
Vol. 8, No. 3, May–June 2009

A Novel Approach to Generate Test Cases
from UML Activity Diagrams

Debasish Kundu and Debasis Samanta
School of Information Technology
Indian Institute of Technology, Kharagpur
Kharagpur, West Bengal, India
{dkundu,dsamanta}@sit.iitkgp.ernet.in

Model-based test case generation is gaining acceptance to the software practitioners.
Advantages of this are the early detection of faults, reducing software development
time etc. In recent times, researchers have considered different UML diagrams for
generating test cases. Few work on the test case generation using activity diagrams
is reported in literatures. However, the existing work consider activity diagrams in
method scope and mainly follow UML 1.x for modeling. In this paper, we present an
approach of generating test cases from activity diagrams using UML 2.0 syntax and
with use case scope. We consider a test coverage criterion, called activity path cov-
erage criterion. The test cases generated using our approach are capable of detecting
more faults like synchronization faults, loop faults unlike the existing approaches.

1 INTRODUCTION

Model-driven software development is a new software development paradigm [5]. Its
advantages are the increased productivity with support for visualizing domains like
business domain, problem domain, solution domain and generation of implementa-
tion artifacts. In the model-driven software development, practitioners also use the
design model for testing software- specially object-oriented programs. Three main
reasons for using design model in object-oriented program testing are: (1) traditional
software testing techniques consider only static view of code which is not sufficient
for testing dynamic behavior of object-oriented system [2], (2) use of code to test an
object-oriented system is complex and tedious task. In contrast, models help soft-
ware testers to understand systems better way and find test information only after
simple processing of models compared to code, (3) model-based test case generation
can be planned at an early stage of the software development life cycle, allowing to
carry out coding and testing in parallel. For these three major reasons, model-based
test case generation methodology becomes an obvious choice in software industries
and is the focus of this paper.

Activity diagram is an important diagram among 13 diagrams supported by
UML 2.0 [12]. It is used for business modeling, control and object flow modeling,

Debasish Kundu, Debasis Samanta: ”A Novel Approach to Generate Test Cases from UML
Activity Diagrams”, in Journal of Object Technology, vol. 8, no. 3, May–June 2009, pp.
65–83, http://www.jot.fm/issues/issue 2009 05/article1/

http://www.jot.fm/issues/issue_2009_05/article1�

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

complex operation modeling etc. Main advantage of this model is its simplicity and
ease of understanding the flow of logic of the system. However, finding test informa-
tion from activity diagram is a formidable task. Reasons are attributed as follows:
(a) activity diagram presents concepts at a higher abstraction level compared to
other diagrams like sequence diagrams, class diagrams and hence, activity diagram
contains less information compared to others, (b) presence of loop and concurrent
activities in the activity diagram results in path explosion, and practically, it is not
feasible to consider all execution paths for testing. To address these, few work have
been reported in the literatures [10, 11]. Existing work [10, 11] consider activity
diagram in method scope and use UML 1.0 syntax. But, UML 2.0 introduces major
revision for activity diagrams from its preceding UML 1.x version. Therefore, there
is a need for improvement of testing quality by considering activity diagrams using
UML 2.0 and with higher level scope, that is, use case level.

In this work, we propose an approach for generating test cases using UML 2.0
activity diagrams. In our approach, we consider a coverage criterion called activity
path coverage criterion. Generated test suite following activity path coverage crite-
rion aims to cover more faults like synchronization faults, faults in a loop than the
existing work.

The rest of the paper is organized as follows. Section 2 reviews the use of activity
diagrams for software testing. Section 3 presents our proposed methodology with
an illustration. Comparison of our work with previous work is discussed in Section
4. Finally, Section 5 concludes the paper.

2 RELATED WORK

In this section, we review the existing work where activity diagrams are used for
generating test cases.

L. C. Briand et al. [3] propose the TOTEM system for system level testing.
In their approach, all possible invocation of use case sequences are captured in the
form of an activity diagram. L. C. Briand et al. [3] consider sequence diagrams to
represent use case scenarios. Further, they propose to derive various test informa-
tion, test requirements, test cases, test oracles from the detailed design description
embedded in UML diagrams, and expressed in Object Constraint Language (OCL).
In another work, J. Hartmann et al. [8] describe an approach of system testing
using UML activity diagrams. Their approach takes the textual description of a
use case as input, and converts it into an activity diagram semi-automatically to
capture test cases. They also add test requirements to the test cases with the help
of stereotypes. Test data (set of executable test scripts) are then generated applying
category partition method. In an approach on scenario-based testing, Xiaoqing BAI
et al. [1] consider a hierarchy of activity diagrams where top level activity diagrams
capture use case dependencies, and low level activity diagrams represent behavior
of the use cases. Xiaoqing BAI et al. [1] first eliminate the hierarchy structure of
the activity diagrams, and subsequently, they convert them into a flattened system

66 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

level activity diagram. Finally, it is converted into an activity graph by replacing
conditional branches into its equivalent execution paths and concurrency into serial
sequences. This activity graph is a graphic representation of the execution called
thin-thread tree. A thin thread is basically a usage scenario in a software system
from the end user’s point of view. Thin threads are further processed to generate
test cases.

