela

Alfredo Matteo, Universidad Central de Venezuela, Venezuela

Patricia Morantes, Universidad Nacional Experimental Francisco de Miranda,
Venezuela

AOSD (Aspect Oriented Software Development) is an emerging discipline in Software
Engineering. It focuses on the separation of concerns of the '70s, aiming at improving
modularity, to ensure maintainability in the sense of extensibility, changeability and
reuse, towards an evolutionary software product responding to a more dynamic environ-
ment. The AOP (Aspect Oriented Programming) paradigm of the '90s focuses on the
separation of the crosscutting concerns, which are in general non functional require-
ments (quality requirements). It is now of general agreement that the entanglement
and scattering of concerns must be handled early in the software life cycle. However,
these aspects are inherent to all the stages of software development, from require-
ments elicitation to code implementation. Many concepts and mechanisms have been
proposed to handle properly these issues; however terms are in general semantically
slightly different in each discipline where they have been formulated and used, causing
misunderstanding and confusion. This paper presents an AOSD UML core for early
aspects (requirements, analysis and design disciplines), constructed gathering different
modelling elements found in the literature, focusing particularly on the AOSD ontolgy
document of the Common Foundation for AOSD of the European Community, and
different UML extensions. Moreover, each notion is identified, clarified, presented by
author, and associated to a discipline. We are particularly interested in early aspects
for identification and management of functional and quality requirements, and the
crosscuts, to justify and document the choices taken at architectural design. Despite
the interest and the recognition of its importance, there is still a lack of appropriate
techniques to identify quality requirements at software architecture design level. The
risk is that potential aspects might be easily overlooked during the software archi-
tecture design and remains unsolved at the design and programming level. The case
study provided illustrates an application of the core for an aspect-oriented architec-
tural design, to define the initial architecture for a web application. The results on one
hand contribute to the establishment of standards for a unified AOSD terminology,
favoring understanding and easing communication. On the other hand they facilitate
aspect-oriented architectural design.

Cite this document as follows: Susanne Cech: UML Extensions for Aspect Oriented Software
Development, in Journal of Object Technology, vol. 8, no. 5, 2009, pages 85-104,
http://www.jot.fm /issues/issues_2009_04/

http://www.jot.fm/issues/issues_2009_04/

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

1 INTRODUCTION

Software Oriented Aspect Development (AOSD) [17] is a new approach to software
development originated from the previous works on Aspect Oriented Programming
(AOP) [9]. It is now of general agreement that functional and non functional soft-
ware system’s requirements must be compliant with precise quality goals that the
system must accomplish, often introducing new components or mechanisms to sat-
isfy all these concerns in order to be considered a “quality” product. However, many
of these concerns are considered or introduced late in the development process, and
happen to crosscut the system functional or modular structure, making maintain-
ability difficult, contradicting the object oriented paradigm. The central idea of
AOSD as an emerging discipline of post-object technology, is to provide strong sup-
port to the separation of the repeated, scattered or entangled concerns at every
stage of software development, introducing a new modular unit to encapsulate them
to facilitate extensibility, changeability and reuse.

In the context of software engineering a concern is defined as a property or interest
point of a system [17]. Concerns, from the system point of view, are defined as
those interests belonging to the system and its operation, or other aspects which
are critical or important for the stakeholders. That is to say, a concern is a kind of
requirement needed by the system. Some concerns can be easily encapsulated within
classes or modules, according to the chosen implementation language; however, oth-
ers whose functionality affects several modules, are called crosscutting concerns and
they are not easy to separate. They cannot be easily encapsulated into new func-
tional units as “implicit functionality” because they crosscut the whole system and
are implemented in many classes or modules producing an entangled or scattered
code, difficult to understand and maintain. The goal of AOP is to encapsulate them
into a modular unit, called aspect, to handle these requirements at implementation
level. Recent research trends propose to use AOP notions and mechanisms also
at early stages of software development to reduce development costs. We are inter-
ested in the so called ”early aspects” approach which aims to the identification of the
crosscutting concerns during the requirements and analysis disciplines to facilitate
architectural design. In particular, the early identification of crosscutting concerns
in the requirements discipline can reduce evolution costs [15]; in consequence a mod-
elling language supporting aspect orientation is suggested.

