
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 3, May-June 2009

John D. McGregor: “Strategic Software Engineering”, in Journal of Object Technology, vol. 8, no.
3, May-June 2009, pp. 7-15 http://www.jot.fm/issues/issue_2009_05/column1/

Strategic Software Engineering
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Software is a strategic differentiater in many markets so it is not surprising that software
engineering is of strategic importance in many companies. Given the current global
economic climate that importance is magnified. Strategy is long term and broad in
scope within an organization. As such its importance is often lost as it is segmented
across lines of responsibility and areas of specialization. In this issue of Strategic
Software Engineering I will consider some topics that have attracted attention in the last
few months and explore some strategic directions for the future.

1 INTRODUCTION

Imagine my surprise when I realized that I have never devoted a column to the title topic:
strategic software engineering. When this column series started I had something I wanted
to say about software product lines quickly, I did that in the first column and I never
looked back. Given the recent events in the global economy and our profession I think
now is a time when strategy is more important than ever and I want to explore some ideas
in this issue.

I recently had a discussion with a colleague about the meaning of “strategic.” He
believes that strategic decisions are those that affect the market position of the company.
In my view, strategic decisions affect the domain position of the company, where
“domain” refers to a broader ecosystem than just the market. An organization makes
strategic decisions related to suppliers, partners, and competitors in addition to the
market. We both agree that strategic is a long term view relative to the time frames for
other actions.

Porter differentiates between operational effectiveness and strategic thinking. He
says:

“Operational effectiveness (OE) means performing similar activities better than
rivals perform them. Operational effectiveness includes but is not limited to
efficiency. It refers to any number of practices that allow a company to better utilize
its inputs by, for example, reducing defects in products or developing better
products faster. In contrast, strategic positioning means performing different
activities from rivals' or performing similar activities in different ways.” [Porter98]

STRATEGIC SOFTWARE ENGINEERING

2 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

When a company is in a “different” position it either means they have a good idea that no
one else has had yet or their idea is so extreme that others, when they thought of this idea,
rejected it as too risky. In the former case they probably will not be in a unique position
long because others will follow and in the latter case they will probably not want to stay
in that unique place very long.

Typically a company seeks to achieve a unique position that will give them a
competitive advantage. In software development we see many ways to achieve
advantage. Apache servers are successful because they are high quality, free and their
source is available for modification. Eclipse is successful because it is high quality, free,
and its architecture makes it sufficiently flexible for a wide variety of uses. The Cummins
Engine product line and the GM Power Train product line are successful because they use
a product line strategy that facilitates planned reuse of software thereby reducing
expenses and increasing quality and productivity.

A strategy is a broad, long term plan for achieving specific goals. A strategy is
holistic often cutting across functional areas in a business and affecting many aspects of
an organization. Strategy is a way of engaging the entire organization in a coordinated
effort.

“Broad, long term” is relative to the scope of authority of the group making the plan.
There are several software development approaches that are sufficiently comprehensive
to be considered organizationally strategic. Adopting the software product line approach
is a strategic decision that affects many aspects of the organization. Model driven
development (MDD) cuts across a variety of responsibilities but only within the scope of
the development organization.

A key to success is achieving “strategic fit.” This term refers to how well the
organization’s strategy fits its environment and its internal processes. I have clients who
have a great deal of latitude in how they can satisfy their customers. They can adopt
strategies independent of their clients. Others have a co-dependency relationship with
customers that require immediate reporting of every action. Strategic fit will require the
cooperation of the customer. We can’t change the external world so we either choose a
strategy to fit the existing external context or we change to a new external context. For
example, a number of companies have switched from being a product company to being a
service company. Choosing any of the strategies I will discuss in this column will
probably require some degree of change.

I started writing this series of columns because I felt there was not enough long term
thinking in software engineering organizations. I am interested in the reactions of
organizations to the current economic climate. I suspect that some will react by trying
every new idea that promises change, but they will abandon the new idea as soon as they
realize that there is no short term improvement. Others will continue to evaluate their
fundamental business and implement strategies that will provide gains over the long term.
Strategies seldom produce quick results.

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 3

Richard Rumelt, writing about the current business climate, sees this recession as a
structural break from previous patterns of doing business. “A structural break is the very
best time to be a strategist, for at the moment of change old sources of competitive
advantage weaken and new sources appear [Rumelt 08].” So I am writing this column
now because now is the time for strategic thinking. Now is the time when long term
thinking will show us the way through and out of the current instability.