Activity diagrams are also used for gray-box testing and checking consistency
between code and design [10, 11]. Wang Linzhang et al. [10] propose an approach
of gray-box testing using activity diagrams. In gray-box testing approach, test cases
are generated from high level design models, which represent the expected struc-
ture and behavior of software under testing. Wang Linzhang et al. [10] consider an
activity diagram to model an operation by representing a method of a class to an
activity and a class to a swim lane. Test scenarios are generated from this activity
diagram following basic path coverage criterion, which tells that a loop is to be ex-
ecuted at most once. Basic path coverage criterion helps to avoid path explosion in
the presence of a loop. Test scenarios are further processed to derive gray-box test
cases. Chen Mingsong et al. [11] present an idea to obtain the reduced test suite
for an implementation using activity diagrams. Chen Mingsong et al. [11] consider
the random generation of test cases for Java programs. Running the programs with
applying the test cases, Chen Mingsong et al. [11] obtain the program execution
traces. Finally, reduced test suite is obtained by comparing the simple paths with
program execution traces. Simple path coverage criterion helps to avoid the path
explosion due to the presence of loop and concurrency.

3 PROPOSED METHODOLOGY

In this section, we discuss our proposed approach to generate test cases from an
activity diagram. Our approach consists of the following three steps.

1. Augmenting the activity diagram with necessary test information.

2. Converting the activity diagram into an activity graph.

3. Generating test cases from the activity graph.

We describe these three steps in detail in the following sub sections. We also il-
lustrate each step with a running example of registration cancellation use case of
conference management system.

Augmenting activity diagram with necessary test information

In this sub section, we describe guidelines for modeling necessary test information
into an activity diagram followed by an example.
Guidelines

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 67

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

1. For an activity Ai that changes the state of an object OBi from state Sa to
state Sb, we show state Sa of object OBi along with OBi at input pin of the
activity Ai [4, 12] and state Sb of the object OBi along with OBi at output
pin of Ai.

2. For an activity Ai that creates an object OBi during execution [4, 12], we show
that object OBi at output pin of the activity Ai.

3. We replace a loop, decision block or fork-join block in any thread originated
from a fork by an activity with higher abstraction level.

Note that we are not considering the details of each activity such as what are ac-
tions encapsulated in an activity and what are the input, output parameters of each
action in order to preserve simplicity of activity diagrams.

Example 1
Let us now consider an example of registration cancellation use case. We model

the activity diagram of this use case following aforementioned guidelines, which is
shown in Fig. 1.

Figure 1: An activity diagram of Registration Cancellation use case

68 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

We see in Fig. 1 that at first Enter Registration ID activity asks to enter registration
ID. If registration ID is valid, Display Registration and Payment Records activity
displays detail information about registration such as workshop, tutorial, schedule
etc. and payment details. If registration ID is invalid, Display Invalid activity
shows invalid message and prompts to try again or not. If ’no’ option is selected,
use case ends immediately else Enter Registration ID activity asks again to enter
registration ID. In case registration ID is found to be valid, it asks to confirm it. If
not confirmed, execution of use case ends otherwise it begins concurrent execution
of activities namely, Update Registration Record, Process Refund, Prepare Email for
Cancellation. Here, Update Registration record activity updates registration object
and changes its state from complete to cancelled. During execution of this activity,
new cancellation object is also created. Another concurrent activity Porcess Refund
involves in the refund of payment and causes to change of state of Payment object
from NotRefunded to Refunded. New Refund object is also created during execution
of this activity. Prepare Email for Cancellation activity prepares email for cancel-
lation based on the information contained in Registration and Payment objects. As
this activity does not cause any change of state of Registration and Payment object,
they are not shown in input/output pin of that activity. Final result of this activity
is creation of Email object. After execution of all three concurrent activities are
over, Send Email Cancellation activity starts execution. It takes the input Email
object created by Prepare Email for Cancellation activity and Cancellation object
created by Update Registration record activity. This activity changes the state of
Email object from NotSent to Sent and state of Cancellation object from Email-
NotSent to EmailSent. At end, Display Successfully shows successful message. Note
that in this example, no loop or decision or fork-join block is present in any of three
threads of the activity diagram.

Converting activity diagram into activity graph

In this sub section, we discuss about the conversion procedure of an activity diagram
into an activity graph.

An activity graph is a directed graph where each node in the activity graph
represents a construct (initial node, flow final node, decision node, guard condition,
fork node, join node, merge node etc.), and each edge of the activity graph represents
the flow in the activity diagram. Note that an activity graph encapsulates constructs
of an activity diagram in a systematic way suitable for further automation.

We propose a set of rules for mapping constructs of an activity diagram into nodes
of an activity graph, which are shown in Table 1. We may note that there are ten
different types of nodes in activity graph: S(start node), E(flow final/activity final),
A(activity), O(object), OS(object state), M(merge), F (fork), J(join), D(decision),
C(condition).

Example 2
Applying the mapping rules as specified in Table 1 on the running example of activity

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 69

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

Table 1: Mapping rules.
No Constructs of Activity Diagram Node of Activity Graph
1 Initial Node Node of type S with no incoming edge
2 Activity Final Node Node of type E with no outgoing edge
3 Flow Final Node Node of type E with no outgoing edge
4 Decision Node Node of type D
5 Guard Condition associated decision

node
Node of type C and associated with condition string. Its
parent node is of type D

6 Merge Node Node of type M and having single outgoing edge
7 Fork Node Node of type F with single incoming edge
8 Guard condition associated with

fork node
Node of type C and its parent node is of type F

9 Join Node Node of type J and will have one outgoing edge.
10 An object ’OB’ at input/output pin

of an activity ’AC’
Node of type O and associated object name is ’OB’. Its
parent node will be of type ’A’ and associated activity name
’AC’. If same object ’OB’ is in both input and output pin of
the activity ’AC’, then only one node is to be used.