The Unified Modelling Language (UML) [4, 14] is a graphic language notation widely
used as a standard to support the object-oriented and component-based software de-
velopment process. Since UML is provided with extension mechanisms to define new
modelling elements [4], UML extensions for AOSD have been proposed to model the
development process at early stages.

Several authors have examined the benefits of AOSD modelling: facilitate the im-
plementation stage or the reengineering of existing systems, obtain more reusable
and comprehensive components, document early architectural decisions related in
general with requirements and maintain their consistency through all the software
development stages.

86 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

1 INTRODUCTION

In consequence, efforts been made towards the modelling of software elements

at early stages using an aspect-oriented approach. In this work, a core for AOSD
considering UML modelling elements with their stereotypes for early stages of de-
velopment is obtained. In Figure 1, O represents all the concepts in the ontology
document of the Common Foundation for AOSD of the European Community [3].
CO represents all the concepts in O required to model AOSD; CO (complement) is
the set of other concepts identified for AOSD that are not considered in CO. More-
over, most of these concepts have stereotypes defined by different authors. The
UML extensions core for AOSD is conformed by the concepts of CO required for
modelling AOSD for which stereotypes exist, plus those of CO. In philosophy, on-
tology is the study of conceptions of reality and the nature of being. In computer
science, an ontology is a document defining formally terms and their relations; in
a particular domain it provides a common vocabulary allowing a uniform interpre-
tation of terminology, facilitating communication among working teams, reuse and
sharing of conceptual information.
This paper is structured as follows: section 2 presents the basic aspects of AOSD
modelling, section 3 gives the UML extensions for AOSD. Different profiles for
aaspect-oriented UML are studied, obtaining an AOSD UML core, classified by
development disciplines. Section 4 describes a case study, a movie theater portal to
show the conceptual modelling of the initial architecture based on the modelling el-
ements defined in the UML core for AOSD. Finally section 5 presents the conclusion
and future work.

UML Extensions
Core for AOSD

Ontology for AOSD
i

Other concepts for AOSD
(Stereotypes)

AOSD UML Core:COUCO —» E

Figure 1: AOSD UML Core

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 87

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

2 AOSD MODELLING

The use of UML as a standard implies communication without ambiguity. Never-
theless, if a new modelling element is introduced with a new semantics, UML can
be extended in two ways, metamodels and profiles, to preserve the standard. A
profile expresses the concepts specific to a certain kind of application domain. Its
definition has evolved through the different UML versions [13]. A profile uses the
same notation as a UML package and the keyword <profile>> [14, 13, 7].

When the profile modality is used, extension mechanism, saying stereotype, tagged
value and constraint are used. A stereotype is a class which defines how the exist-
ing or already stereotyped metaclasses should be extended, allowing the use of the
terminology and/or notation of a particular application platform or domain. Some
stereotypes are predefined in UML, others can be defined by the user [13]. A con-
straint imposes conditions on the metamodel elements which have been stereotyped.
Constraints extend the semantics of model elements, allowing the addition of new
rules or the modification of existing ones [14]. They can be specified in natural
language or more formally using OCL (Object Constraint Language) [13]. A tagged
value is an additional meta attribute associated to a metaclass of the metamodel
extended by a profile. Every tagged value is a pair (Tag, Value) that can be used
to assign information to any element or instance of a model. Like the stereotype,
some tags can be predefined in UML, others can be user defined [13, 7].

A metamodel, which is a model of the modelling language, consisting of a set of
basic concepts and rules enabling the construction of conceptual models in a given
domain, defines the domain entities and their relations.

Recently, AOSD modelling elements have been frequently defined using UML stereo-
types. This work focuses on the study of AOSD profiles.

3 UML EXTENSIONS FOR AOSD

The aspect oriented modelling concepts presented in what follows are extracted
from the ontology document of the Common Foundation for AOSD of the European
Community [3] and from the aspect-oriented extensions (profiles with stereotypes)
presented by different authors which are not included in the ontology. [18, 1, 5, 12, 2,
19, 8, 10, 16]. These works were selected from the Bibliography of Aspect-Oriented
Software Development by Filman [6].

