
Vol. 8, No. 3, May–June 2009

Guidelines for Enabling the Extraction of As-
pects from Existing Object-Oriented Code

Marcelo Nassau Malta, Samuel de Oliveira, Marco Tulio Valente
Institute of Informatics PUC Minas, Brazil

When extracting crosscutting concerns from object-oriented systems to aspects, it
is often needed to transform the code in order to enable the application of aspects.
Although not extensively documented in the literature, object-oriented transformations
are critical to turn legacy systems ready to aspect-oriented refactoring. For this reason,
in this paper, we provide a set of guidelines for maintainers and developers interested
in preparing object-oriented systems to the aspect technology. Moreover, we present a
tool that can help developers to identify the need of object-oriented transformations.
We also evaluate the proposed guidelines and supporting tool through two case studies.

1 INTRODUCTION

Aspects represent nowadays the principal technology for the modularization of cross-
cutting concerns, i.e. concerns that are poorly encapsulated using traditional mod-
ularization abstractions, such as procedures and classes. The success of the technol-
ogy has triggered research in most areas of software engineering, from requirements
to tests. Particularly, several works about aspect-oriented refactoring have been
conducted, with the purpose to describe how tangled and scattered object-oriented
implementations can be moved to equivalent aspects [16, 3, 11, 7].

However, one of the principal obstacles for applying aspect-oriented refactoring
techniques is the fact that aspect languages – such as AspectJ [10] – only allow as-
pects to advise well-defined points in the execution of object-oriented systems, called
join points. For example, the dynamic crosscutting model of AspectJ provides sup-
port to the following types of join points: method calls and execution, fields read and
setting, exception handler execution, and class and object initialization. However,
regarding existing systems, it is not conceivable to assume that crosscutting concerns
are always implemented in pre-defined locations of the object-oriented code. Thus,
after the identification of crosscutting concerns and before starting their extraction
to aspects, developers usually need to transform the base code in order to enable
the application of aspect-oriented refactorings. These transformations are usually
called object-oriented transformations (or just transformations, in the context of
this paper) [1, 2, 13].

Despite their importance in the aspectization of object-oriented systems, most
works about aspect-oriented refactoring mention the need of object-oriented trans-
formations in a concise way. For this reason, in previous work, we have described

Cite this document as follows: Susanne Cech: Guidelines for Enabling the Extraction of Aspects
from Existing Object-Oriented Code, in Journal of Object Technology, vol. 8, no. 3, May–
June 2009, pages 101–119,
http://www.jot.fm/issues/issues 2009 3/article3

http://www.jot.fm/issues/issues_2009_3/article3

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

a catalogue of transformations that can be applied to object-oriented systems, af-
ter the identification of crosscutting concerns and before the encapsulation of such
concerns in aspects [13]. In this paper, we complement our previous research by
providing guidelines to assist developers in the application of the proposed cata-
logue. Our main motivation was the observation that – as proposed – our catalogue
was just a “static” description of code transformations commonly used to prepare
object-oriented systems in order to extract aspects. However, after an in-depth
investigation about the concrete application of these transformations in real-world
systems, we have observed that there are general principals and rules behind the
application of the documented transformations. Following such principles is funda-
mental to assure that (i) the correct transformations are always applied, (ii) that
transformations are not applied unnecessarily and (iii) that transformations con-
tribute to key attributes of the extracted aspects (such as quantification). For this
reason, in this paper we provide detailed information to guide developers when
preparing legacy code to aspectization. Moreover, we present an Eclipse plugin that
can help developers in the application of such guidelines. We also evaluate the pro-
posed guidelines and the supporting tool through two small-to-medium sized case
studies.

The focus of the paper is on dynamic crosscutting concerns, i.e. crosscutting
concerns that can be modularized by means of advices [10]. More specifically,
we are interested in transformations that have to be applied to existing, object-
oriented code in order to enable the extraction of crosscutting concerns to advices.
Such object-oriented transformations can be classified as statement reordering and
method extraction transformations [13]. Statement reordering transformations pre-
scribe the movement of statements with a crosscutting behavior to before or after
statements of the base code whose execution can be intercepted by the pointcut lan-
guage of AspectJ. On the other hand, method extractions are recommended when
the crosscutting code is not before or after a join point, neither can be moved to a
join point. In this case, the goal of method extraction is to transform part of the
non-crosscutting code that succeeds or precedes the code classified as crosscutting
into a method. In this way, the transformation creates a join point shadow whose
join points can be intercepted by AspectJ’s pointcut language.

