
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Veit Hoffmann, Horst Lichter, Alexander Nyßen: “Towards the Integration of UML-and textual Use
Case Modeling”, in Journal of Object Technology, vol. 8, no. 3, May-June 2009, pages 85-100,
http://www.jot.fm/issues/issue_2009_05/article3/

JOURNAL OF OBJECT TECHNOLOGY

Vol. 8, No. 3, May-June 2009

Towards the Integration of UML- and
textual Use Case Modeling

Veit Hoffmann, Horst Lichter, Alexander Nyßen and Andreas Walter
RWTH Aachen University, Germany

Abstract
In this paper, we present a metamodel for textual use case descriptions, structurally con-
forming to the UML, to specify the behavior of use cases in a flow-oriented manner.
While being primarily targeted at supporting requirements engineers in creating consis-
tent use case models, the metamodel defines a textual representation of use case
behavior that is easily understandable for readers, who are unaware of the underlying
metamodel. Hence, the known benefits of natural language use case descriptions are
preserved. Being formalized, consistency between UML-based use case representa-
tions and their textual descriptions can be automatically ensured. With NaUTiluS we
present an extensible, Eclipse-based toolkit, which offers integrated UML use case mod-
eling support, as well as editing capabilities for their textual descriptions.

1 INTRODUCTION

Since their invention by Ivar Jacobson in 1986 [Jacobson87, Jacobson04], and although
having some deficiencies [Glinz00, Williams05] use cases have gained wide-spread
acceptance as a means to describe interactions between a system and its environment
[McPhee02, Neill03]. Today, the Unified Modeling Language [OMG07] is a widely
accepted standard defining the central use case modeling concepts. There is a manifold of
notations to describe the behavior captured by use cases in detail. While the UML offers
various diagram types (state machine, sequence, activity) to describe internal behavior,
textual descriptions, e.g. proposed in [Rolland98, Cockburn00, Li00], which are most
widely used, are not addressed.

As a consequence, when applying a UML-based development approach, use cases
are first identified and structured by means of UML use case diagrams and then described
in detail through textual descriptions. Thus, the so-called use case model is actually a
composite model consisting of two parts. One part is a UML model, capturing the use
cases and their relationships, the other part is a set of textual descriptions of the behavior
represented by these use cases. These two parts depict different views on the overall use
case model and should of course not contradict each other.

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §2

Since the two views evolve in parallel during the process of use case modeling, ensuring
consistency between them is an ongoing task. In order to provide automated consistency check-
ing between a UML use case model and its corresponding set of textual descriptions, the textual
representations of the use case relationships contained in the UML model must be algorithmi-
cally and efficiently identifiable. This is a non-trivial problem, because ensuring consistency
between a UML model and the textual use case descriptions requires a certain degree of formal-
ity in the textual descriptions. On the other hand the benefit of use case modeling is mainly
rooted in its semi-formal nature. For this reason, a new format of textual use case descriptions
has to be defined, which is easily understandable for a human reader but at the same time facil-
itates efficient algorithmic identification of the aforementioned correspondence between a
UML use case model and the set of textual descriptions.

The rest of this paper is organized as follows. In the next section we shortly introduce a
format for textual use case descriptions, which provides the conceptual background for the
approach presented here. Then we present in section 3 a complete metamodel for textual use
case descriptions, the so-called narrative metamodel and its integration into the UML meta-
model. In section 4 we briefly introduce NaUTiluS, a use case modeling tool that implements
both, the UML use case metamodel and the narrative metamodel. Finally, we summarize the
approach presented in this paper and give an outlook towards further research and ideas con-
cerning the application of the narrative metamodel.

2 RELATED WORK

Interpretations of what a use case actually is differ, and so do the notations provided to describe
use cases in a detailed manner. There are many published approaches presenting formal nota-
tions to capture use case behavior. Very often the different behavioral UML diagrams (e.g. state
machine, sequence, or activity diagrams) are used [Kholkar05, Whittle06]. But also colored
petri-nets [Jorgenson04] or even formal specification languages like Z [Spivey92] are proposed.
As all of these notations are based on a defined formalism, they provide the possibility to inspect
and analyze the use case descriptions automatically and to use these formal models in succeed-
ing activities (e.g. test case design [Reuys06, Ryser00]). However the major drawback of using
formal notations is rooted in their formality as well, since formal descriptions are difficult to
understand by non-technical stakeholders. Therefore readability and understandability are key
requirements for use case description notations.