In what follows, the entries of the tables show the author’s main reference(s) where
the concept has firstly appeared, the label of the stereotype if any, else only the
name of the element is shown, the base UML metamodel element and finally the
graphic representation.

88 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

3 UML EXTENSIONS FOR AOSD

Table 1: Concern

Author Label Base UML | Represention
metamodel

element
(Brito, et al, | <concern>>| classifier o
2003) (Moreira, ;
et al, 2002) P
(Barra, et al, | <concern>>| classifier
2004) 2]

Table 2: Crosscuting Concern

Author Label Base UML | Represention
metamodel
element
(Brito, et al, | <candidate| classifier o
2003) (Moreira, | aspect>> ¢ - \3
ct al, 2002) i oot

Concern

“A concern is a thing in an engineering process about which it cares. A concern is
an interest, which pertains to the system’s development, its operation or any other
matters that are critical or otherwise important to one or more stakeholders” (see
Table 1).

The component graphical representation of concerns is useful in early aspect devel-
opment to represent the architecture in the component diagram.

Crosscutting Concern

“A crosscutting concern is a concern for which the implementation is scattered
throughout the rest of an implementation. A crosscutting concern is a concern,
which cannot be modularly represented within the selected decomposition. Con-
sequently, the elements of crosscutting concerns are scattered and tangled within
elements of other concerns” (see Table 2).

In many approaches, a new use case is added to the use case diagram for each

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 89

S

UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

posible crosscutting concern, and it is called candidate aspect. It is represented as
the use case labeled with the stereotype <candidate aspect>>.

Aspect

“An aspect is a modular unit designed to implement a concern. An aspect is a unit
for modularizing an otherwise crosscutting concern” (see Table 3).
Notice that the graphic notation of component is required for early aspects devel-

opment.

Table 3: Aspect
Author Label Base UML | Represention
metamodel
element
(Zakaria, et al, | <aspect>> | classifier PN
2002) <>
<<aspect>>
(Aldawud, et al, | <aspect>> | classifier
2003) Aspect
<<aspect>>
(Aldawud, et al, | <aspect>> | classifier
2003) <<aspect>>
(Barra, et al, | <aspect> | classifier
2004) 2]
<<aspect>>
(Sousa, et al, | <aspect>> | classifier
2004)
<Kaspect>>

Composition

“Composition is bringing together separately created software elements” (see Ta-

ble 4).

90

JOURNAL OF OBJECT TECHNOLOGY

VOL 8, NO. 5

3 UML EXTENSIONS FOR AOSD

Table 4: Composition

Author Label Base UML | Represention
metamodel
element
(Bash, M., | <aspect>> | package
Sanchez A o
2003) ’
(Zhang, G. | <aspect>> | package gl
2005) k<pointcut>>
<<advice>>

Table 5: Weaving

Author Label Base UML | Represention

metamodel

element

(Barra, et al, | <weaver> | classifier
2004) 8]
<<weaver>>

At implementation level, in AOP where the term first appears, composition
means the integration of the aspects with the pointcuts found in the base classes of
the system. To handle complexity, a huge system has in general to be divided into
smaller units, to allow work on smaller pieces of information. The UML package
construct offers a general mechanism to organize subsystems into groups of mod-
elling elements. Composition at modelling level, particularly also for early aspects,
encapsulates aspects into their own package, where the whole functionality of the
aspect can be modelled. Packages include classic elements such as class and interac-
tion diagrams; however for aspect-orientation, they can include pointcut and advice
packages.

Weaving

“Weaving is the process of composing core functionality modules with aspects,
thereby yielding a working system” (see Table 5).

Join Point

“A join point is a point of interest in some artifact in the software lifecycle through
which two or more concerns may be composed” (see Table 6).