Which patterns will vanish and which will emerge? In the next section I will discuss
impediments to strategic thinking and then in the next three sections I will discuss
architecture-centric development, openness, and software product lines as strategies that
have a very good chance of flourishing. I will discuss how they contribute to the
organization currently and what each of these strategies might contribute in the world
after Rumelt’s strategic break.

2 IMPEDIMENTS TO STRATEGY

A Project mentality

One of the actions that I think is necessary in order to take advantage of the strategic
break is to change the “project mentality” found in many organizations. I am not
advocating doing away with projects as a means of accomplishing a task. Some of my
best friends are project managers. I am advocating doing away with projects as the
primary structuring principle for the organization. Projects by their very nature are not
strategic. Projects are tactics that are used to accomplish a specific task and then they are
terminated.

Project managers are often rewarded, and always evaluated, on how well they manage
to meet schedule within budget for their assigned task. As long as optimization is
performed at the individual project level, long term strategic actions can’t receive the
appropriate attention.

Certain products and tasks have a higher value to the organization than others.
Therefore the projects have, or should have, different priorities. The projects can be
viewed as part of a portfolio, if not a product line, and the relative priorities used to
inform decision making. Individual project managers can be viewed as part of a team
running the portfolio collaboratively [Jones 05]. This perspective is more likely to look
beyond the tactical boundaries and maximize value over a larger scope. Then the team
can take a truly strategic view of their responsibilities.

Never enough time to do it right but always enough time to do it over

I have seen this symptom in many organizations. Arbitrary, unrealistic, and even
impossible deadlines make strategic thinking impossible. Managers are always in a mode
of “how can I fix this problem?”. Eventually everyone begins to assume that deadlines
will be missed. (In a similar manner, researchers have begun to assume that every
conference will extend the due date for papers.)

STRATEGIC SOFTWARE ENGINEERING

4 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

In one of the industry courses I teach we do an exercise where one group pretends to
be managers and the other group architects. Each group discusses among themselves their
expectations of the other group. Almost always, the architects expect the managers to tell
them the deadlines. I recognize the realities of business but as engineers we have to exert
influence to let the work determine the deadline, or at least influence it. One of the breaks
that might occur during this recession is a recognition that continually setting tighter and
tighter deadlines is not a viable strategy.

Strategic planning requires time to formulate an effective plan. If everyone is in crisis
mode all the time then there is not enough time to suggest options, evaluate them, and
choose the best course of action. And if there is not enough time to formulate a plan then
we will always be in crisis mode.

3 ARCHITECTURE-CENTRIC DEVELOPMENT

Every software system has an architecture whether planned or not [Bass 98]. An
architecture-centric software development strategy uses a well-planned architecture as the
roadmap for development. Defining the architecture provides the opportunity to consider
a spectrum of issues and their interactions while it is still early enough to change
directions. There are a couple of things that make this a significantly different approach
from one where a simple cartoon is used to control development.

Architecture-centric development focuses on the non-functional requirements for a
software-intensive product, sometimes referred to as quality attributes. Morgan provides
a table of definitions from the IEEE standard and a comprehensive set of references to
discussions of each attribute [Morgan 09]. The architecture development process provides
for establishing required levels for, and priorities among, the attributes. Attribute-driven
design provides techniques for making architecture design decisions based on the effects
the decision will have on the high priority attributes. I discussed this in the second
Strategic Software Engineering column and will not go into detail again [McGregor 04].

Architecture-centric development provides the opportunity for estimating the values
of those attributes very early in the development cycle. Static properties such as
complexity and dynamic properties such as performance have been explored and
techniques have been developed for evaluating a specific architecture with respect to the
desired attributes [Hissam 01]. Environments such as ArchE [Bachmann 03] and
ArchStudio [ArchStudio 09] have been developed to allow the architect to interactively
explore alternative designs at any point in the definition process.

An innovative architecture can improve an organization’s domain position. Consider
the Eclipse plug-in architecture [Bolour 03]. It is a very flexible architecture that allows
each user to have its own unique set of tools. This architecture made it possible for large
numbers of independent projects to add value quickly and a large number of plug-ins are
now available. Others are able to use the basic Eclipse configuration to jump start new
commercial and research development tools. The architecture has facilitated the spawning

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 5

of other projects, such as Topcased, that have progressed rapidly by standing on the
shoulders of Eclipse.

The architecture-centric strategy cuts across several business and technical practices.
The stakeholders in the architecture represent all facets of the organization and the
architecture definition and evaluation processes provide the opportunity for input from all
perspectives. Conway’s Law states that the architecture of a software product tends to
reflect the structure of the organization that created it [Conway 68]. This separates the
victims, who establish and retain rigid organizational structures and then wonder why
their software is brittle and difficult to change, from the victors, who establish flexible
structures that can respond to needs.