Because of that we focus our interest on notations that allow a human reader with no or
only little formal background to quickly understand use case descriptions. While the often
applied approach to describe use case behavior in a template-based textual form (proposed e.g.
by Cockburn [Cockburn00], Armour and Miller [Armour01] or Kulak and Guiney [Kulak03])
leads to readable and understandable descriptions, those descriptions cannot be analyzed or val-
idated automatically.

On the other side, all approaches proposing the usage of a constraint form of natural lan-
guage to describe use case details in a way that formal models can be generated by means of
language analysis [Li00, Drazan07], have drawbacks concerning their applicability and imple-
mentability.

§2 RELATED WORK

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87

A very promising approach, which introduces some degree of formality into use case
descriptions while allowing unconstraint natural language, was presented by Bittner and Spence
[Bittner03]. Bittner and Spence describe use case details in a flow-oriented way, which is well
aligned with current UML definitions and results in descriptions that are easy understandable
for non-professionals as well. Our metamodel is based on their basic ideas and we explain this
flow-oriented behavior description in the following section.

Flow-oriented Use Case Description

According to the UML, a use case represents a variety of scenarios that can result from the inter-
action between a system and its environment. Its description has to cover all possible scenarios.
Since it is hard and often impossible to name and describe each of them in isolation, a use case
is often described in an incremental fashion: One scenario is described completely and explic-
itly, and all other scenarios are described implicitly in terms of their differences to the first one.

A variant of this pattern is chosen in [Bittner03], where partitioning the description of the
behavioral spectrum represented by a use case into so-called flows of events is proposed. The
basic flow describes a sequence of events occurring under some conditions regarded as the
“default case”. This sequence depicts one possible course through the execution of the use case
and serves as a starting point for its description.

In order to specify possible variants of the behavior described by the basic flow, it may con-
tain so-called extension points. Each extension point is a named placeholder representing pos-
sible behavioral variations to occur under defined conditions. Such variations are described in
terms of alternative flows, which themselves are sequences of events. The concept of variation
by alternative flows can be applied recursively, thus allowing the description of arbitrarily com-
plex behavioral spectra.

In [Bittner03], extension points are not only used to describe varying behavior assigned to
one use case, but also to establish extension relationships between use cases in their textual
description. To this sense, some extension points contained in a use case description are denoted
as “public”, thus allowing to be referenced from other textual descriptions. This way, the
description of an extending use case can reference extension points in the description of an
extended use case to represent the extend relationship between use cases, as defined by the
UML.

Generalization between use cases is represented similarly by referencing selected exten-
sion points within the description of the general use case and providing the behavioral differ-
ences that account for the specificity of the specialized use case.

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §3

3 A METAMODEL FOR TEXTUAL DESCRIPTIONS

Goals

With the narrative metamodel we present here, we pursue three major goals.
• First, the textual use case descriptions should capture the specific nature of use cases, i.e.

they represent all possible scenarios from which one occurs during each of a use case's exe-
cutions.

• Second, the textual use case descriptions should be written in unconstrained natural lan-
guage, because we do not want to force the writer and/or reader to learn a complex notation
or grammar.

• Third, the consistency between a set of textual use case descriptions and the UML use case
model, defining these use cases, should be ensured automatically. This especially includes
checking whether all use case elements, expressed in the UML model, are also represented
consistently in the textual descriptions.

UML-based Use Case Models

To have a notion of consistency between a UML model and a corresponding set of textual
descriptions, we first depict which elements constitute the UML model and thus have to be rep-
resented in the textual use case descriptions.

Figure 1: The metaclasses defined in the Language Unit Use Cases

§3 A METAMODEL FOR TEXTUAL DESCRIPTIONS

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89

The kinds of elements constituting a UML use case model are primarily defined by the meta-
classes contained in the UML Language Unit Use Cases [OMG07], whose class diagram is
shown in Figure 1. Obviously important metaclasses are UseCase, Actor, Include, Extend and
ExtensionPoint. The metaclass Generalization is not shown in the diagram because it belongs
to the UML Language Unit Classes, the same holds for the metaclass Association from UML
Language Unit Kernel.