11 Object state ’S’ of an object ’OB’ Node of type OS. If ’OB’ is at input of an activity, then
this node is left child of node of type O and associated object
name is ’OB’ otherwise this node is right child of parent node
associated object name with ’OB’.

12 Activity Node Node of type A. Its associated string is activity name.

diagram of ’Registration Cancellation’ use case, we obtain a set of nodes of the
activity graph as shown in Fig. 2. To form edges, we consider one-to-one mapping
from an edge of the activity diagram into an edge between two nodes in the activity
graph (see Fig. 2). For easy references in our subsequent discussions, we label the

1

4

3

2

5

23

21

10

17

24

13
16

8

6

9

7

14

22

11

12

28

18

2726

25

19

29

20

34

30

33
32

31

3635

37

15

Figure 2: Activity graph obtained from activity diagram of Registration Cancellation
use case

nodes of the activity graph as shown in Fig. 2 and store detail information of each
node in the activity graph in a data structure, called Node Description Table (NDT)
(see Table 2). Similarly, we also obtain subordinate activity graph for each high level

70 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

Table 2: NDT for activity graph
Node
Index

Type
of

Node

Associated String(Activity name/ branch condition/ object
name / object state)

1 S
2 A Enter Registration ID
3 D
4 C RegID=NotValid
5 A Display Invalid
6 D
7 C TryAgain=Yes
8 C TryAgain=No
9 E
10 C RegID=Valid
11 A Display Registration and Payment Record
12 D
13 C Confirm=No
14 A Display Exit
15 C Confirm=Yes
16 F
17 A Update Registration Record
18 A Process Refund
19 A Prepare Email for Cancellation
20 J
21 O Registration
22 OS Completed
23 OS Cancelled
24 O Cancellation
25 O Payment
26 OS Not Refunded
27 OS Refunded
28 O Refund
29 O Email
30 A Send Email Cancellation
31 O Cancellation
32 OS EmailNotSent
33 OS EmailSent
34 O Email
35 OS NotSent
36 OS Sent
37 A Display Successfully

activity which replaces the decision block / fork-join block /loop block in a thread
as discussed in the first sub section of Section 3.

Generating test cases from activity graph

In this sub section, we first present fault model. We then discuss the existing test
coverage criteria, and our proposed test coverage criterion. Subsequently, we present
our approach of generating test cases from an activity graph following the proposed
test coverage criterion.
Fault model
Every test strategy targets to detect certain categories of faults called its fault model
[2]. Our test case generation scheme is based on the following fault model.

• Fault in decision: This fault occurs in a decision of an activity diagram. For
example, a fault in the decision which decides validity of a registration may
display registration information and payment information of some registrant

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 71

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

for invalid registration ID, whereas for valid registration ID, it may display
invalid account.

• Fault in loop: This fault occurs in either loop entry condition or loop ter-
minating condition or increment operation or decrement operation. For an
example in Registration Cancellation use case, if a fault exists in the termi-
nating condition of the loop then it may happen that after giving input for
the first time TryAgain = Yes, loop is executed for its 2nd iteration and say,
at the end of 2nd iteration, after giving TryAgain = No, loop is not exiting
rather it executes for its 3rd iteration etc.

• Synchronization fault : This faults occurs when some activity begins execu-
tion before completion of execution of group of all preceded activities. In the
Registration Cancellation example, if Send Email Cancellation activity starts
execution before the completion of all concurrent activities Update Registra-
tion Record and Prepare Email for Cancellation, failure may arise as because
objects Email and Cancellation which are created by preceded concurrent ac-
tivities may not be available to Send Email Cancellation. Main reason is that
activities are not executed in timely manner, that is, Send Email Calcellation
activity is not synchronized with concurrent activities.

Test coverage criteria
Test coverage criteria [9] is a set of rules that guide to decide appropriate elements
to be covered to make test case design adequate. We discuss the existing test case
coverage criteria followed by our proposed criterion, which we consider as an im-
proved test coverage criterion.

a. Basic path coverage criterion
First, we define basic path in activity graph. A basic path is a sequence of activities
where an activity in that path occurs exactly once [10, 11]. Note that a basic path
considers a loop to be executed at most once.

Given a set of basic paths PB obtained from an activity graph and a set of test
cases T , for each basic path pi ∈ PB, there must be at least one test case t ∈ T such
that when system is executed with the test case t, pi is exercised.