The remainder of the paper is organized as follows. Section 2 describes basic
guidelines for developers interested in the application of OO transformations. The
section presents strategies to decide whether OO transformations are demanded and
how to select the most adequated transformations. The next two sections describe
more complex transformation strategies, that can improve the join points enabled
with the basic transformations. Particularly, Section 3 describes the notion of ad hoc
transformations, that can be used to enable the preconditions required by traditional
OO transformations. Section 4 presents guidelines to optimize the aspectization
of homogeneous concerns. In Section 5, we describe an Eclipse plugin that helps
developers to decide in which parts of the base code OO transformations are required.
Section 6 describes two case studies about the application of the proposed guidelines
and tool. Section 7 presents related work and Section 8 concludes.

102 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

2 BASIC GUIDELINES

2 BASIC GUIDELINES

This section describes guidelines for the application of object-oriented transforma-
tions used to enable the extraction of pieces of advice from object-oriented systems.
The assumption is that developers have already identified the concerns presenting
a crosscutting behavior, possibly with the support of an aspect mining tool [9, 14].
We start presenting an algorithm that can be used to decide whether OO trans-
formation are needed. Next, we present guidelines to select the most adequated
transformations.

Deciding whether OO transformations are needed

In order to decide whether OO transformations are required, developers should
regard on the following decision algorithm:

1. The initial step is to build a map, called crosscutting map, indicating the loca-
tions of the base code containing the implementation of crosscutting concerns.
Moreover, we assume that crosscutting corresponds to single method calls.
Since transformations are always associated to dynamic crosscutting concerns,
this assumption does not impose any limitation to the expressiveness of the
proposed guidelines. For example, concerns associated to other statements
(assignments, loops etc) or concerns associated to multiple statements must
be first extracted to a method, using the Extract Method refactoring [6].

2. For each mapped entry, developers must check whether it appears in the be-
ginning or in the end of the lexical scope of the following elements: a body of
a method, constructor, or exception handler. Developers must also evaluate
whether the entry appears before or after one of the following elements: a field
read, a field write or a method call. If the crosscutting code does not match
any of the mentioned conditions, then a transformation is required.

Transforming the base code

Suppose that after executing the previous decision algorithm, developers have figured
out that they need to apply an OO transformation. In such cases, they should regard
on the following guidelines to decide which transformation to apply.

1. First, developers must try to apply a statement reordering transformation.
The most difficult question regarding the application of such transformations
is to evaluate their preconditions. In order to help developers in this step,
Figure 1 presents the preconditions and the possible code transformations
prescribed by statement reordering transformations1.

1A detailed and formal presentation of these transformations is available in [13].

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

Supposing that cc are crosscutting statements and mtd is a method declarator

(S1) Move code to the beginning of a method body
mtd {st cc︸ ︷︷ ︸

chg

st′} ⇒ mtd {cc st st′}

(S2) Move code to the end of a method body
mtd {st′ cc st︸ ︷︷ ︸

chg

} ⇒ mtd {st′ st cc }

(S3) Move code to the statement before a return
mtd {st1 cc st2︸ ︷︷ ︸

chg

return st3} ⇒ mtd {st1 st2 cc return st3}

(S4) Move code to the statement before a method call
mtd {st1 cc st2︸ ︷︷ ︸

chg

m() st3} ⇒ mtd {st1 st2 cc m() st3}

(S5) Move code to the statement after a method call
mtd {st1 m() st2 cc︸ ︷︷ ︸

chg

st3} ⇒ mtd {st1 m() cc st2 st3}

(S6) Move code to the beginning of a catch block
catch(e) {st cc︸ ︷︷ ︸

chg

st′} ⇒ catch(e) {cc st st′}

(S7) Move code to the end of a catch block
catch(e) {st′ cc st︸ ︷︷ ︸

chg

} ⇒ catch(e) {st′ st cc }

(S8) Move code to the statement before a field read or write
mtd {st1 cc st2︸ ︷︷ ︸

chg

set/get st3} ⇒ mtd {st1 st2 cc set/get st3}

(S9) Move code to the statement after a field read or write
mtd {st1 set/get st2 cc︸ ︷︷ ︸

chg

st3} ⇒ mtd {st1 set/get cc st2 st3}

The rules are subject to the following side conditions:

S3: There is no other return statement in mtd

S4-S5: There is no other call to m in mtd

S8-S9: If moving to a set, there is no other set to the same field in mtd. If moving to a get,
there is no other get to the same field in mtd

Figure 1: Statement reordering transformations

In this figure, the rules that describe the transformations have the following
general form:

. . . st1 st2︸ ︷︷ ︸
chg

. . . ⇒ . . . st2 st1 . . .