A UML model is usually structured as a composition hierarchy, where every element
except the root element, which is usually a Model, is contained by another model element. In
the context of use case modeling, Includes, Extends, ExtensionPoints and Generalizations are
usually directly contained by a UseCase or, in the case of Generalization, also by an Actor. Fur-
thermore, Packages are used to group logically related model elements. Being a Package-
ableElement, a use case as well as an actor can be contained in a package. Use cases can
alternatively be contained in a Classifier which denotes the subject a use case applies to, i.e., the
system that is described. Instead of allowing instances of any concrete subclass of Classifier to
represent the described system, Components are usually used, and we define this to be the only
legal case. This allows to group all use cases of one specific subject (the modeled system)
semantically and visually, i.e. via diagrams, in several packages contained in the corresponding
component.

Running Example

In the following we introduce the narrative metamodel and its concepts alongside a brief exam-
ple, which eases understanding the metamodel elements and their roles in the textual use case
descriptions.

Figure 2: A UML use case diagram defining the “Open Door” use cases
The example depicts a UML use case model for opening the doors of a car either by means of
a remote control (this is considered to be the default way) or with a key. While Figure 2 shows
the UML use case model, Figure 3 shows the corresponding flow-oriented textual use case
descriptions conformant to our narrative metamodel.

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §4

The description of the use case Open Door defines besides its main flow the flow Switch off
Alarm describing exceptional behavior that may be performed at any time during the execution
of the main flow. Afterwards the flow continues at the point of the execution, where the excep-
tional behavior has been triggered.

The use case Unlock Door with Key contains the alternative flow Unlock only one Door with
Key. This flow encapsulates behavior that may be performed alternatively to the default behav-
ior, described in the main flow of use case Unlock Door with Key.

Figure 3: The “Open Door” textual use case descriptions

4 THE NARRATIVE METAMODEL

Integration with the UML Metamodel

Since a textual description of a use case is to a certain degree narrative, we consequently call it
a NarrativeDescription (see Figure 4). To be able to represent relationships between actors and
narrative descriptions of use cases, all actors of the UML use case model are represented by
respective NarrativeActors.

UC Open Door
Main Flow:
Contexts:

1. Is invoked by Actor (Driver)
Events:

1. The driver approaches the car
2. Include UC Unlock with Remote Control to unlock the

car’s doors
3. The driver checks if the doors are unlocked
4. {Remote Control unoperational}
5. The driver pulls the handle and opens the door

Exception Flow (Switch off Alarm):
Contexts:

1. At any time in UC Open Door (Main Flow) if alarm
raised

Events:
1. The driver switches off the alarm

UC Unlock Door with Remote Control
Main Flow (redefines UC Unlock Door Main Flow):
Contexts:

1. Is invoked by Actor (Driver) (inherited from UC Unlock
Door Main Flow)

2. Is included by UC Open Door (Main Flow)
Events:

1. The driver unlocks the car with the remote control
(redefines UC Unlock Door: The driver unlocks the car)

UC Unlock Door (abstract use case)
Main Flow:
Contexts:

1. Is invoked by Actor (Driver)
Events:

1. The driver unlocks the car

UC Unlock Door with Key
Main Flow (redefines UC Unlock Door Main Flow)
Contexts:

1. Is invoked by Actor (Driver)
(inherited from UC Unlock Door Main Flow)

2. Extends UC Open Door at {Remote Control
unoperational} if Remote Control is unoperational

Events:
1. {No central locking system}
2. The driver unlocks the car with the key

{End Main Flow}
Alternative Flow (Unlock only one Door with Key):
Contexts:

1. At {No central locking system} if car has no central
locking system

Events:
1. The driver selects a door to unlock
2. The driver unlocks the selected door with the key
Resume Unlock with Key Main Flow at
{End Main Flow}

§4 THE NARRATIVE METAMODEL

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 91

Since it is recommendable to group narrative descriptions the same way as the correspond-
ing use cases in the referenced UML model (see Figure 4), the metaclass NarrativeContainer
defines a correspondence to the UML “container classes” Package and Component, thus creat-
ing a hierarchy. As a correspondence to the UML metaclass Model, the metaclass Narrative-
Model defines the root element of the NarrativeContainer hierarchy.