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 91

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

Table 6: Join Point

Author Label Base UML | Represention
metamodel
element
(Bash, M., | <join classifier o
Sanchez A. | point> <omRe
2003)

Advice

“An advice is the behaviour to execute at a join point. An advice is an aspect
element, which augments or constrains other concerns at join points matched by a
pointcut expression” (see Table 7). From an AOSD point of view, an advice can be

Table 7: Advice

Author Label Base UML | Represention
metamodel
element
(Zhang, G. | <advice> | package il
2005)
<<advice>>
(Kaewkasi, et al, | <advice classifier I
2003) case>> _ D
<<advics caser>
(Steinmacher, <Kadvice> | classifier s
2003)
<<advice>>

seen as a sequence of actions holding similar characteristics to a use-case, with the
difference that it cannot be directly executed by an actor. From the implementation
point of view of AOP, where the term was first used, an advice is an additional
behavior that is added to the execution structure; it helps to define what to do, as
a mechanism similar to a class method; it is used to declare what part of the code
should be executed in a join point, which is captured by the pointcut. There are
three types of advices: before advice (executed previously to the join point), after
advice (executed after the join point) and around advice (deviate, continue or cause
the execution in a modified context).

92 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

3 UML EXTENSIONS FOR AOSD

Pointcut

“A pointcut is a predicate that matches join points. More precisely, a pointcut is a
relationship from JoinPoint — boolean, where the domain of the relationship is all
possible join points” (see Table 8). A pointcut in AOP is designed to identify and

Table 8: PointCut

Author Label Base UML | Represention
metamodel
element
(Kaewkasi, et al, | <pointcut> association
2003) <<pointcut>>
(Zakaria, et al, | <pointcut>>» classifier P
2002) _
(Zhang, et al | <pointcut> package
2005)]
<<pointcut>>
(Steinmacher, < pointcut> classifier
2003) <<pointcut>>
<<advice>>

select a set of join points. Pointcut and advice conform the dynamic crosscutting
rules: weaving of new behavior within the current program execution. From the
AOSD pint of view, it can be seen as an association relation, where the stereotype is
represented by a label indicating when the advice can be executed within a use-case.
They are graphically represented by a package or an ellipse relating the aspect with
the base class.

In what follows concepts that are not present in the ontology cited are presented. We
have considered them here since we focus on the early stages of software development.

CoreClass

A class identified by the system designer as a main unit that encapsulates some
cohesive functionality of a system, as opposed to a crosscutting unit, referred to as
an aspect (see Table 9).

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 93

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

Table 9: CoreClass

Author Label Base UML | Represention
metamodel
element
(Zakaria, et al, | <coreclass>classifier
2002) coreclass
(Steinmacher, < coreclass>classifier
2003) coreclass
<<aspect>>

Match-Point

A match-point is where the crosscutting concern should join the behavior of the
functional concern (a non-crosscutting concern such as a class) it cuts across. This
is an abstraction of the join point concept in Aspect] [5, 12]. No stereotype nor
graphic representation has been defined for this concept.

Relations

The <crosscut>> stereotype is used to model crosscutting relationships, where the
aspect crosscuts the code of functional components, similarly to the join point con-
cept. However, this stereotype is used in a slightly different way in AOSD; it denotes
when a non-functional concern has a crosscutting relation with multiple use-cases
(functional concerns) (see Table 10). There are other aspect-class relationships,
where the candidate aspects affect the concerns: overlapping, overriding and wrap-
ping. Many early aspect approaches consider that in the use-case diagram, crosscut-
ting concerns are added as "included” use-cases called also <candidate aspect>>,
by the classic "include” relation (see Table 11). With respect to the aspect-aspect
relationship, the stereotype < dominates>> specifies which aspect has priority on
the other.

Finally, in Table 12 we select the elements for the AOSD UML core, grouped by
the analysis and design development process disciplines. Notice that the modelling
elements selected are particularly useful in architecture design. In this sense the
component notion representing concerns, aspects and weaving is used in the com-
ponent diagram, as we shall see in the following section.