The left side of this rule specifies that it must be possible to change the order

104 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 AD HOC TRANSFORMATIONS

of statements st1 and st2. If this precondition is satisfied, the right side of the
rule describes the structure of the code after the transformation. Moreover, the
following function must be used to decide if two statements can be reordered:

chg(st1, st2) ≡ def(st1) ∩ ref(st2) = ∅ ∧ ref(st1) ∩ def(st2) = ∅ ∧
def(st1) ∩ def(st2) = ∅ ∧ !exit(st2)

According to this function, the order of st1 and st2 can be changed when: st1
does not define any variable that is referenced by st2; st1 does not reference
any variable defined by st2; both st1 and st2 do not define any variable
in common; and st2 does not affect the execution of the program in a way
that precludes the execution of st1 (for example, throwing an exception or
executing a return).

2. In case statement reordering cannot be applied, developers must evaluate the
application of method extraction transformations. Figure 2 presents the pre-
conditions and the possible code transformations prescribed by method ex-
tractions [13]. In this figure, the rules have the following form:

. . . st1 st2 . . . stn︸ ︷︷ ︸
m

. . . ⇒ . . . m(p) . . .

First, this rule requires the extraction of statements st1 st2 . . . stn to a
method named m, which is then called in the right side.

3 AD HOC TRANSFORMATIONS

Before developers conclude they cannot apply a statement reordering transformation
because its preconditions are not satisfied, they can attempt an ad hoc transforma-
tion. More specifically, the purpose of ad hoc transformations is to restructure the
base code in order to enable the application of another transformation [2]. Since ad
hoc transformations prescribe changes that are very specific to a given concern and
code base, it is very difficult to formalize their mechanisms. However, they usually
rely on temporary variables or in extra statement reordering to preserve the state
of the system or to reestablish its normal execution flow. In order to illustrate the
application of an ad hoc transformation, suppose the following fragment of code:

Display.save(dirty); // aspect (requires dirty==true)
dirty= false;
draw(); // join point

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 105

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

Supposing cc are crosscutting statements; mtd is a method declarator; m or m’ is
the name of the extracted method; v is a local variable.

(M1) Extract method with code that precedes a crosscutting concern
st1 st︸︷︷︸

m

cc st2 ⇒ st1 m(p) cc st2

(M2) Extract method with code that succeeds a crosscutting concern
st1 cc st︸︷︷︸

m

st2 ⇒ st1 cc m(p) st2

(M3) Extract method with code that precedes and succeeds a crosscutting concern
st1 st︸︷︷︸

m

cc st′︸︷︷︸
m

st2 ⇒ st1 cc m(p) st2

(M4) Extract method including a try-catch-finally block
st1 try{st′} catch{cc1} finally{cc2}︸ ︷︷ ︸

m

st2 ⇒ st1 m(p) st2

(M5) Extract method when withincode can not determine a join point
mtd {st1 m(p)︸︷︷︸

m′

cc st2} ⇒ mtd {st1 m′(p′) cc st2}

The rules are subject to the following side conditions:

M5: There is another call to m in st1 or in st2.

Figure 2: Method extraction transformations

Suppose we want to apply transformation S4 to move the save call to just
before the draw call. However, supposing that save reads the dirty variable, the
application of S4 would not be possible (as prescribed by its precondition). Thus, an
ad hoc solution to bypass this restriction is to make the dirty assignment succeed
the call to the draw method:

Display.save(dirty); // aspect
draw(); // join point
dirty= false;

In summary, ad hoc transformations depend on developers ability to preserve
the original semantics of the program, while enabling the preconditions required by
the target transformation.

4 HOMOGENEOUS CONCERNS

When implemented using object-oriented languages, homogeneous crosscutting con-
cerns require the presence of the same block of code in several parts of the system [4].
Probably, homogeneous concerns are the most adequated type of concern for mod-
ularization using aspects. The reason is that their code can be encapsulated in a

106 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

4 HOMOGENEOUS CONCERNS

single advice. On the other hand, in order to simplify their implementation using
aspects, homogeneous concerns should appear consistently in the source code (e.g.
always before/after calling the same method, always at the beginning/end of catch
blocks etc). When this level of consistency is achieved, it is more simple to specify a
single pointcut expression and a single type of advice (i.e. before, after or around)
to implement the concern.

In this section we first propose an equivalence relation to classify a concern as
homogeneous. Next, using the defined relation, we extend the basic guidelines,
described in Section 2, to handle the aspectization of homogeneous concerns.

Definition: We will assume that the scattered calls to be classified as homoge-
neous or heterogeneous correspond to single-argument method calls. However, a
straightforward extension to the following definition can be derived to methods with
multiple arguments.

Suppose the following calls to a given method m: t1.m(arg1) and t2.m(arg2),
where ti denotes the target and argi denotes the argument of the calls (i = 1 or
i = 2). These calls are homogeneous when both of the following conditions holds:

• t1 and t2 denote the same class (or classes having a common superclass) or
fields having the same type (or that are derived from a common type).

• arg1 and arg2 are the same constant value or fields having the same type (or
that are derived from a common type).