To understand concept of basic path coverage criterion, let us consider an example
shown in Fig. 3. In the activity graph of Fig. 3(a), we see that there are two
basic paths; (a)1 → 2 → 3 → 7 → 8 → 9 (loop is executed for zero time) and (b)
1 → 2 → 3 → 4 → 5 → 6 → 3 → 7 → 8 → 9 (loop is executed once). These two
basic paths cover the false and true value of loop condition. On the other hand, in
the activity graph of Fig. 3(b), there is only one basic path 1 → 2 → 3 → 4 →
5 → 7 → 8 → 9 (loop is executed once). This basic path covers the false value of
loop condition. The path 1 → 2 → 3 → 4 → 5 → 6 → 3 → 4 → 5 → 7 → 8 → 9
(loop is executed twice) is necessary to check whether loop actually executes for

72 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

[a <= 0]

A1

A2

A3

A4

[a > 0]

1

2

3

4

5

6

8

9

7

Activity diagram1 Activity graph1

(a) While-Do loop structure

Activity diagram2 Activity graph2

[a > 0]

A1

A2

A3

A4

[a <= 0]

1

2

3

4

5

6

8

9

7

(b) Do-While loop structure

Figure 3: Examples of activity diagram with loop structure

the true value of loop condition. But, it is not a basic path because in this path,
activities A2, A3 occur more than once which violates the properties of basic path.
This example reveals that with basic path coverage criterion, it may not be possible
to detect fault associated with truth value of a loop condition.

b. Simple path coverage criterion
A simple path is considered for activity diagrams that contain concurrent activities
[11]. It is a representative path from a set of basic paths where each basic path has
same set of activities, and activities of each basic path satisfy identical set of partial
order relations among them. Note that partial order relation between two activities
Ai and Aj, denoted as Ai < Aj signifies that activity Ai has occurred before activity
Aj.

Given a set of simple paths PS for an activity graph which contains concurrent
activities and a set of test cases T , for each simple path pi ∈ PS there must be a test
case t ∈ T such that when system is executed with a test case t, pi is exercised.

To understand concept of simple path coverage criterion, we consider an activity
diagram shown in Fig. 4. In the activity graph of Fig. 4, we see that there are eight
partial order relations among activities in activity diagram : A1 < A2, A2 < A3,
A2 < A4, A3 < A5, A4 < A6, A5 < A7, A6 < A7, A7 < A8. There are six basic paths
which satisfy all these relations specified above and consist of same set of activities
(see Fig. 4) given below.

P1 = 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

P2 = 1 → 2 → 3 → 4 → 5 → 7 → 6 → 8 → 9 → 10 → 11 → 12

P3 = 1 → 2 → 3 → 4 → 6 → 5 → 7 → 8 → 9 → 10 → 11 → 12

P4 = 1 → 2 → 3 → 4 → 6 → 5 → 8 → 7 → 9 → 10 → 11 → 12

P5 = 1 → 2 → 3 → 4 → 6 → 8 → 5 → 7 → 9 → 10 → 11 → 12

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 73

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

A1

A2

A3 A4

A5 A6

A7

A8

1

11

10

3

2

9

5

4

7

6

8

12

Activity diagram Activity graph

Figure 4: Example of activity diagram with concurrent activities

P6 = 1 → 2 → 3 → 4 → 5 → 6 → 8 → 7 → 9 → 10 → 11 → 12

One representative path from the set of basic paths P1, P2, P3, P4, P5, P6 is consid-
ered as a simple path. It may be noted that presence of loop and decision among
concurrent activities results in path explosion and hence, it is infeasible to con-
sider all paths due to limited capability of resource and time. Simple path is one
remedy in reducing number of paths to be tested. Question that still remains unan-
swered in the work [11] is how to select simple path from a set of basic paths so that
generating redundant basic paths can be avoided in the test case generation process.

c. Activity path coverage criterion
We propose a test coverage criterion, called activity path coverage criterion. We aim
to use this coverage criterion for both loop testing and concurrency among activi-
ties of activity diagrams. Before describing our new coverage criterion, we mention
about activity path and types of activity paths, namely (i) non-concurrent activity
path, and (ii)concurrent activity path.

First, we consider a precedence relation as given below.
Definition 1 : A precedence relation, denoted as ’≺’, over a set of activities SA in the
activity diagram is defined as follows.

1. If an activity Ai ∈ SA precedes a fork F and Aj ∈ SA is the first activity that
exists in any thread originated from the fork F , then Ai ≺ Aj.

2. If an activity Aj ∈ SA follows next to a join J and Ak ∈ SA is the last activity
in any thread joining with the join J , then Ak ≺ Aj.

3. If Ai ∈ SA and Aj ∈ SA are two consecutive concurrent activities in a thread
originated from a fork F where Ai exists before Aj in the thread, then Ai ≺ Aj.

An activity path is a path in an activity graph that considers a loop at most two
times and maintains precedence relations between concurrent and non-concurrent

74 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

activities.

Non-concurrent activity path is a sequence of non-concurrent activities (that is, ac-
tivities which are not executed in parallel) from the start activity to an end activity
in an activity graph, where each activity in the sequence has at most one occurrence
except those activities that exist within a loop. Each activity in a loop may have at
most two occurrences in the sequence.

Concurrent activity path is a special case of non-concurrent activity path, which
consists of both non-concurrent and concurrent activities satisfying precedence rela-
tion among them.

Next, we define the activity path coverage criterion:
Given a set of activity paths PA for an activity graph and a set of test cases T , for
each activity path pi ∈ PA there must be a test case t ∈ T such that when system is
executed with a test case t, pi is exercised.