Some of the implications of adopting this strategy are changes in the business and
design cycles of the organization. Managers casually toss around requirements that the
product has to be cheaper, faster, better without considering the practical implications.
Architecture-centric development provides techniques for evaluating the levels of
required qualtities. This supports a shift in when effort is applied in the development
process and what is valued. The effort curve peaks earlier in an architecture-centric
project. By taking the extra effort to define an analyzable architecture the intention is to
save that time and more in the later phases by eliminating the rework required to address
fundamental defects identified late in the project.

In the “new world order”, as a result of this strategic break, even organizations that
don’t establish an in-house architecture definition capability will be increasingly
architecture-centric. The exploding universe of standards and frameworks are made
possible by architecture techniques. Reference architectures are being developed that are
the basis for many of the frameworks. As reference architectures become more mature
and standardized they become the basis for a solid infrastructure.

I have seen the increasing interest in architecture and the positive results from those
organizations that adopt the approach. The body of evidence that shows the value in early
detection of defects and ineffective designs is growing and even managers are paying
attention to it. Achieving strategic fit requires the cooperation of all stakeholders.

4 OPENNESS

Open source is primarily a business strategy. You cannot look at a piece of code and
know whether it comes from an open source or proprietary project. The current economic
upheaval will be a true test of whether an open source strategy is viable. Does open
source really improve a company’s domain position? Can a company really make money
from this strategy?

Openness encompasses a variety of issues that I have described previously
[McGregor 07]. Using software created in an open source project in one of your
development projects is hardly a strategic decision, although it can be an important
decision. Engaging with any vendor establishes a dependency that can be beneficial but
requires constant maintenance. Adopting an open source package gives the organization

STRATEGIC SOFTWARE ENGINEERING

6 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

the option to continue to maintain and evolve the package even if the open source project
itself ceases to function but this is seldom useful. Few companies modify the open source
software itself in a substantial way by themselves, they either use it as produced by the
project or build simple extensions or start a new open source project. Debugging and
repairing someone else’s code is difficult and expensive. However, in this economic
climate having the source code is a guarantee that an organization could maintain a
product whereas buying from a commercial organization offers no such guarantee.

Creating or participating in an existing open source effort is a strategic decision that
commits resources to achieve specific objectives. An organization often wants to
influence the direction of major projects in which they participate and their ability to do
so is directly related to the governance structure of the open source organization.
Adopting this strategy requires participation by the organization’s staff in both the
technical and business aspects of the project. Most governance structures reward good
ideas, well-written software, and consistent commitment.

Organizations such as Eclipse and Linux produce much more than goodwill for their
initiators. In the case of Eclipse, IBM has access to much software that would not be in
the public domain if IBM had not initiated the Eclipse Foundation. The multiplier effect
of shared good ideas and good code has paid huge benefits. Many other companies have
benefited as well.

The open source strategy improves even the small company’s domain position. A
single person shop can get recognition just as IBM can by having creative, productive
people participate in a project. Again, the key is a long term commitment to a course of
action and a willingness to invest now to reap rewards later.

In the “new world order” open source projects will continue to be important sources
of products.

• Business models will continue to change. More “inner source” type projects
where, within a large organization, business units will make their components
available to other business units in the same organization. Companies like Philips
have put this approach to good use.

• Open source projects will have increasing difficulty handling the volume of users.
As open source becomes more successful the tradition of mailing lists and feature
requests will become a larger burden on the development staff. I have already
seen the increasing traffic on the TopCased.org list.

5 SOFTWARE PRODUCT LINES

Strategies are long term plans that can seldom be realized by a single development
project. A software product line provides a natural context for implementing a business
strategy that can only be played out across multiple products or over time. I have had
much to say about product lines in recent issues so I will keep this brief.

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 7

Adopting the software product line approach is a strategic decision comparable to
SouthWest Airlines’ method of operation. SouthWest decided it could achieve a strategic
advantage among passengers interested in low-cost, convenient travel as opposed to
offering a variety of classes of service. The software product line strategy is appropriate
in a domain in which there is a market for a focused set of products that are related yet
different, not a domain where there is a wide assortment of requirements.

The 29 product line practices in the Software Engineering Institute’s Framework for
Product Line Practice provide a vast array of critical actions that potentially can be
included in a product development process. The strategic break with past action comes in
doing a sufficiently detailed method engineering to select effective actions in each of the
practice areas that will differentiate from competitors. Strategic fit is achieved only when
all of these practices are aligned with each other and the external environment, including
the competition, suppliers, and buyers.