Example: Suppose the calls to start and log in the following classes:

class A { class B {
Transaction tx; Transaction tx;
void foo(){ void bar(){
tx.start(1); tx.start(1);
....
Logger.log("finished"); Logger.log("panic");
....

} }
} }

The start calls are homogeneous because: (i) their target represent fields that
have the same type (Transaction); (ii) their arguments are the same integer con-
stant. On the other hand, the log calls are not homogeneous, because although
they rely on a static method of the same class (Logger), their arguments are dis-
tinct strings.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 107

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

Equivalence Relation: In the following equations, we rely on the notation ti.m(argi) ≡
tj.m(argj) to denote calls that are homogeneous according to the previous defini-
tion. More specifically, ≡ represents an equivalence relation (i.e. a relation that is
reflexive, symmetric, and transitive). The equivalence classes of a method call in
the form t.m(arg), denoted by [t.m(arg)]≡, is defined as:

[t.m(arg)]≡ = { t′.m(arg′) ∈M | t′.m(arg′) ≡ t.m(arg) }

In this definition, M is the set of all scattered calls to m in an object-oriented
system. Based on this definition, M is a considered a fully homogeneous concern
when:

∀ t.m(arg) ∈M, [t.m(arg)]≡ = M

In other words, a concern is fully homogeneous when any possible pair of calls
implementing this concern are homogeneous, according to the relation ≡. On the
other hand, M is a considered a fully heterogeneous concern when:

∀ t.m(arg) ∈M, [t.m(arg)]≡ = { t.m(arg) }

In other words, a concern is fully heterogeneous when the equivalence class of a
given scattered call contains only itself.

Guidelines: In order to optimize the aspectization of homogeneous concerns, the
following rules complement the basic guidelines described in Section 2:

1. Suppose the crosscutting map described in Section 2. After building this map,
developers must partition the mapped calls in equivalence classes, according
to the ≡ relation.

2. The same OO transformation must be applied to the members of a given
equivalence class. To achieve this goal, developers must also consider the use
of ad hoc transformations. Assuming this guideline is followed, the number
of equivalence classes generated in the previous step indicates the number of
advices needed to encapsulate the implementation of the mapped concern.

The rationale for such guidelines is straightforward. As defined, homogeneous
crosscutting concerns can be modularized by a single advice; but this is facilitated
if the concern is implemented in a consistent way in the code base. Moreover, the
guidelines establish a one-to-one relation between the proposed equivalence classes
and the advices used to implement homogeneous concerns.

108 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

5 TRANSFORMATIONMAPPER

5 TRANSFORMATIONMAPPER

In this section we describe a prototype tool, called TransformationMapper, that
provides partial support to the guidelines proposed in the previous sections. The
TransformationMapper is an extension of the ConcernMapper Eclipse-based plugin,
proposed by Robillard et al. to logically reorganize the code of a software system
in terms of high-level abstractions called concerns [19]. More specifically, the sys-
tem provides alternative views about the modularity of a software system, without
requiring developers to change its source code (as happen with aspects). This char-
acteristic of the plugin matches our initial guideline to build a logical map that
can guide the application of OO transformations. Moreover, the ConcernMapper
was designed as a platform for experimenting with advanced separation of concerns
mechanisms, which makes more simple the derivation of extensions from its core
implementation.

In order to start using the plugin developers should first create a crosscutting
map, which in our extension corresponds to the concept of concern in the origi-
nal ConcernMapper implementation. Next, developers should drag-and-drop to the
crosscutting map the methods that have been previously classified as having a cross-
cutting behavior. The TransformationMapper then performs two key operations:

• First, the tool automatically locates calls to the selected method in the source
code, using the search engine provided by the Eclipse platform. It also au-
tomatically inserts each located call in the crosscutting map. Therefore, this
feature of the plugin supports the first step of the guidelines for deciding
whether OO transformations are needed described in Section 2.

• Second, for each call inserted in the crosscutting map, the tool informs whether
its aspectization demands an OO transformation2. Therefore, this feature of
the plugin supports the second step of the guidelines presented in Section 2.

Figure 3 illustrates the mentioned operations. This figure shows a crosscutting
map describing the logging concern of a given system. More specifically, this con-
cern is implemented by two different methods: debug(Object, Throwable) and
debug(Object). Calls to the second method are presented in many classes of the
base system, such as in EventDispatcherImpl. Particularly, there are five calls in
the constructor of this class (in lines 53, 63, 64, 65 and 78). The calls performed in
lines 53 and 78 can be directly extracted to advices, i.e. these calls are located in
static locations of the base program that can be instrumented by AspectJ’s pointcut
language. On the other hand, the calls performed in lines 63, 64 and 65 demand the
application of OO transformations in order to enable their aspectization.