We now discuss which type of activity path should be considered to cover what
kind of faults. We use non-concurrent activity path to cover faults in loop and
branch condition. To detect a fault in a loop, general approach [6] is to (i) execute
loop zero time, (ii) execute loop once, (iii) execute loop two times, (iv) execute loop
for n times, (v) execute loop for n + 1 times, and choose a suitable value of n. Its
main motivation is to test whether increment or decrement operator of the loop as
well as the condition (whose value may change subject to the user input) specified
in the loop entry point (while-do loop structure) or exit point (do-while loop struc-
ture) is error free or not. Here, we choose n = 1, that is to execute loop zero time,
one time, and two times because it ensures validity of the loop condition as well as
proper working of the increment/decrement operator of the loop but still avoids the
path explosion. We refer it as minimal loop testing. Note that for do-while loop
structure, loop condition is tested at the end of the loop. Thus, we require to test
the do-while loop structure two times - first time for one iteration and second time
for two iterations.

In our example of activity graph shown in Fig 3(a) (while-do structure), we see
that non concurrent activity paths are 1 → 2 → 3 → 7 → 8 → 9, 1 → 2 → 3 →
4 → 5 → 6 → 3 → 7 → 8 → 9 and, 1 → 2 → 3 → 4 → 5 → 6 → 3 → 4 →
5 → 6 → 3 → 7 → 8 → 9 whereas non concurrent activity paths in the activity
graph of Fig(b) for do-while structure are 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 and
1 → 2 → 3 → 4 → 5 → 6 → 3 → 4 → 5 → 7 → 8 → 9. In both cases, non-
concurrent activity paths cover both true and false value of loop condition which
ensures minimal loop testing. Main difference between non-concurrent activity path
and basic path [10] is that basic path only focuses on avoidance of path explosion
taking the loop execution at most once but does not consider minimal loop testing
whereas our non-concurrent activity path considers both.

On the other hand, we consider concurrent activity path for an activity diagram

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 75

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

that contains concurrent activities. For a complex and large system, it is common
to have explosion of concurrent activity paths because there would be large number
of threads and every thread on an average would have large number of concurrent
activities. Depending on runtime environmental condition, execution thread of the
system would follow one concurrent activity path, but which concurrent activity path
would be followed, can not be known before execution of the system. For effective
testing with limited resource and time, we aim to test only relative sequence of the
concurrent and non concurrent activities that is, set of precedence relations exist
among these activities. For this, we are to choose one representative concurrent
activity path from a set of concurrent activity paths that have same set of activities
and satisfy same set of precedence relations. Now question is: which representative
concurrent activity path from activity graph is to select and how? We propose to
select the concurrent activity path such that sequence of all concurrent activities
encapsulated in that path, correspond to breadth-first search traversal of them in
the activity graph. It is so because it ensures all precedence relations among the
activities in the activity diagram be satisfied. Note that, we can avoid the gener-
ation of entire set of concurrent activity paths by finding representative concurrent
activity path from activity graph. This will make the task of test case generation
process easier and hence, reduce testing effort.

In the example shown in Fig. 4, we see that there are four concurrent ac-
tivities A3, A4, A5, A6 satisfying the set of precedence relations Sp = {A2 ≺
A3, A2 ≺ A4, A3 ≺ A5, A4 ≺ A6, A5 ≺ A7, A6 ≺ A7}. We find six concurrent
activity paths, all of which include A3, A4, A5, A6 and satisfy Sp. Note that these
six paths are same as P1, . . . , P6 (mentioned earlier). Among them, only the path
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 contains sequence of
concurrent activities same as the breadth-first search traversal of them, so we choose
it as representative concurrent activity path. Let us compare concurrent activity
path with simple path [11] which is considered only for avoiding the path explosion
due to presence of concurrent activities. Our proposed concurrent activity path con-
siders both avoiding the path explosion due to presence of concurrent activities and
loop testing. Another difference is that concurrent activity path considers prece-
dence relation either between two concurrent activities or between a non-concurrent
activity and a concurrent activity, but not between two non-concurrent activities.
But, simple path considers partial order relation between any two kinds of activities
irrespective of whether it is non-concurrent or concurrent.

Generating test cases
We generate test cases following the activity path coverage criterion. To do this,
we obtain all activity paths from the node of type S to a node of type E in the
activity graph. We propose an algorithm GenerateActivityPaths to generate all ac-
tivity paths. In this algorithm, we use the path enumeration algorithms - depth-first
search and breadth-first search traversals of graph. We traverse the activity graph
by depth-first search except the portion of sub tree (which contains a set of nodes
corresponding to all concurrent activities) rooted at a node of type F , whereas we

76 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

traverse that sub tree following breadth-first search traversal of graph. Breadth-first
search traversal helps to avoid generating all possible concurrent activity paths, but
to obtain only representative one. Note that these activity paths are not necessarily
linearly independent paths [7] due to consideration of loop iteration more than once.