Figure 4: Core classes of the narrative metamodel
By means of instances of the metaclasses presented so far, a coarse-structural synchronization
between a UML model and a narrative model is established. Having a one-to-one correspon-
dence between use cases in the UML model and narrative descriptions in the narrative model,
it is possible to describe each use case in detail and to unambiguously represent its properties
captured in the UML model in the narrative model, too. This is covered in the following sec-
tions.

Flows and Events

Following the idea of Bittner and Spence [Bittner03], the description of a use case is split into
so-called Flows which define behavioral fragments through sequences of Events. We depict
those concepts with respective metaclasses as well (see Figure 5).

In the most simple case, the events of a flow are atomic Actions whose content is not inter-
preted from the point of view of the metamodel. This means that the writer can use uncon-
strained natural language to describe those basic behavioral elements.

All other kinds of events symbolize spots in a flow where behavior of another flow can or
must be inserted and thus, the context may change (see Section "Contexts"). Therefore a second
kind of event is introduced by the metaclass ContextSwitch, which represents all concepts where
changes of the current context can occur. We distinguish two kinds of context switches which
are again specialized.

First a flow may include another flow in its execution. This relationship is formalized by
the metaclass Inclusion, which is further refined into two variants. The first variant, InternalIn-
clusion, represents the inclusion of a flow being contained in the same narrative description, a
so-called subflow. The second, ExternalInclusion, represents the inclusion of a flow residing in
another narrative description, which corresponds to the UML include-relationship between use
cases.

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §4

Figure 5: Metaclasses representing the main concepts of a narrative description
Since a use case usually represents a variety of interaction sequences, from which one is fol-
lowed during its execution, it must be possible to describe behavioral variations occurring under
different conditions. Therefore we introduce a second kind of context switch, ExtensionAnchor,
which marks a point where variation of the behavior described by a flow can occur. These exten-
sion anchors correspond to the extension points defined by Bittner and Spence [Bittner03],
which were briefly described in section 2. Unlike inclusion relationships, where the including
flow defines the point where the additional behavior will be included, an extension anchor
merely expresses that a variation of the described behavior is possible. However, how and under
which conditions the behavior is varied, is specified by the extending flow.

Figure 6: A flow consisting of different kinds of events
In this context, two different scenarios are possible. First variational behavior can always be
contained within the same narrative description. In this case, we are not restricted to the descrip-
tion of additional behavior possibly occurring at specific points in the flow, like defined by the
UML, but we can describe more complex variations. In any case, whenever a variation of the
behavior described by a flow is assigned to the same narrative description, we use an Internal-
ExtensionAnchor (see Figure 5) to mark the point, where this variation can occur.

UC Open Door
Main Flow:
Contexts: ...
Events:

1. The driver approaches the car
2. Include UC Unlock with Remote

Control to unlock the car’s doors
3. The driver checks if the doors are

unlocked
4. {Remote Control unoperational}
5. The driver pulls the handle and opens

the door

← Action
← ExternalInclusion

← Action

← ExternalExtensionAnchor
← Action

§4 THE NARRATIVE METAMODEL

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

Second, if additional behavior can occur at one or more defined points in the flow and never
ends or bypasses but only extends the varied behavior in the literal sense, as defined by the
UML, the additional behavior can be represented by a second use case that extends the first one.
We model such points in the flow, where its behavior can be extended by another flow of a dif-
ferent narrative description, by ExternalExtensionAnchors (see Figure 5). They correspond to
ExtensionAnchors in the UML model.

Figure 6 illustrates how the concepts described in this section can be applied to our running
example. The main flow of the use case Open Door consists of five distinct events that describe
the use case's behavior (three atomic actions, one external inclusion, one external extension
anchor).

Contexts

While a context switch specifies where the behavior defined by a flow is inserted from the view-
point of the inserting flow, Contexts describe the same concept from the viewpoint of the
included respectively extending flow.