2The only exception in this case is Transformation M4. Since this transformation prescribes
the extraction of a method containing the implementation of crosscutting concerns related to
exception handling, its application is handled by our initial assumption that crosscutting code
always correspond to method calls. Thus, in this particular case, the TransformationMapper just
detects that the required transformation was applied when building the crosscutting map.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 109

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

Figure 3: TransformationMapper

The TransformationMapper also automates the construction of the equivalence
classes for the entries of a given crosscutting map, according to the ≡ relation de-
fined in Section 4. As described, this is fundamental to optimize the aspectization of
homogeneous concerns. The tool also provides general statistics about the crosscut-
ting map (such as total number of entries, total number of transformations required,
total number of homogeneity classes generated etc).

It is worth to mention that the TransformationMapper is a supporting tool, in
the sense that it does not have the purpose to completely automate the application
of OO transformations. In fact, fully automating the proposed transformations is
a challenging task [2, 13]. Particularly, the system does not select and apply the
transformations (according to the guidelines of Section 2). This would require for
example the verification of the preconditions of statement reordering transforma-
tions. However, this verification demands the availability of system-wide depen-
dency information, including dependencies originated from external sources such
as SGBDs, remote objects etc. Usually, such dependencies are not considered by
tools in charge of building dependency graphs or slicers for Java programs [8, 5].
In addition to that, the TransformationMapper does not provide support to ad hoc
transformations, since it is very complex to provide even a step-by-step description
of the possible operations required by such transformations.

Implementation Details: The implementation of the system reuses components
provided by the ConcernMapper to build and organize logical views of a software
system. The system also relies on two key components of the Eclipse platform. The
Search Engine is used to locate the presence of crosscutting calls in the codebase.
Such calls are then automatically inserted in the tree that represents the crosscutting
map. The Abstract Syntax Tree (AST) exported by the Eclipse platform is used
to decide whether OO transformations are required. By transversing the AST, it
is possible to verify if a mapped crosscutting call is located in a static location of

110 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

6 EVALUATION

the base program that can be instrumented by the dynamic crosscutting model of
AspectJ.

6 EVALUATION

In this section, we describe our experience in applying the proposed guidelines in
the preparation of the following systems to aspectization:

• JSpider3, a 9019 LOC Web robot engine that supports downloading and vali-
dation of web pages. In JSpider, we decided to apply the proposed guidelines
to enable the aspectization of the system’s logging concern. In the original,
object-oriented implementation of the system, this is clearly a crosscutting
concern, requiring developers to call methods from the logging API in several
parts of the system.

• JAccounting4, a 6526 LOC business accounting system, which automates in-
voicing, bills and accounts handling. JAccounting relies on the Hibernate
framework for persistence and transaction control. Particularly, transactions
are implemented by calling transaction services, such as commit and rollback,
in many locations of the OO code.

The investigated systems are small-to-medium OO systems, publicly available for
downloading from open source code repositories. More important, they have been
previously used by Binkley et al. to validate an aspect-oriented refactoring tool [1, 2].
This fact provide us a baseline for comparison, i.e. we can compare transformations
that follow the guidelines proposed in this paper – and that have been applied with
the support of the TransformationMapper tool – with transformations independently
performed by Binkley and colleagues without tool support.

JSpider

First, using the TransformationMapper, we have constructed a crosscutting map
pointing to the locations of the base code implementing logging concerns. For this
purpose, we informed that the log(Object) is the method responsible for logging in
the system. The TransformationMapper has then located 245 calls of this method
in the codebase. Next, these calls have been inserted to the crosscutting map.
From these 245 entries, the system has then indicated that 22 entries require the
application of OO transformations (i.e. 9% of the entries).

We have also relied on the TransformationMapper to construct the equivalence
classes used to distinguish between homogenous and heterogeneous concerns. The

3http://j-spider.sourceforge.net.
4https://jaccounting.dev.java.net.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 111

http://j-spider.sourceforge.net.
https://jaccounting.dev.java.net.

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

system has identified that the mapped calls can be divided in 229 equivalence classes,
according to the ≡ relation. From these 229 classes, 219 have just one method call,
six classes have just two method calls, three classes have three method calls and
one class has five method calls. Therefore, the mapped calls have an inherently
heterogeneous behavior (i.e. more than 95% of the calls are equivalent to just
themselves). This is an interesting result because earlier studies about the benefits
of AOP often mention logging as a homogeneous concern [4]. However, in JSpider
it is common to have very specific log messages in each point of the code, in order
to reflect the exact behavior of this part of the system. According to the definition
of homogeneity from Section 4, these particular messages turn the log calls distinct
from each other and thus the concern should be considered heterogeneous.