94 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 CASE STUDY: MODELLING THE INITIAL ARCHITECTURE OF A MOVIE THEATER CHAIN PORTAL

Table 10: Aspect-Class Relations

Author Label Base UML | Represention
metamodel
element
(Aldawud, et al, | <crosscut>>t association
2003)
<<crosscut>>
_—»
(Sousa, et al, | <crosscut>> association
2004) <<crosscut>>
T =
Table 11: Concern-CandidateAspect Relations
Author Label Base UML | Represention
metamodel
element
(Moreira, et al, | <include>>| association
2002) <<include>>
(Brito, et al, | <wrappby3>association
2003) <<wrappby>
(Brito, et al, | <overlapby[sassociation
200 3) <<overlapby>>
(Brito, et al, | <overriby>> association ,
<<overriby>>
2003) —

4 CASE STUDY: MODELLING THE INITIAL ARCHITECTURE OF A
MOVIE THEATER CHAIN PORTAL

The AOSD UML core defined will be used to construct the initial architecture for
the problem studied. The deployment view, the use-case and component models of
the analysis discipline will be developed. The deployment diagram illustrates the
basic architecture for the application domain obtained from the domain knowledge,
which corresponds to the physical view of the architecture. A composition table
[5] will be used to transform the use-case diagram into the component diagram. It
shows the relation among the crosscutting concerns and <candidate aspects>. In
the use-case diagram, the concern stereotype is used to express the functionality
and the candidate aspect stereotype expresses the potential crosscutting concerns
(quality requirements).

The problem: a Movie Theaters Chain asks for a system providing a massive
use of functionality for public access. It should offer mainly integrated on-line tickets

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 95

f—

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

Table 12: AOSD UML Core

Concepts Disciplines
Requirements Analysis Design
T / <<concern>>
Concern <<COoIcern>>
candidate aspect <ccandae aspect>>

(crosscutting concern)

Aspect Aspect

<aspect™>

7]
asp ect <<aspect>> <<aspect>> <<aspect>>
composition E E
g]

<<weaver>>

weaving
<<joiEEoint>>
join point <match point>> L
<<aspect>>| E
advice I‘ —<adicos
@ <<pointcut>>
. <<pointcut>> <<pointcuts>
pointcut —<adicos
coreclass
core class

<<include>>
_—

relations concern -
candidate aspect

<<crosscut>>
— "

relations aspect - class

sales facility. Tickets can be bought, reserved or payed on-line. It should provide
also facilities to promote the different movie theaters on the chain. Main facilities
considered by the system are: on-line ticket bookings, payment, consultation and
cancellation, user registration, transaction statistics.

96 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 CASE STUDY: MODELLING THE INITIAL ARCHITECTURE OF A MOVIE THEATER CHAIN PORTAL

The solution: a portal is proposed, with a commercial browser and internet
facility.

Domain analysis for a Portal application: a Portal is a web application that
uses mainly transactional and portal services. For this kind of application, gen-
eral non functional concerns (quality requirements) are identified. Moreover, main
functional requirements and the architectural style are also known [11]. They are
presented in what follows.

Quality requirements

e Transactional

— Functionality
% security (integrity)
% accuracy

— Reliability
x availability

— Efficiency

* time behavior

* resource utilization
e Portal

— Portability
x adaptability: scalability
— Efficiency

* time behavior

% resource utilization

Functional requirements
The main functionalities of a Portal application are: data exchange, access control
and encrypting, since the portal uses transactions; consult and access are needed.

Initial architecture
A classic 3-tiers client-server style, to guarantee separation between the user-interface
on the browser (Web Client) and the Data Base (Data Base Server); the application
logic tier (Application Server) mediates between the client and server tiers. The
communication is assured by the TCP/IP protocol.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 97

f—

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

In conclusion, from the domain analysis, the information obtained is: functional
requirements, quality requirements and initial architecture.

From the problem statement, the following functional concerns can be identi-
fied: consult of portal web-pages (consult, access), on-line user registration (data
exchange, access control, encrypting), on-line ticket booking (data exchange and ac-
cess control), on-line ticket payment (data exchange, access control and encrypting).
Notice that all the functionality of the application in this particular case correspond
to the functionalities already identified in the domain analysis for this family of Web
applications.