We distinguish four kinds of contexts needed to initiate the execution of the behavior
described by a flow: InteractionContexts, InclusionContexts, ExtensionContexts and Exception-
Contexts (see Figure 7).

Figure 7: Metaclasses representing different kinds of contexts
Whenever a flow is triggered directly by a narrative actor, thus having a primary actor, the flow
must have an InteractionContext with this narrative actor. This special context defines the con-
ditions under which the behavior encapsulated in the flow is triggered. These conditions have
to be fulfilled before, possibly during, and at the end of the execution of the flow's behavior. In
our example the main flow of the use case Unlock Door with Key has an InteractionContext with
the narrative actor Driver (see Figure 8)

Besides being triggered by a narrative actor, a flow can be, as mentioned before, included
by another. A flow that is included by a flow within the same narrative description, is assigned
an InternalInclusionContext, a flow that is included by a flow belonging to a different narrative
description is consequently assigned an ExternalInclusionContext. ExtensionContexts define
the conditions under which a flow adds behavior to another flow at one or more extension
anchors. Again we distinguish two different kinds of extension contexts: ExternalExtension-
Contexts and InternalExtensionContexts. As explained before, an external extension anchor
represents a UML extension point. A flow, which describes behavior that can occur at this point,

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §4

has an ExternalExtensionContext that represents the UML extend-relationship. The condition
for the extension to take place is thus already specified in the corresponding UML model (as an
instance of Constraint, see Figure 1). An example for an external extension context is shown in
Figure 8. The main flow of use case Unlock Door with Key has an external extension context
respective to the main flow of use case Open Door. Again, unconstrained natural language can
be used to specify the conditions, under which the respective behavior is inserted, because we
do not want to formalize conditions too much.

Figure 8: A textual description with different kinds of contexts
Since the narrative metamodel allows to describe complex behavioral variations, e.g. a flow can
bypass another flow's behavior, it must also be explicitly specified where a flow's execution is
continued when the exceptional behavior ends. Again, a set of InternalExtensionAnchors and
corresponding conditions can be specified to denote the options to continue the flow's execu-
tion.

At last, if a flow has an ExceptionContext, its behavior can be inserted into another flow at
any time when the defined condition of the exception context is met. Besides that, the exception
context specifies, where the execution of the suspended flow continues under different condi-
tions. This can in contrast to [Metz03] either be the event, where the exceptional condition was
met, the end of the current flow, or the end of the whole scenario. In our running example (see
Figure 3), the alarm can be raised at any time, and whenever it is raised, the behavior defined in
the use case Switch off Alarm is executed. Afterwards the execution of the main flow is contin-
ued after the event, where the exception condition was first met.

Each flow of a narrative description can have many different contexts. A flow can for
example be associated directly to a primary actor, thus having an interaction context. Further-
more, it can be included in another flow of a different narrative description and thus has an
inclusion context, too. There are several restrictions to the kinds of different contexts a flow can
have, e.g. only one flow in a narrative description may have inclusion contexts and/or interac-
tion contexts. Due to space limitations we can not explain these restrictions but all of them are
included in the metamodel as OCL constraints (see Section "Enhancing Model Quality through
Constraints").

Representing Generalization between Use Cases

The concepts presented so far allow modeling a behavioral spectrum, from which one concrete
occurrence is determined dynamically based on the evaluation of the specified conditions during
a use case's execution.

UC Unlock Door with Key
Main Flow (redefines UC Unlock Door Main Flow):
Contexts:

1. Is invoked by Actor (Driver)
(inherited from UC Unlock Door Main Flow)

2. Extends UC Open Door at
{Remote Control unoperational}
if Remote Control is unoperational

Events: ...

← InteractionContext

← ExtensionContext

§4 THE NARRATIVE METAMODEL

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

With its Generalization relationship, the UML allows to model that behavior represented
by one use case is a specialization of the behavior represented by its general use case. This rela-
tionship between use cases is defined statically, i.e., on the model level. In our metamodel, a
generalization relationship between use cases that is captured in a UML model is reflected by a
derived association between the related narrative descriptions respectively, thus being directly
inferred from the generalization hierarchy of the corresponding use cases in the UML model
(see Figure 9).