Table 1 compares and correlates the transformations applied in the aspectization
performed by Binkley et al. with the transformations indicated by the Transforma-
tionMapper. Binkley et al. have performed a total of 36 transformations in the
code; on the other hand, as we have mentioned, the TransformationMapper has
recommended a total of 22 transformations. However, as we can see in the third
column of this table, many transformations performed by Binkley and colleagues
were not really necessary (and for this reason have not been indicated by the Trans-
formationMapper). Indeed, in order to enable the aspectization of the logging code
in JSpider, 24 transformations are effectively needed. Thus, Binkley et al. have
performed 12 transformations without necessity. On the other hand, from the 24
mandatory transformations, the TransformationMapper has not detected the need
of only two ad hoc transformations.

Binkley TM Mandatory

Transformation S1 3 2 2
Transformation M1 6 2 2
Transformation M2 16 10 10
Transformation M3 3 2 2
Transformation M4 5 5 5
Transformation M5 1 1 1
Ad hoc 2 0 2
Total 36 22 24

Table 1: Transformations performed by Binkley et al., transformations suggested by
the TransformationMapper (TM), and transformations effectively required, regard-
ing the aspectization of JSpider’s logging concern.

JAccounting

In order to evaluate the need of OO transformations in the aspectization of trans-
actions in the JAccounting system, we have included three method calls in the
crosscutting map: beginTransaction, commit, and rollback. Next, we requested

112 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

6 EVALUATION

the calculation of the equivalence classes used to characterize homogenous concerns.
The result was that such methods represent fully homogeneous concerns. More
specifically, all the calls to beginTransaction have been included in a single equiv-
alence class. The same happens to the commit and rollback calls.

When handling homogeneous concerns, the proposed guidelines recommend that
homogenous calls should happen at equivalent locations of the base code. This guide-
line has been followed in the refactorization performed by Binkley et al. Particularly,
they have decided to move the beginTransaction calls to just after the join points
where database sessions are opened, as illustrated by the following example:

Session sess= getSessionFactory().openSession();
Transaction tx= sess.beginTransaction(); // aspect

For this purpose, they have applied 14 transformations S5 (move code to the
statement after a method call; in this case, openSession).

Moreover, they have decided to move the commit calls to just before the join
points where database sessions are closed, as illustrated by in the following example:

1: catch (Exception e) {
2: tx.rollback(); // aspect
3: tx= null; // ad hoc transformation
4: throw e;
5: }
6: finally {
7: if (tx != null) // ad hoc transformation
8: tx.commit(); // aspect
9: sess.close();

10: }

For this purpose, they have applied 15 transformations S4 (move code to the
statement before a method call; in this case, sess.close() in line 9). Moreover,
in order to enable the application of this transformation, 30 ad hoc transformations
have been applied: 15 transformations to check if tx is null before calling commit

(line 7), and 15 transformations to assign null to tx in case a rollback has been
called (line 3). In this way, they guarantee that if rollback is called, commit will not
be called, and vice-versa.

Discussion

The following observations can be derived from the case studies:

• As mentioned in our previous studies, transformations are important opera-
tions in the aspectization of object-oriented systems [13]. For example, 10%
of the logging code in JSpider has demanded the application of enabling OO

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 113

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

transformations. In JAccounting, this number was even superior. The legacy,
object-oriented version of this system has 45 scattered and tangled calls re-
lated to transaction handling. In order to enable the aspectization of these
calls, 60 transformations have been applied to the legacy code (including ad
hoc transformations).

• The proposed guidelines – and to a great degree the TransformationMapper
plugin – have effectively contributed to detect the need of statement reordering
and method extraction transformations. Also, the guidelines have contributed
to avoid unnecessary transformations, as was observed in the preparation of
the JSpider by Binkley and others.

• As demonstrated in the JAccouting case study, the proposed guidelines for
handling homogeneous concerns can effectively contribute to the extraction of
pieces of advices presenting key benefits normally associated to aspect-oriented
programming, such as quantification. However, in such cases the ability of the
programmer to apply ad hoc transformations may also be fundamental to
achieve the desired properties.

• It was very simple to construct the crosscutting map of the evaluated sys-
tems. More important, the crosscutting map provides important information
that can be used by developers to evaluate the overall effort involved in the
aspectization of a given software system. For example, the tool provides in-
formation about the number of scattered and tangled calls, the number of
transformations that must be applied to the codebase, and the number of ad-
vices that can be extracted. More important, such information is provided
before the implementation of any AspectJ code. Thus, it represents a valuable
asset to developers interested in evaluating the possible benefits of applying
aspect-oriented techniques to existing systems.

7 RELATED WORK

Our decision to provide guidance regarding enabling, object-oriented transforma-
tions was motivated by the lack of details about such transformations in works
about aspect-oriented refactoring.