We must now look for the crosscutting (non functional) concerns related (which
crosscuts) with the functional concerns and identify the points where the composi-
tion will take place. We notice that efficiency (response-time), precision and secu-
rity are required by on-line tickets booking and payment; availability is required by
consult of portal. On the other hand, security is also needed for on line user regis-
tration (see Table 13). Notice that all these crosscutting concerns have already been
identified as quality requirements from the information obtained in domain analysis.
To construct the use-case model, we present the use-case diagram using the <include>>
relation stereotype to indicate the crosscut relationship as an included use-case (See
Fig. 2). We follow the early aspect approach of including all the quality require-
ments as candidate aspects, i.e. potential crosscutting concerns|5].

Consult of Portal
<<candidate aspect>>/ \
<<concern>>

<<extend>>

.) Anonymous
User Registration

concern>>

<<include>>

Availability

Member

<<include>>

<=cadidate aspect=

i =
include: <<include>

Response Time
<<include>= <include>>

<<candidate aspect=>>

Ticket Payment Ticket Booking

<=COncern=>:>
<-<COncern=:>

<<include>> <<include==>

<=candidate aspect>=>

Figure 2: Use-case diagram for Movie Theater Chain Portal

Architecture for the Movie Theater Chain Portal
We proceed now to construct an initial architecture for the Movie Theater Chain
Portal application, on the basis of the information provided by the domain analysis

98 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

CASE STUDY: MODELLING THE INITIAL ARCHITECTURE OF A MOVIE THEATER CHAIN PORTAL O#_’

Table 13: Composition points identification

Candidate Aspect Functional Concern .~
Consult of | User Reg- | Ticket Booking | Ticket Payment
Portal istration
Response Time X X
Precision X X
Security X X X
Availability X

and the Use-case diagram.
Initial architectural configuration

It is obtained directly from the initial architecture of the domain analysis (Fig. 3).
The Application Server supports the application logic component which is where the
major development effort has to be made and it is modelled by the use-case diagram
Fig. 2.

Application DataBase
Server TCPIIP Server
Application DataBase
Logic
TCPIIP
Web Client
gl

Browser

Figure 3: Initial architecture for the Movie Theater Chain Portal application: de-
ployment diagram

Architecture refinement

The application logic component is refined assigning a component to each use-
case in the use-case diagram (Fig. 2). Notice that concerns components require
aspects components, according to the UML 2.0 standard notation to express the

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 99

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

component diagram (Fig. 4). From the composition table (see Table 13), we observe
that ”availability” is a candidate aspect that crosscuts only the ”consult of portal”
functionality, hence it is considered a concern component, i.e. it is an "implicit
functionality”. It can be solved by introducing a mechanism such as replication.
The remaining candidate aspects which in the composition table appear to crosscut
the functionalities are expressed as aspect components. Notice that each concern
component that has been introduced must respond to precise quality requirements:
User Registration requires security, Ticket Booking and Ticket Payment require se-
curity, precision and response time.

g
<<concern=> <<concern>>
User Ticket Booking

Registration

N

g
<<concern>> <<:5|’e‘_r>>
Consult of ecurity
roitl <<aspect>>
% %/ Precision
g
<<c‘mcem>>ﬂ <<concern>> <<aspect>>
Availabili Ticket O Response Time
vallabllity Payment

Figure 4: Architecture refinement of the Application Logic component: component
diagram with concerns and aspects

Component Weaving.

In the same configuration, the weaving process is represented using the weaver
component (Fig. 5). We have chosen to represent a weaver for each crosscutting
concern: the Security weaver component, which ”provides” the security service to
User Registration, Ticket Booking and Ticket Payment; the Response Time weaver,
providing the response Time service to Ticket Booking and Ticket Payment, and
finally the Precision weaver, handling the precision service also for Ticket Booking
and Ticket Payment. Notice that another choice could have been to represent only
one weaver component, composed by the three weavers mentioned.