Figure 9: Generalization and redefinition of narrative descriptions
If a narrative description is a specialization of another one, the specific narrative description
inherits all flows of the general one (with their events and contexts). In order to represent the
specific narrative description's nature, flows, events, and contexts of the general narrative
description can be redefined. We consequently call these elements RedefinableNarrativeEle-
ments (see Figure 9).

The redefinition of narrative elements is realized in two steps within a specialized narrative
description. First, the flows of the general narrative description can be redefined within the spe-
cialized one. Second, the elements of flows, events, and contexts can be redefined separately
within a redefined flow. Thus a flow, redefining a flow of a general narrative description doesn't
mask the redefined flow completely, but initially inherits all elements of the flow it redefines.
Within the redefined flow the inherited contexts and events can be redefined explicitly to

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §4

replace the inherited ones. Besides that, new contexts and events can be introduced, thus
enhancing the described behavior. Figure 10 shows exemplarily how the main flow of use case
Unlock Door is redefined in the specialized use case Unlock Door with Remote Control.

Figure 10: An example depicting the redefinition of flows and events

Enhancing Model Quality through Constraints

In order to ensure the consistency between a UML use case model and a narrative model and to
control the sanity of the flows inside the narrative descriptions, the metamodel has been
enriched with a set of OCL [OMG06] constraints. We won't explain the single constraints in
detail here, but we will give a brief overview on the goals and benefits we achieve through
model constraints. Besides those constraints defined in the UML Use Case Language specifica-
tion [OMG07], we distinguish two types of model constraints: consistency constraints and san-
ity constraints.
• Consistency constraints guarantee, that instances of the narrative metamodel are consistent

with their adjacent UML use case model.
• Sanity constraints are by far the most important constraints we introduced, since those con-

straints define the exact semantics of the elements of the narrative metamodel. A violation
of one of those constraints e.g. indicates that a narrative model has missing or incorrect
flow definitions.

By means of the defined constraints it is guaranteed that in a model without any constraint vio-
lations all references between model elements are established and that each possible scenario of
the narrative model has a valid start point and is described by an unambiguous, finite sequence
of events. Thus we can call such a model correct in the sense that all its contained flows are
linked correctly and all elements of the adjacent UML model are represented validly. What we
obviously cannot determine is whether the use case descriptions are complete in the sense that
all alternative flows are defined or that the narrative descriptions actually specify the actor-sys-
tem-interactions correctly.

UC Unlock Door (abstract use case)
Main Flow:
Contexts:

1. Is invoked by Actor (Driver)
Events:

1. The driver unlocks the car

UC Unlock Door with Remote Control
Main Flow (redefines UC Unlock Door Main Flow):
Contexts:

1. Is invoked by Actor (Driver)
(inherited from UC Unlock Door Main Flow)

2. Is included by UC Open Door (Main Flow)
Events:

1. The driver unlocks the car with the remote control
(redefines UC Unlock Door The driver unlocks the
car)

← general Description
← general Flow

← redefined Description
← redefined Flow

← inherited from UC Unlock Doors Main Flow

← defined locally

← redefined Action

§5 A NARRATIVE USE CASE EDITOR

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

5 A NARRATIVE USE CASE EDITOR

To support a requirements engineer in developing the complete use case model and to ensure
consistency between the textual use case descriptions and the corresponding UML model as
well as sanity of the textual descriptions themselves, appropriate tool support is essential.

Most existing tools that support textual use case descriptions have major drawbacks. While
UML tools like Rational Software Architect [Rational] or EclipseUML [Omondo] do not sup-
port the description of the internal structure of use cases, tools focusing on textual use case
descriptions like CaseComplete [CaseComplete] or UCEd [UCED] leave out the use case con-
structs defined by the UML specification. Besides, none of the existing tools provides support
to control the consistency between a UML model and its adjacent textual descriptions, since
none of the textual descriptions is based on a formal metamodel.

To overcome these deficiencies, NaUTiluS (Narrative Use Case Description Toolkit for
Evaluation and Simulation), a toolkit for narrative use case modeling, has been prototypically
implemented. NaUTiluS consists of a set of plug-ins that are embedded in the ViPER platform
[Viper]. It implements a couple of views and editors that support inspection and editing of Nar-
rativeModels, as well as UML models (diagrams).