For example, in one of the first papers about AO refactoring, Monteiro recognizes
that “it is sometimes necessary to refactor the base code in order to expose the
necessary join points to AspectJ” [15]. However, the author has not documented
such refactorings in details, even in further work [16]. More recently, Monteiro and
Fernandes have proposed a refactoring process to guide the transformation of a Java
source code base into a functionally equivalent AspectJ source code base [17]. The
proposed refactoring process has three phases: in the first phase crosscutting features
are extracted to aspects; the second phase aims to improve the internal structure of
the extracted aspects, by removing internal duplication; and the third phase targets

114 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

7 RELATED WORK

the generalization of common code in super-aspects. However, the description of the
proposed refactoring process does not mention the need of enabling, object-oriented
transformations. For example, in order to extract part of a method to an advice, the
authors simply suggest to “create a pointcut capturing the appropriate joinpoint and
context and move the code fragment to an advice based on the pointcut”, without
considering the limitations of AspectJ to capture particular join points.

Binkley and colleagues have developed the AOP-Migrator tool, an Eclipse plugin
that automates six refactorings commonly used to support migration from OOP to
AOP [1, 2]. The AOP-Migrator’s authors recognize that “OO transformations rep-
resent an important cost in the migration process” towards aspect-oriented systems.
However, since their emphasis was on the presentation of the refactorings auto-
mated by AOP-Migrator, the authors have not devoted much effort in analyzing
object-oriented transformations.

Murphy et al. suggest that a concern can be easier modularized “if advance
work to prepare the software system is undertaken” [18]. However, the recom-
mended preparation only includes encapsulating concerns in entire methods and
classes and moving groups of crosscutting statements to the beginning and ends of
methods. When proposing a tool and a refactoring methodology for decomposing
legacy applications into a set of features, Liu, Batory and Lengauer mention that
rearranging the order of statements may be needed before tangling features can be
extracted [12]. However, they have not documented such rearrangements. Instead,
they only mention that “several iterations of this step may be necessary to achieve
an acceptable refactoring”.

Yuen and Robilliard suggest the existence of an important gap between aspect
mining and aspect refactoring tools due to subtle variations in the implementation
of crosscutting concerns in legacy systems [21]. For example, they observed that
transaction management does not present a consistent behavior in the system used
as case study in their research, which suggest the need of statement reordering
and possibly ad hoc transformations (as was the case of transaction handling in
JAccounting described in Section 6).

Marin et al. have proposed the FINT aspect mining tool, that relies in a fan-in
analysis to discover aspects in legacy systems [14]. Basically, their approach looks
for methods that are called from many different locations (i.e. methods that have
a high fan-in value). Therefore, this technique is particularly useful to discover
potential method calls to be inserted in the crosscutting map supported by the
TransformationMapper tool. Wloka et al. have presented a refactoring approach
and its supporting tool, called SoothSayert, that implements automated adjustments
in pointcuts affected by changes in the base code [20]. In this way, they investigated
a problem that happens after the extraction of aspects, supposing that such sys-
tems are in constant evolution. In the future, we can envision an aspect-oriented
refactoring environment that integrates an aspect mining tool (such as FINT), a
transformation support tool (such as TransformationMapper), a tool to extract as-
pects from legacy code (such as AOP-Migrator) and a tool to preserve semantics

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 115

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

properties of pointcuts in face of evolving base code (such as SoothSayer).

8 CONCLUSIONS

In order to provide an aspect-oriented implementation for crosscutting concerns
presented in existing, object-oriented systems, developers should: (i) identify cross-
cutting concerns in the base code; (ii) decide which identified crosscutting concern
is worth to refactor using aspect-oriented techniques and languages; (iii) transform
the object-oriented code, in order to enable the aspectization of concerns located in
non-advisable parts of the base code; (iv) extract the crosscutting code to aspects.
Regarding the four mentioned steps, the application of OO transformations has cer-
tainly been the one less studied in the literature about aspect-oriented refactoring.
For this reason, we have provided in this paper detailed information to assist de-
velopers when preparing existing, object-oriented code to aspectization. Moreover,
we have presented the TransformationMapper tool, an Eclipse plugin that provides
partial support to the proposed guidelines. This system is still a research prototype.
However, its current version is available upon request from the authors.

The TransformationMapper – and the guidelines recommended in the paper -
have been validated through two small-to-medium case studies, involving the aspec-
tization of both heterogeneous concerns (as was the case of logging in the JSpider
system) and homogeneous concerns (as was the case of transactions in the JAc-
counting case study). Based on the experience gained with the case studies, we
have concluded that the proposed guidelines can contribute to detect mandatory,
object-oriented transformations and to avoid unnecessary ones. Moreover, they also
contribute to key properties of the extracted aspects, such as quantification.

In the near future, we intend to apply the proposed guidelines and the Transfor-
mationMapper to new case studies. We also have plans to improve the Transforma-
tionMapper with more features and metrics that can provide quantitative informa-
tion about the benefits of using aspect-oriented languages in legacy systems.