Further refinements.
Since the crosscutting concerns have already been identified, we can proceed to
look in more detail at each concern components, using known architectural design
techniques. The team work can be eased from the fact that a quality requirement
can be handled properly, when dealing with the involved concern component, at

100 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

5 CONCLUSIONS

£ £ £
<<CONCEern>> <<Weaver>> <<concern>>
User & Security ¥ Ticket
Registration Booking
] g .
k];- :;.J_ ; ok
g =] i vers>
<<concern>:> <<agpect>>u 7 Precision
Consult of Security i
Portal ol B — &~
l / o <<aspect>>
] B & Precision
Id. .""-‘
] L
<<concern>> E
Availability RO MIC eI . <<weavers>
Ticket Response
Payment Time
£]
<<aspect>>

Response
Time

Figure 5: Architecture refinement of the Application Logic component:component
diagram with weaving components

a very early stage of develoment. It is clear that we can use all the stereotypes
proposed in the AOSD UML core, for a more detailed aspect-oriented architectural
design during the analysis and design disciplines.

5 CONCLUSIONS

AOSD is a new Software Engineering paradigm, considered now as a suitable al-
ternative to software evolution and to improve the development process of modern
complex systems. This work has studied the concepts of the ontology document
of the Common Foundation for AOSD of the European Community, besides nu-
merous UML extensions for aspect orientation proposed by different authors. From
this study, an AOSD UML core for early aspects (requirements, analysis and de-
sign disciplines), conformed by the modelling elements and their stereotypes has
been proposed. Moreover, each notion is identified, clarified, presented by author,
and associated to a discipline. We are particularly interested in the requirements
and analysis disciplines to identify early the functional and quality requirements for
architectural design, reducing the gap between the requirements, use-case and com-
ponent models. These results contribute in general to the establishment of standards
for a unified AOSD terminology, favoring usability of architectural design techniques.
The case study provided illustrates an application of the core, to define the initial ar-
chitecture for a web application. We have presented a practical and straightforward
approach to build an initial architecture on the basis of domain knowledge, within
an early aspect approach. The decision taken are justified and documented, showing
the practical usage of AOSD techniques to detect potential crosscutting concerns.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 101

G#_/ UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

Our approach has been applied and tailored in different academic projects. Ongo-
ing works are on one hand to enrich the core with dynamic modeling, for example
sequence diagrams, and the usage of the core in an MDE (Model Driven Engineer-
ing) context, for the requirements and analysis disciplines,to define the input and
output models to the transformations. On the other hand, to revise and improve
further the approach to define an initial step that can be included in product-line
aspect-oriented architectural design approaches, considering requirement’s priorities
and trade-offs analysis, including the support of automated tools.

ACKNOWLEDGEMENT

This work has been partially supported by the Consejo de Desarrollo Cientifico y
Humanistico of the Universidad Central de Venezuela

REFERENCES

[1] O Aldawud, T Elrad, and A Bader. A uml profile for aspect oriented software
development. In The Third International Workshop on AO Modeling, 2003.

[2] M Bash and A Sanchez. Incorporating aspects into the uml. In International
Conference on Aspect-Oriented Software Development, 2003.

[3] K Berg, J Conejero, and R Chitchyan. AOSD ontology 1.0 public ontology of
aspect orientation. Common Foundation for AOSD, 2005.

[4] G Booch, J Rumbaugh, and I Jacobson. El Lenguaje Unificado de Modelado.
Addison Wesley Iberoamericana, Madrid, 1999.

[5] T Brito and A Moreira. Towards a composition process for aspect-oriented
requirements. In Farly Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, workshop of the AOSD, Boston, USA, 2003.

(6] R Filman. A bibliography of aosd version 2.0, 2005.

[7] L Fuentes and A Vallecillo. Una introduccién a los perfiles de uml. Nowdtica,
168:6-11, 2004.

[8] C Kaewkasi and W Rivepiboon. Aspect-oriented extension for capturing re-
quirements in use-case model. In CAISE: The 15th Conference on Advanced
Information Systems Engineering, Austria. CEUR. 74, 2003.

9] G Kiczales, J Lamping, A Mendhekar, C Maeda, C Lopes, J Loingtier, and
J Irwin. Aspect-oriented programming. In M. Aksit and S. Matsouka, edi-
tors, ECOOP 1997 Object-Oriented Programming, 11th Furopean Conference,
number 1241, pages 220-242, Berlin, 1997. LNCS, Springer-Verlag.