Figure 11: The NaUTiluS Toolkit

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §6

Figure 11 shows a screenshot of NaUTiluS and some of its views presenting different aspects
and information of the use case model. NaUTiluS supports creation, deletion and editing of all
elements defined by the narrative metamodel. The toolkit automatically ensures the consistency
of the textual descriptions and the UML model and is able to synchronize a narrative model with
its adjacent UML use case model automatically.

Besides that, NaUTiluS validates the constraints we introduced (see Section "Enhancing
Model Quality through Constraints"), to eliminate ambiguities and defects in the textual
descriptions. Apart from simple editing operations on model elements, NaUTiluS offers features
to refactor use case models (e.g. events can be moved between flows or refactored into a new
subflow). To provide an easy way to integrate narrative models into a textual requirements spec-
ification, NaUTiluS currently offers a simple text export functionality. The exported text is for-
matted like the textual descriptions shown in the running example (compare e.g. Figure 3).

6 CONCLUSION AND OUTLOOK

Use case descriptions based to the presented narrative metamodel have a degree of formality
needed to ensure consistency between the graphical UML use case model and its narrative
descriptions algorithmically, without significant drawbacks to the readability and understand-
ability of the textual descriptions.

First practical experiences show that textual descriptions conforming to the narrative meta-
model can express the behavior encapsulated in a use case model well. The concept of flows-
of-events is easily understandable even for stakeholders without expertise in use case modeling
techniques. Especially the validation constraints, which were added to the narrative metamodel,
help to identify inconsistencies quickly, thereby leading to an enhanced model quality.

NaUTiluS supports the editing of narrative models quite well. The offered views on the use
case model help to understand existing models quickly and to keep track of the model elements
during the creation and editing of a use case model. The offered feature to export a textual rep-
resentation of the narrative model is a prerequisite to improve acceptance of the tool as well as
to simplify the integration of a use case model into supplementary requirements documentation.

Currently we are enhancing NaUTiluS by a simulation environment. It will provide a fea-
ture to step through a narrative model and thus simulate the execution of the use case descrip-
tions. The simulation of narrative models will enable the user to understand the described
behavior quickly and better. Simulation will thus support the validation of the model and help
to identify failures and hotspots in the modeled behavior quickly. Besides that, several analyses
based on the dynamic structure of the simulated scenarios are conceivable. In the future we will
provide capabilities for those enhanced model analyses.

Furthermore we will develop NaUTiluS support for evaluating the quality of use case
descriptions by means of quality metrics based on the static structure of a narrative model as
well as on its dynamic behavior.

§6 CONCLUSION AND OUTLOOK

VOL. 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

REFERENCES
[Armour01] F. Armour and G. Miller. Advanced Use Case Modeling Volume One, Software

Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
[Bittner03] K. Bittner and I. Spence. Use Case Modeling. Addison-Wesley, 2003.
[CaseComplete] CaseComplete. http://www.casecomplete.com/.
[Cockburn00] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.
[Drazan07] J. Drazan and V. Mencl. Improved processing of textual use cases: Deriving behavior

specifications. In Proceedings of SOFSEM 2007 LNCS 4362, pages 856–86,
Harrachov, Czech Republic, January 20 - 26, 2007.

[Glinz00] M. Glinz. Problems and Deficiencies of UML as a Requirements Specification
Language. In IWSSD ’00: Proceedings of the 10th International Workshop on Software
Specification and Design, pages 11–22, Washington, DC, USA, 2000. IEEE Computer
Society, 2000.

[Jacobson87] I. Jacobson. Object-oriented development in an industrial environment. In OOPSLA
’87: Conference proceedings on Object-oriented programming systems, languages
and applications, pages 183–191, New York, NY, USA, 1987. ACM Press, 1987.

[Jacobson04] I. Jacobson. Use cases - Yesterday, today, and tomorrow. Software and System
Modeling, vol 3(3):210–220, 2004.

[Jorgensen04] J. B. Jorgensen and C. Bossen. Executable Use Cases: Requirements for a
Pervasive Health Care System. IEEE Software, vol 21(2):34–41, 2004.