A software product line is not always the correct strategy for a company in a given
situation. The main reason we developed the SIMPLE economic modeling technique was
to help organizations explore the appropriateness of various configurations of the
strategy[Böckle 04] from an ROI perspective. But, the main justification for a particular
strategy is not always financial. The strategy may be a natural fit if the development
environment fits a domain in which open standards are a major influence. These
standards result in reference architectures, development frameworks, and libraries.

If the strategic break leads organizations back to basics, expect software product line
strategies to be an important element. Reuse has been a goal of most organizations for
many years. The converging ideas of reuse and architecture will result in building truly
reusable components. They will be truly reusable because they will be purpose built to fit
specific locations in the reference architecture.

6 SUMMARY

Strategic decisions position an organization along specific business dimensions. These
decisions affect the organization over a longer term than a single product cycle. As such
the decisions cut across multiple product development projects and are longer lived than a
single development project. Strategic decisions commit the resources of the organization
in expectation of benefits later in the business cycle.

I haven’t talked about agile development, cloud computing, or other hot button issues.
These topics will all continue to play important roles, but they are technologies and
methods not strategies. Software product lines, openness, and architecture-centric
development are strategic initiatives that have broad and long term implications for the
organization. Think broad, think long term, think about where you want yourself and
your organization to be in 3 to 5 product generations. What actions will get you there?
How will you know when you have arrived?

STRATEGIC SOFTWARE ENGINEERING

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

7 ACKNOWLEDGEMENTS

I want to thank John Hunt of Covenant College and Gary Chastek of the SEI for their
insightful comments and helpful suggestions that greatly improved this article.

REFERENCES

[ArchStudio 09] ArchStudio, http://www.isr.uci.edu/projects/archstudio/, 2009.

[Bachman 03] Felix Bachmann and Len Bass and Mark Klein. Preliminary Design of
ArchE: A Software Architecture Design Assistant", Software Engineering
Institute, 2003.

[Bass 98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Addison-Wesley, 1998.

[Böckle 04] Guenter Böckle, Paul Clements, John D. McGregor, Dirk Muthig and Klaus
Schmid, “Computing Return on Investment for Software Product Lines”,
IEEE Software, July/August 2004.

[Bolour 03] Azad Bolour. Notes on the Eclipse Plug-in Architecture,
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html.

[Clements 05] Paul Clements, John D. McGregor, and Sholom G. Cohen. The Structured
Intuitive Model for Product Line Economics (SIMPLE), Software
Engineering Institute, CMU/SEI-2005-TR-003.

[Conway 68] Mel Conway. How Do Committees Invent?, Datamation, 1968.

[Hissam 01] Scott A. Hissam, Gabriel A. Moreno, Judith Stafford, and Kurt C. Wallnau.
Packaging Predictable Assembly with Prediction-Enabled Component
Technology, CMU/SEI-2001-TR-024, 2001.

[Jones 05] Larry Jones, Linda Northrop, Paul Clements, and John D. McGregor. Project
Management in a Software Product Line Organization, IEEE Software, Sept.
- Oct 2005.

[McGregor 08] John D. McGregor. Mix and Match, Vol. 7, No. 6, July-August 2008.

[McGregor 07] John D. McGregor "Openness", in Journal of Object Technology, vol. 6,
no. 6, July - August 2007, pp. 7-14
http://www.jot.fm/issues/issue_2007_05/column1/.

[McGregor 04] John D. McGregor: “Software Architecture”, in Journal of Object
Technology, vol. 3, no. 5, May-June 2004, pp. 65-77,
http://www.jot.fm/issues/issue_2004_05/column7/.

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

[Morgan 09] Gabriel Morgan. Implementing System-Quality Attributes
http://msdn.microsoft.com/en-us/library/bb402962.aspx, 2009.

[Porter 98] Michael E. Porter. Competitive Strategy, Free Press, 1998.

[Rumelt 08] Richard P. Rumelt. Strategy in a ‘structural break’, McKinsey Quarterly,
December 2008.

[SEI 08] Software Engineering Institute, www.sei.cmu.edu/productlines, 2008.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a visiting scientist at the Software Engineering Institute, and a partner in
Luminary Software, a software engineering consulting firm. His research interests
include software product lines and component-base software engineering. His latest book
is A Practical Guide to Testing Object-Oriented Software (Addison-Wesley 2001).
Contact him at johnmc@lumsoft.com.