Acknowledgments: This research was supported by a grant from FAPEMIG,
process PPM-CEX-APQ 4543-5. We would like to thank David Binkley and Mariano
Ceccato for providing us the source code of the aspect-oriented version of the JSpider
and JAccounting systems.

REFERENCES

[1] David Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo
Tonella. Automated refactoring of object oriented code into aspects. In 21st
IEEE International Conference on Software Maintenance (ICSM), pages 27–36,
2005.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

8 CONCLUSIONS

[2] David Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo
Tonella. Tool-supported refactoring of existing object-oriented code into as-
pects. IEEE Transactions Software Engineering, 32(9):698–717, 2006.

[3] Leonardo Cole and Paulo Borba. Deriving refactorings for AspectJ. In 4th
International Conference on Aspect-Oriented Software Development (AOSD),
pages 123–134, 2005.

[4] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In
3rd International Conference on Aspect-Oriented Software Development, pages
56–65. ACM Press, 2004.

[5] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state
models from java source code. In 22th International Conference on Software
Engineering (ICSE), pages 439–448, 2000.

[6] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[7] Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based refactoring
of crosscutting concerns. In 4th International Conference on Aspect-Oriented
Software Development (AOSD), pages 135–146, 2005.

[8] Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff. Kaveri:
Delivering the Indus Java program slicer to Eclipse. In Fundamental Approaches
to Software Engineering (FASE), volume 3442 of Lecture Notes in Computer
Science, pages 269–272, 2005.

[9] Andy Kellens, Kim Mens, and Paolo Tonella. A survey of automated code-level
aspect mining techniques. Transactions on Aspect-Oriented Software Develop-
ment, 4:145–164, 2007.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In 15th European Conference
on Object-Oriented Programming (ECOOP), volume 2072 of LNCS, pages 327–
355. Springer Verlag, 2001.

[11] Ramnivas Laddad. Aspect-oriented refactoring. TheServerSide.com, 2003.

[12] Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of
legacy applications. In 28th International Conference on Software Engineering
(ICSE), pages 112–121, 2006.

[13] Marcelo Nassau Malta and Marco Tulio de Oliveira Valente. Object-oriented
transformations for extracting aspects. Information and Software Technology,
pages 1–12, 2008 (in press).

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 117

GUIDELINES FOR ENABLING THE EXTRACTION OF ASPECTS FROM EXISTING OBJECT-ORIENTED CODE

[14] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying crosscutting
concerns using fan-in analysis. ACM Transactions on Software Engineering and
Methodology, 17(1), 2007.

[15] Miguel P. Monteiro and João M. Fernandes. Some thoughts on refactoring
objects to aspects. In VIII Jornadas de Ingeniera de Software y Bases de
Datos (JISBD), 2003.

[16] Miguel P. Monteiro and João M. Fernandes. Towards a catalogue of refactor-
ings and code smells for AspectJ. Transactions on Aspect-Oriented Software
Development, 3880:214–258, 2006.

[17] Miguel P. Monteiro and João M. Fernandes. An illustrative example of refac-
toring object-oriented source code with aspect-oriented mechanisms. Software
Practice and Experience, 38(4):361–396, 2008.

[18] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard. Sep-
arating features in source code: an exploratory study. In 23rd International
Conference on Software Engineering (ICSE), pages 275–284, 2001.

[19] Martin P. Robillard and Frederic Weigand-Warr. ConcernMapper: Simple
view-based separation of scattered concerns. In OOPSLA Eclipse Technology
Exchange Workshop (ETX), pages 65–69, 2005.

[20] Jan Wloka, Robert Hirschfeld, and Joachim Hänsel. Tool-supported refactor-
ing of aspect-oriented programs. In 7th International Conference on Aspect-
Oriented Software Development (AOSD), pages 132–143, 2008.

[21] Isaac Yuen and Martin P. Robillard. Bridging the gap between aspect min-
ing and refactoring. In AOSD Workshop on Linking Aspect Technology and
Evolution, 2007.

ABOUT THE AUTHORS

Marcelo Nassau Malta is a software architect at PUC Minas
(Brazil), where he received his MSc degree in Computer Science.
Contact him at nassau@pucminas.br.

118 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

mailto:nassau@pucminas.br

8 CONCLUSIONS

Samuel Domingues is a Computer Science undergraduate student
at PUC Minas (Brazil). He can be reached at samueldro@gmail.com.

Marco Tulio Valente is an associate professor at the Institute of
Informatics at PUC Minas (Brazil). He received his PhD in Com-
puter Science from Federal University of Minas Gerais (Brazil). Con-
tact him at mtov@pucminas.br.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 119

mailto:samueldro@gmail.com
mailto:mtov@pucminas.br