102 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

5 CONCLUSIONS

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

I. Krechetov, B. Tekinerdogan, and A. Garcia. Towards an integrated aspect-
oriented modeling approach for software architecture design. In DSOA 2006,
2006.

F. Losavio, A. Matteo, and R. Rahamut. Characterization of web services
domain based on quality standards. In Conferencia IADIS, Ibero-americana,
2006.

A Moreira and J Brito. Crosscutting quality attributes for requirements engi-

neering. In 14th International Conference on Software Engineering and Knowl-
edge Engineering SEKE2002, pages 167-174, Italy, 2002. ACM Press.

OMG. Revised submission for MOF 2.0 Query/View/Transformation RFT,
2003.

OMG. UML 2.0 Infrastructure Specification Object Management Group, docu-
ment ptc/03-09-15 edition, 2003.

A Rashid, P Sawyer, A Moreira, and J Araujo. Early aspects: a model for
aspect-oriented requirement engineering. In IEEE Joint Conference on Re-
quirements Engineering, Essen-Germany, 2002.

G Sousa, S Soares, P Borda, and J Castro. Separation of crosscutting concerns
from requirements to design:adapting an use case driven approach. In Early As-
pects: Aspect-Oriented Requirements Engineering and Architecture, volume 1,
pages 1-10, Lancaster, 2004.

S Sutton and P Tarr. Aspect-oriented design needs concern modeling. In 1st
International Conference on Aspect-Oriented Software Development, Enschede,
2002.

A Zakaria, H Hosny, and A Zeid. A uml extension for modeling aspect-oriented
systems. In UML 2002 Workshop on Aspect Oriented Modeling, 2002.

G Zhang. Toward aspect-oriented class diagram. In IEEE Computer Society,
editor, 12th Asia-Pacific Software Engineering Conf. (APSEC’05), volume 00,
pages 763-768, 2005.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 103

S

UML EXTENSIONS FOR ASPECT ORIENTED SOFTWARE DEVELOPMENT

ABOUT THE AUTHORS

flosav@Qcantv.net

Francisca LOSAVIO received the Doctor degree in 1991 and a
3eme. Cycle Doctor Degree in 1985, both in Computer Science and
from the Paris-Sud University, Paris XI, Orsay, France. She also
obtained a MSc. Degree also in Computer Science in 1983 from
the Simon Bolivar University, Venezuela. She is a Titular Professor
at the School of Computer Science, Faculty of Science, Venezuela
Central University, Caracas, where she works at the ISYS (Soft-
ware Engineering and Systems) Research Center, coordinating the
MoST (Models, Software & Technology) Laboratory. She has par-
ticipated in national and European Community research projects.
Her main research axes are software architecture, software quality,
quality standards and software development process.

Alfredo MATTEO received the Doctor degree in Computer Sci-
ence for the Paul Sabatier University, Toulouse, France in 1984. At
present he is Titular Professor at the School of Computer Science,
Faculty of Science, Venezuela Central University, where he has coor-
dinated the TOOLS Laboratory of the ISYS (Software Engineering
and Systems) Research Center, being now part of the research staff
of the MoST (Models, Software & Technology) Laboratory of ISYS.
He is now responsible of the Postgraduated Studies in Computer
Science. His research includes software engineering, requirements
engineering, architectures, methodologies and model driven engi-
neering.

almatteoQcantv.net

o~

pmorantes@cantv.net

Patricia MORANTES received her degree in Informatics Engi-
neer at the Central-West “Lisandro Alvarado” University in 1995.
She is a Doctor Candidate in Computer Science at the Venezuela
Central University, Caracas, Venezuela. At present she is Assis-
tant Professor of the Physics and Mathematics Department at the
National Experimental University “Francisco de Miranda”, Coro,
Venezuela. Additionaly, she works at the MoST (Models, Software
& Technology) Laboratory of the ISYS (Software Engineering and
Systems) Research Center, and her research includes software engi-
neering, requirements engineering, architectures, methodologies and
model driven engineering.

104

JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

mailto:flosav@cantv.net
mailto:almatteo@cantv.net
mailto:pmorantes@cantv.net