Algorithm1: GenerateActivityPaths
Input : An activity graph
Output: Set of activity paths

Initialize: LoopFlag=0; Visits of every node=0; Stack S and queue Q is used for1

keeping the track of visited nodes.
Begin2

Traverse the activity graph using depth-first search (DFS). For each node visited3

during the traversal, count its no of visits and push the node into the stack S;
if Visits of the current node = 2 then4

Set LoopFlag=1;5

end6

if LoopFlag=1 and visits of current node = 3 then7

Backtrack to the node (of type ’D’) which has at least a child node with its8

visits less than two, and then repeatedly pop from S until top of S is the node
where recent backtrack has stopped;

end9

if Type of currently visited node NF =’F’ then10

Traverse the subtree rooted at node NF using breadth-first search (BFS) and11

enqueue the nodes of type ’A’ into Q until node of type ’J’/’E’ is visited for
out-order-degree (NF) number of times; At end, enqueue the node of type ’J’
found during recent breadth-first-search(BFS) into Q;
while Q is Not Empty do12

Dequeue q from Q;13

if (type(q)!=’J’) then14

Push q into S ;15

Explore all descendent dq of node ’q’ with taking ’q’ as the root upto16

maximum depth=2 using depth-first-search (DFS) traversal and push
dq into S if type of dq is other than ’A’ and ’E’ and ’J’;

end17

end18

end19

if Type of currently visited node=’E’ then20

Copy current content of S into an array where top of S represents last node of21

activity path, sequence of elements in the array is an activity path; Backtrack to
node of type=’D’ that has at least a child node whose visit count=0, and then
repeatedly pop from S until top of S is the node where recent backtrack has
stopped; visit its child node whose visit count = 0; If S is found to empty, stop
else go to step 3 ;

end22

End23

Applying the algorithm GenerateActivityPaths on the activity graph as shown in
Fig. 2, we obtain three activity paths as given below.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 77

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

AP1 = 1 → 2 → 3 → 4 → 5 → 6 → 7 → 2 → 3 → 4 → 5 → 6 → 8 → 9

AP2 = 1 → 2 → 3 → 4 → 5 → 6 → 7 → 2 → 3 → 10 → 11 → 12 → 13 → 14 → 9.

AP3 = 1 → 2 → 3 → 4 → 5 → 6 → 7 → 2 → 3 → 10 → 11 → 12 → 15 → 16 →
17 → 21 → 22 → 23 → 24 → 18 → 25 → 26 → 27 → 28 → 19 → 29 → 20 → 30 →
31 → 32 → 33 → 34 → 35 → 36 → 37 → 9.

It may be noted that algorithm GenerateActivityPaths generates a subset of all
activity paths. We augment set of activity paths as derived following GenerateActiv-
ityPaths using Rule 1.

Rule 1 : Let APi be an activity path in a set of activity paths obtained from an
activity graph. Decompose APi into sequence of sub paths as APi = P1PiPmPiPn if
possible where P1, Pi, Pm, Pn are all sub paths of APi and Pi 6= φ. If no such decom-
position is possible, then no activity path can be derived from this APi, otherwise,
set of activity paths derived from activity path APi

Pderived = {P1PiPn} if Pm 6= φ

= {P1Pn, P1PiPn} otherwise.

Note that Pm = φ for while-do loop structure and Pm 6= φ for do-while loop structure.

Applying this rule on each activity path AP1, AP2, AP3, we obtain following de-
rived activity paths.
Pderived(from AP1) = {1 → 2 → 3 → 4 → 5 → 6 → 8 → 9}

Pderived(from AP2) = {1 → 2 → 3 → 10 → 11 → 12 → 13 → 14 → 9}

Pderived(from AP3) = {1 → 2 → 3 → 10 → 11 → 12 → 15 → 16 → 17 → 21 →
22 → 23 → 24 → 18 → 25 → 26 → 27 → 28 → 19 → 29 → 20 → 30 → 31 → 32 →
33 → 34 → 35 → 36 → 37 → 9}

Following the above approach, we also obtain activity paths from subordinate activ-
ity graph which is developed for each high level activity (used to replace decision /
loop / fork-join block in any thread). We then merge activity paths generated from
main activity graph with activity paths generated from subordinate activity graphs
using Rule 2.

Rule 2 : Let G be a main activity graph with set of activity paths S1 and i be a node
of activity graph G corresponds to a high level activity for which there is a subordinate
activity graph Gs with set of activity paths S2 = {a → b → c → d, a → e → f → d}.
If 1 → 2 → 3 → . . . → i → . . . → n ∈ S1 then replacing i in that activity path with
each activity path of set S2, obtain new merged activity paths as 1 → 2 → 3 → . . . →

78 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

3 PROPOSED METHODOLOGY

a → b → c → d → . . . → n and 1 → 2 → 3 → . . . → a → e → f → d → . . . → n.
If cardinality of set S2 is n, we then obtain n new merged activity paths for each
activity path in S1, which has a node i, corresponding to an subordinate activity,
whose activity graph is Gs.

For the running example, there is no such subordinate activity graph, so combi-
nation of activity paths is not required here. Therefore, we have total six activity
paths, which we process for generating test cases. Test case in our approach consists
of four components - sequence of branch conditions, activity sequence, object state
changes, and object created. Activity sequence, object state changes, and object cre-
ated constitute the expected system behavior. On the other hand, we consider the
sequence of branch conditions as a source of test input. Each branch condition in
sequence of branch conditions corresponds to the some input data specified in the
textual description of the use case whose activity diagram is being considered. With
the help of system analyst, we may find these input values corresponding to each
branch condition.