[Kholkar05] D. Kholkar, G. M. Krishna, U. Shrotri, and R. Venkatesh. Visual specification and
analysis of use cases. In SoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 77–85, New York, NY, USA, ACM, 2005.

[Kulak03] D. Kulak and E. Guiney. Use Cases: Requirements in Context. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Li00] L. Li. Translating use cases to sequence diagrams. In Proc. of Fifteenth IEEE
International Conference on Automated Software Engineering, pages 293–296,
Grenoble, France, 2000.

[McPhee02] C. McPhee and A. Eberlein. Requirements engineering for time-to-market projects. In
Proc. of the 9th IEEE International Conference on Engineering of Computer-Based
Systems, page 17, Washington, DC, IEEE Computer Society, 2002.

[Metz03] P. Metz, J. O’Brien, and W. Weber. Specifying use case interaction: Types of alternative
courses. Journal of Object Technology, vol 2(2):111–131, 2003.

[Neill03] C. J. Neill and P. A. Laplante. Requirements engineering: The state of the practice.
IEEE Software, vol 20(6):40–45, 2003.

[OMG06] OMG. UML OCL Specification, v2.0. OMG Formal Document 2006-05-01, May 2006.
[OMG07] OMG. UML Superstructure Specification, v2.1.2. OMG Formal Document 2007-11-02,

November 2007.
[Omondo] Omondo eclipseuml. http://www.omondo.de/.
[Rational] Rational Software Architect. http://www-306.ibm.com/software/awdtools/architect/

swarchitect/.

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 3

 TOWARDS THE INTEGRATION OF UML- AND TEXTUAL USE CASE MODELING §6

[Reuys06] A. Reuys, S. Reis, E. Kamsties, and K. Pohl. The scented method for testing software
product lines. In Käkölä, T.; Duenas, J.C. (Eds.): Software Product Lines - Research
Issues in Engineering and Management, pages 479–520, Heidelberg, Springer, 2006.

[Rolland98] C. Rolland and C. B. Achour. Guiding the construction of textual use case
specifications. In Data & Knowledge Engineering, volume 25 no. 1-2, pages 125–160,
March 1998.

[Ryser00] J. Ryser and M. Glinz. SCENT: A Method Employing Scenarios to Systematically
Derive TestCases for System Test. Technical report 2000.03, Institut für Informatik,
University of Zurich, 2000.

[Spivey92] J. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
[UCED] Use Case Editor (UCEd). http://sourceforge.net/projects/uced/.
[ViPER] ViPER project site. http://www.viper.sc.
[Whittle06] J. Whittle and P. K. Jayaraman. Generating Hierarchical State Machines from Use

Case Charts. In RE ’06: Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE’06), pages 16–25, Washington, DC, USA, IEEE
Computer Society, 2006.

[Williams05] C. Williams, M. Kaplan, T. Klinger, and A. Paradkar. Toward Engineered, Useful Use
Cases. In Journal of Object Technology, Special Issue: Use Case Modeling at UML-
2004, volume 4, August 2005, pages 45–57, 2005.

About the authors
Veit Hoffmann is currently doing his doing his Ph. D. at the Research Group Software Con-
struction of RWTH-Aachen. His mayor field of interest is in Requirements Engineering espe-
cially the conception and evaluation of textual use case descriptions. He can be reached at
veit.hoffmann@swc.rwth-aachen.de.

Horst Lichter is professor for computer science at RWTH Aachen University where he heads
the Research Group Software Construction. His group is mainly doing research in the area of
model-based software development, quality assurance and software processes. He can be
reached at lichter@swc.rwth-aachen.de.

Alexander Nyßen is a Ph.D. student at the Research Group Software Construction of the
RWTH Aachen University. His primary research interest is in model-driven software engineer-
ing, with a special focus on related methods and tools. He can be reached at any@swc.rwth-
aachen.de.

Andreas Walter has received his Diploma degree in Computer Science from RWTH Aachen
University. Currently he is working as software engineer at sd&m AG, Troisdorf, Germany.
There he is involved in information systems development projects, focusing on requirements
engineering and software quality assurance. He can be reached at andreas.walter@sdm.de.