As a part of test case generation, we obtain necessary values of all four compo-
nents of a test case from the corresponding activity path itself. For this, we use node
description table (NDT) constructed for the activity graph. Constituent parts of
test case Ti are filled up after processing of corresponding activity path AP i with
help of following steps.

a. If type of the current node of AP i is either ’S’ or ’E’ or ’D’ or ’F ’ or ’J ’, it is
ignored.

b. If type of the current node of AP i is ’C’, branch condition associated that
node is the next branch condition in ’sequence of branch conditions ’ part of
Ti.

c. If type of the current node of AP i is ’A’, activity name associated with that
node is the next activity in ’activity sequence’ part of Ti.

d. If type of the current node of AP i is ’O’ and type of the next node is ’OS’,
then the object name associated with the current node is the object in ’object
state changes ’ part of Ti.

e. If type of the current node of AP i is ’OS’ and type of the previous node is
’O’ then the state associated with current node will be old state of the object
associated with previous node.

f. If type of both current node and previous node of AP i are ’OS’, then the state
associated with current node will be new changed state of the object associated
with precedent of previous node.

g. If type of current node of AP i is ’O’ and type of next node 6= ’OS’, then the
object associated with this node will be the next in ’object created ’ part of Ti.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 79

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

Table 3 lists test cases which are obtained from six activity paths. Here, test cases
1, 4 cover fault in loop (minimal loop testing), whereas test case 2, 5 cover fault in
decision. On the other hand, test case 3, 6 cover synchronization fault. We now
discuss how test case 3, 6 detect synchronization fault. Let us consider an activ-

Table 3: Test cases from activity graph
Test
Case
No

Sequence of Branch
Conditions

Activity sequence Object State changes [
Object (Old state, New
state)]

Object cre-
ated

1 RegID = Invalid,
TryAgain = Yes,
RegID = Invalid,
TryAgain = No

Enter Registration ID, Display InValid,
Enter Registration ID, Display Invalid

2 RegID = Invalid,
TryAgain = Yes,
RegID = Valid,
Confirm = No

Enter Registration ID, Display InValid,
Enter Registration ID, Display Registra-
tion and Payment Records, Display Exit

3 RegID = Invalid,
TryAgain = Yes,
RegID = Valid,
Confirm = Yes

Enter Registration ID, Display InValid,
Enter Registration ID, Display Registra-
tion and Payment Records, Update Reg-
istration Record, Process Refund, Pre-
pare Email for Cancellation, Send Email
Cancellation, Display Successfully

Registration (Complete,
Cancelled), Payment (
NotRefunded, Refunded
), Cancellation(Email-
NotSent, EmailSent),
Email (NotSent, Sent)

Cancellation,
Refund,
Email

4 RegID = Invalid,
TryAgain = No

Enter Registration ID, Display InValid

5 RegID = Valid, Con-
firm = No

Enter Registration ID, Display Registra-
tion and Payment Records, Display Exit

6 RegID = Valid, Con-
firm = Yes

Enter Registration ID, Display Registra-
tion and Payment Records, Update Reg-
istration Record, Process Refund, Pre-
pare Email for Cancellation, Send Email
Cancellation, Display Successfully

Registration (Complete,
Cancelled), Payment (
NotRefunded, Refunded
), Cancellation(Email-
NotSent, EmailSent),
Email (NotSent, Sent)

Cancellation,
Refund,
Email

ity path APk containing two different nodes ni and nj which are of type O (means
object) and associated with same object OB. Note that the object OB should be
associated with two different activities Ai and Aj in APk. This is because, if object
OB were associated with only one activity, then APk would not have two such nodes
ni and nj (see also conversion of activity diagram into activity graph). Thus, it is
evident that state of object OB is supposed to change as specified in the test case
Tk (corresponding to APk) during execution of Ai and Aj. If state of OB does not
change accordingly, there must be some faults in the implementation. There are two
possible scenarios. In one scenario, Ai and Aj occur consecutively in the activity
path APk. In that case, possible root cause for this fault may be that the activities
Ai and Aj are not properly synchronized, which means synchronizing statements for
these two activities have some faults. In another scenario, Ai and Aj do not occur
consecutively in the activity path APk, and in that case Ai or Aj may be faulty.
For example, suppose Cancellation object has not changed its state as expected
during execution of the test case T3. To find root cause for this fault, we find two
activities Update Registration Record and Send Email Cancellation in the activity
sequence of T3, which are associated with the object Cancellation (see Table 2 and
3). Further, Update Registration Record is concurrent activity whereas Send Email
Cancellation is a sequential activity and they occur consecutively. Therefore, we
may infer that there are some faults exist in synchronizing statements for Update

80 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

5 CONCLUSIONS

Registration Record and Send Email Cancellation in the implementation. In brief,
with the test case generated according to our approach we not only detect the syn-
chronization faults but also identify possible location of the faults, which eventually
reduces faults correction time and hence testing effort.

4 COMPARISON WITH PREVIOUS WORK

Our work is comparable to the work reported in [10, 11]. In the work reported [10],
activity diagram is used in method scope where required input and output parame-
ter are clearly shown in input and output action states. But in our work, we have
considered activity diagrams at higher level of abstractions, that is in use case scope
without capturing the details of individual activity. We have done this only to main-
tain the simplicity in the design. Moreover, the reported work [10] assumes that any
fork node will have only two exit edges and concurrent activity states will not access
the same object and only execute asynchronously as per the testing requirement.
It is difficult to preserve these assumptions for real life critical applications. Our
work addresses this issue. In another work [11], activity diagrams are not used for
test case generation directly, but for obtaining the reduced set of test cases for an
implementation whose activity diagrams are being considered. Another difference
we would like to point out that both the reported work [10, 11] assume that each
activity corresponds to a method of a class and each swim lane corresponds to a
class and all activities in same swim lane correspond to the methods of same class,
whereas an activity in our work corresponds to one or more methods of one or more
classes.

Comparing our proposed activity path coverage criterion with the existing cover-
age criteria, we see that basic path [10] and simple path [11] do not ensure minimal
loop testing, whereas activity path coverage criterion ensures it. To avoid path ex-
plosion, simple path is considered in [11] but how simple path (basic representative
path) is selected from a set of basic paths is not discussed. Our proposed approach
have addressed the problem of selection of representative path by considering the
breadth-first search traversal of concurrent activities. None of the reported work
[10, 11] has discussed how synchronization faults can be detected from the test
cases generated from activity diagrams. This issue is also taken care in this work.

5 CONCLUSIONS

In this paper, we have presented an approach for generating test cases from activity
diagram at use case scope. We have also proposed a test coverage criterion, called
activity path coverage criterion. Our approach is significant due to the following
reasons. First, our approach is capable to detect more faults like faults in loop,

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 81

A NOVEL APPROACH TO GENERATE TEST CASES FROM UML ACTIVITY DIAGRAMS

synchronization faults than the existing approaches. Second, test case generated in
our approach may help to identify location of a fault in the implementation, thus
reducing testing effort. Third, our model-based test case generation approach in-
spires developer to improve design quality, find faults in the implementation early,
and reduce software development time. Fourth, it is possible to build an automatic
tool following our approach. This automatic tool will reduce cost of software devel-
opment and improve quality of the software.

In the present submission, we have focused only activity diagram of a single use
case at a time. However, activity diagrams of multiple use cases which are related
to each other by various relationships such as, include, extend, generalization /
specialization can be considered, which we plan to take up in our next work.

REFERENCES

[1] X. Bai, C. P. Lam, and H. Li. An approach to generate the thin-threads from the
UML diagrams. In 28th Annual International Computer Software and Applications
Conference (COMPSAC04), pp. 546-552, 2004.

[2] R. V. Binder. Testing Object-Oriented Systems Models, Patterns, and Tools. Addison
Wesley, Reading, Massachusetts, October 1999.

[3] L. Briand and Y. Labiche. A UML-based approach to system testing. In 4th Interna-
tional Conference on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pp. 194-208, 2001.

[4] B. P. Douglass. Real Time UML: Advances in The UML for Real-Time Systems.
Addison Wesley, Third Edition, February 2004.

[5] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-driven development
using UML 2.0: promises and pitfalls. IEEE Computer, 39(2):59-66, Feb. 2006.

[6] J. Z. Gao, H.-S. J. Tsao, and Y. Wu. Testing and Quality Assurance for Component-
Based Software. Artech House Publishers, 2003.

[7] Z. Guangmei, C. Rui, L. Xiaowei, and H. Congying. The automatic generation of
basis set of path for path testing. In 14th Asian Test Symposium (ATS 05), pp.
46-51, 2005.

[8] J. Hartmann, M. Vieira, H. Foster, and A. Ruder. A UML-based approach to system
testing. Innovations in Systems and Software Engineering, 1(1):12-24, April 2005.

[9] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366-427, December 1997.

[10] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang. Gen-
erating test cases from UML activity diagram based on gray-box method. In 11th
Asia-Pacific Software Engineering Conference (APSEC04), pp. 284-291, 2004.

[11] C. Mingsong, Q. Xiaokang, and L. Xuandong. Automatic test case generation for
UML activity diagrams. In 2006 international workshop on Automation of software
test, pp. 2-8, 2006.

[12] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly, June 2005.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 3

5 CONCLUSIONS

ABOUT THE AUTHORS

Debasish Kundu received his B. Tech. in Computer Sci-
ence and Technology from Kalyani University. He received MS
in Information Technology from Indian Institute of Technology
Kharagpur, India. Currently, he is pursuing Ph.D. in the field
of Software Testing at Indian Institute of Technology Kharag-
pur, India. He has published 10 research papers and tech-
nical reports in peer-reviewed journals and high quality con-
ference proceedings. He is an IEEE graduate student mem-
ber. He can be reached at d.kundu.iitkgp@gmail.com. See also

http://sit.iitkgp.ernet.in/∼dkundu.

Debasis Samanta received his B. Tech. in Computer Sci-
ence and Engineering from Calcutta University, M. Tech. in
Computer Science and Engineering from Jadavpur University,
Ph.D. in Computer Science and Engineering from Indian Insti-
tute of Technology, Kharagpur. He is currently an Assistant Pro-
fessor in School of Information Technology, Indian Institute of
Technology, Kharagpur. He has more than 15 years of experi-
ence in teaching and published more than 50 research papers in
peer-reviewed journals and high quality conference proceedings.

He also has authored two books in the field of Computer Science and Engineer-
ing. He is a senior IEEE member and presently Chair of IEEE Kharagpur Sec-
tion, India Council. He can be reached at dsamanta@sit.iitkgp.ernet.in. See also
http://facweb.iitkgp.ernet.in/∼dsamanta.

VOL 8, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 83

mailto:d.kundu.iitkgp@gmail.com�
http://sit.iitkgp.ernet.in/$	hicksim $dkundu�
mailto:dsamanta@sit.iitkgp.ernet.in�
http://facweb.iitkgp.ernet.in/$	hicksim $dsamanta�

