"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2007

Vol. 8, No. 2, March—Aprile 2009

Safety as a Service

Audrey Occello, Anne-Marie Dery-Pinna, Michel Riveill, Engineering
School of Technology of the University of Nice, France

Application adaptations can involve changing the stucture or the behavior of applica-
tions. When performed at runtime, such adaptations may lead application execution to
unsafe states. It arises in component and service-oriented platforms as well as aspect-
oriented frameworks that support run-time adaptation. However such platforms hardly
manage adaptation-related errors. In this paper we propose a generic safety service
that can be used with different platforms as the need to determine safety of run-time
adaptation is independent of the underlying technology.

1 INTRODUCTION

Software application complexity induces important risks of bugs or unpredicted be-
haviors resulting from interactions between application subsystems. Static analysis
techniques are used to verify that no bug or undesired behavior will occur at run-
time. Type-checking [12] detects invalid code. Most of Architecture Description
Languages (ADLs) [24] ensure assembly soundness for initial constructions of the
application architecture. Model-checking [22] ensures that “bad things do not hap-
pen on all executions of a system and that good things eventually happen on all
executions of a system” [21]. Theorem proving [9] verifies invariant preservation to
check, for example, whether an operation behaves as predicted.

Component and service-oriented platforms [10, 34, 27, 31] permit to change, add
or remove components in assemblies. Aspect programming [32, 8, 16] allows for
changing the set of actions associated with a functionality through the weaving and
unweaving of aspects. We call runtime adaptation such kind of dynamic modifi-
cation of applications. Runtime adaptations may generate bugs and unpredicted
interactions leading the application execution to an unsafe state. For example, a
functionality may be removed accidentally when removing a component or undesired
cycles may be introduced in new interactions between components. Then static pro-
gram verifications are not sufficient, new checks need to be performed at runtime to
control adaptation safety. This can be done, for example, by application developers
for each adaptation of their application. This is error-prone as each adaptation has
to be managed on a case by case basis.

The design of distributed applications converges towards the use of middleware
platforms that manages application complexity. Such platforms offer a separation
between functional and extra functional aspects named services. For example, EJB-
based platforms [35] such as Jonas [28] and CCM-based ones [17] such as OpenCCM

Cite this document as follows: Audrey Ocello, Anne-Marie Dery-Pinna, Michel Riveill: Safety as
a Service, in Journal of Object Technology, vol. 8, no. 2, March—Aprile 2009, pages 187-207,
http://www.jot.fm /issues/issues_2009_03/articleb

http://www.jot.fm/issue/issues_2009_03/article5/

o ‘P_/ SAFETY AS A SERVICE

[27] provide transaction, security and persistence services. In the same way, plat-
forms with adaptation capabilities [27, 32, 10, 8, 34, 31, 33] can manage adaptation
safety in the middleware implementation of non functional features in a more sys-
tematic way. Adaptation safety checking can be reused for any application that
runs on a given platform. Though, most of these platforms handle only a subset of
adaptation safety errors and still lack of formal support to control such adaptations.

Even if adaptations are implemented differently in each platform, adaptation
safety checking can be abstracted away and can be modeled independently of execu-
tion supports. In this paper, we propose to handle adaptation safety as a platform-
independent “service” in the context of a Model Driven Engineering (MDE) [37]
approach as it has been done for trader [23], transactions [36], persistence [40] and
deployment [15] services.

The remainder of this paper is organized as follows. Section 2 describes some
kinds of errors related to adaptations and how they are handled in middleware
platforms. Section 3 presents the architecture of the service and its protocol. Section
4 shows a service implementation and explains how to configure the service to use
it with two different platforms. Section 5 concludes and identifies future work.

2 ADAPTATION SAFETY

This section presents some middleware platforms offering dynamic adaptation ca-
pabilities. It also presents the errors that can arise when using such capabilities.

Adaptation handling in middleware platforms

This section presents middleware platforms that are quite well-known and that han-
dle adaptations dynamically. There are three more frequently encountered kinds of
adaptations: 1) interface evolution (adding or removing functionalities to the set
of functionalities that a component handles), 2) behavioral composition (modifying
the behavior of a functionality by composing new actions with the existing ones)
and 3) assembly modification (adding or removing bindings between components or
replacing components by other ones in assemblies).

CCM/OpenCCM: The CORBA Component Model [17] is an evolution of
the CORBA object model [38] dedicated to the design, produce, deploy, and run
distributed heterogeneous component based applications. According to the CCM
specification, it is dynamically possible to create CORBA component instances and
to interconnect these instances by means of assemblies. Assembly information is
defined to be static: the Component Assembly Descriptor determines which com-
ponent types to use for interconnections. However, it is possible to change CORBA
component instances to use for a given connection dynamically as in the first CCM
implementation, OpenCCM [27]. OpenCCM supports only assembly modification.

188 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

2 ADAPTATION SAFETY

Fractal/Julia: Fractal [11] is a programming language-agnostic component
model. Various programming languages can be used to design, implement, de-
ploy and reconfigure components dynamically without affecting the philosophy of
the model. Julia [10] is the reference implementation of Fractal. A Fractal com-
ponent is made of two parts: a content that manages the functional concerns, and
a membrane of built-in and user-defined controllers, that manages non functional
concerns (security, transactions, ...). As the model is hierarchical, the content part
of a Fractal component can be made of other components and can be nested at ar-
bitrary levels. The membrane part of a Fractal component contains specific built-in
controllers that provides the API to adapt Fractal components. Using Julia, content
and binding controllers make it possible to perform assembly modification.

SOFA /DCUP: Software Appliances [34] is a component model which allows an
application to be composed of a set of dynamically updatable components. As Frac-
tal, SOFA is a hierarchical model. The strength of the SOFA model is in the use of
behavioral protocols [1] describing component usage. The behavior of a SOFA com-
ponent corresponds to the set of all traces that can be produced by the component.
DCUP (Dynamic Component UPdating) is the SOFA layer allowing for dynamic
component replacement at runtime which is part of the assembly modification kind
of adaptations.

OSGi: The Open Service Gateway initiative [31] is a service-oriented specifi-
cation dedicated to the construction of Service Oriented Architectures (SOA) [26].
OSGi services are delivered and deployed in units called bundles. A bundle is ei-
ther a service provider or service consumer and corresponds to an OSGi component.
The specification defines administration mechanisms (installation, activation, deac-
tivation, update and uninstallation of components). For example, the Wire Admin
Service is responsible for the connection (wire) between providers and consumers.
OSGi components can directly react on the appearance and disappearance of services
by dynamically discovering each others. Then OSGi supports assembly modification.

Noah: Noah [8] is a framework allowing programmers to express the interactions
between heterogeneous software entities (Java, EJB [35] and .NET [25]) declaratively
and externally via the ISL language [5]. By describing interaction rules between
software entities, programmers can modify their behavior dynamically. A merging
operation based on ISL operators is used to compose a set of rules applied to a
software entity. Then, Noah enables behavior composition.

Composition filters/Compose*: The composition filter model (CF) [6] is an
extension of the object-oriented model. Some implementations of the model offer
opportunities in terms of dynamic adaptations such as Sina [20] (on top of Smalltalk)
and Compose* [16] (on top of .NET). CF’s central construction, the filter, permits
the modification of object structure and behavior. Each object includes two ordered
collections of filters, one for received messages and the other for sent messages. All
incoming and outgoing messages are intercepted and submitted to the filters before
being possibly processed by the object itself. The weaving mechanism (superimposi-
tion) for filter composition with the application locates the point in the application

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 189

o ‘P_/ SAFETY AS A SERVICE

where the filters will be added. Depending on the filter type, the associated action
to perform varies: the addition (via the filter Substitution, Dispatch or Meta) and
withdrawal (via the filter Error) of functionalities corresponding to interface evolu-
tion and the modification of existing functionality behavior (via any combination of
filters of all kinds) corresponding to behavior composition.

JAC: Java Aspect Components [32] is a framework dedicated to the development
of aspect oriented applications. It implements the API (Application Programming
Interface) of AOP Alliance [3] and supports the composition of aspects statically as
well as dynamically. Wrappers are used to change the behavior of the functionalities
of an object and to make the object acts as if it accepts calls of new functionalities
(not implemented in the object but in the wrapper itself). Then two kinds of
adaptations can be performed in JAC: interface evolution and behavior composition.

FAC/Julius: Fractal Aspect Component [33] is a model that combines the
possibilities of component platforms and aspect oriented frameworks. In the Julius
implementation of the FAC model, a new kind of component (aspect component)
and binding allows for the implementation of aspect oriented concepts: an aspect
component can be connected to a Fractal component in order to modify the behavior
of the latter. This acts as if an aspect has been woven on it. When an aspect
component is bound to Fractal component, the former intercepts calls addressed
to the latter in order to change its behavior. Then FAC/Julius supports assembly
modification and behavior composition.

Table 1 sums up the kinds of adaptations supported by the studied approaches.
Looking at the different approaches, we can notice that none of them implements
the three kinds of adaptations we have identified. In the component approaches,
the emphasis is on the capacity to modify component assemblies. While in aspect
oriented approaches, the priority is to provide the ability to change the behavior
of objects and the set of functionalities that they are able to handle. We can also
point out the fact that adaptations are not implemented in the same way, even for
a given kind of adaptations. In the next section, we will also see that the platforms
do not handle adaptation errors in the same way.

Interface evolution Behavior composition | Assembly modification
JAC Functionality addition | Wrapper chaining
CF/ Functionality addition/ | Filter Superimposition
Compose* | withdraw
Noah Interaction rule merging
CCM/ Binding addition/withdraw
OpenCCM
Fractal/Julia| Binding addition/withdraw
Sofa/DCUP Component replacement
(implantation level)
OSGi Binding addition/withdraw
FAC/Julius Special bindings Binding addition/withdraw

Table 1: Kinds of adaptations supported by the studied approaches

190 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

2 ADAPTATION SAFETY

Erroneous adaptations

This section lists some errors occurring during runtime adaptations. This helps to
classify the safety properties we want to guarantee. We illustrate the reading with
an application for the management of the diary of a project team, diaries of each
team members and the diary of the project manager. Diary components implement
a same interface including add, remove and retrieve meeting functionalities.

Assembly inconsistencies

Problem statement: To communicate with each other, components are connected
using typed bindings. Communication is unidirectional: the sender’s side of the
binding is a required interface and the receiver’s side of the binding is a provided
interface. Then the operations of a required interface must conform to operations
of the provided interface it is bound to. Adamek et al. [2] has pointed out the
occurrence of errors related to unbound interfaces or wrong bindings. One problem
occurs when leaving some of a component’s required interfaces unbound for reuse
purpose (only part of the component’s functionality is reused). If a required interface
is unbound, the component should call no methods on it. If a component calls an
operation on a required interface that is not tied to a provided one (the sender is
not connected to a receiver), then the call cannot be achieved and an error occurs.
Another problem arises when a component calls an operation on a required interface
that is tied to a “wrong” provided one. In this case, the call cannot be handled (if the
receiver has no operation that conforms the called one) or it results in an unexpected
behavior (if the receiver cannot be used in the way the sender expects it).

FExample: Consider a diary component that is bound to a database and to a
printer to perform persistence and printing operations as shown in Figure 1. Sup-
pose that during an assembly modification adaptation, the database component is
removed and the print component is replaced by another one. In such a case, if
we call persistence operations from the diary, il will result in a unbound interface
error because the call cannot be handled. In the same way, if the component that
replaces the print component does not offer printing operations (or with different
parameters), there will be a wrong binding error.

add, remove, add, remove,
save, restore ——(3 (- —-=-== @ r’e@e
printFromTo, i PR oq To,
printDay, - (7 . p %
printMonth, ... p onth, ..
a) before database disconnection and printer replacement b) after database disconnection and printer replacement

Figure 1: Assembly inconsistency in the diary example

Assembly inconsistency handling in middleware platforms: Wrong bindings are
more or less handled in function of the platform. In the OpenCCM implementa-
tion [27], component replacement can be done as far as it respects connection type

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 191

o ‘P_/ SAFETY AS A SERVICE

(provided and required interfaces must have the same type). In Fractal/Julia [11],
component replacement is allowed only if the new component is a subtype of the
replaced one. In these platforms, type conformity is only syntactical. Then, nei-
ther OpenCCM, nor Fractal/Julia, check that the behavior of the new component
conforms the behavior of the one replaced. In contrast, SOFA/DCUP [34] type con-
formity is also done at a semantical level. When replacing a Sofa component, the
system checks that the new one can be used in the same manner as the one replaced
thanks to behavioral protocols. To prevent unbound interfaces errors, Fractal/Julia
forbids to keep mandatory interfaces unbound. Then only unbound optional inter-
faces may generate errors. OpenCCM does not manage unbound interfaces errors.
In OSGi, unbound interfaces errors cannot occur since an unbound component has
to wait until another component providing the required service appears.

Message-not-understood error

Problem statement: A method call is unknown when there is no applicable method
in the receiver. This kind of errors is detected statically by compilers using type
checking [12]. Dynamic operation calls such as permitted with Java reflect API or
CORBA dynamic invocation services [38] are not checked by compilers. In such a
case, dynamic method calls that are addressed to a wrong receiver trigger a message-
not-understood error [13]. This error is only detected when the call is received by
the receiver which can be too late to manage the error. A second problem related
to dynamic calls is how to manage the modifications of the set of functionalities
supported by a software entity. In this particular case of adaptation, new function-
alities supported by a software entity can appear or disappear making difficult to
locate wrong calls. If we consider that a type corresponds to the set of functional-
ities offered by a software entity, then we can compare the dynamic addition and
withdraw of functionality handling to a change of the type during its life cycle.

Example: A static call to the updateMeeting operation on a diary component,
with a String parameter while the diary waits a Date, is detected by the compiler
(Figure 2 lines 1 to 5). A dynamic call to the operation with the same parameter
using reflexivity is not detected by the compiler (line 7). At runtime, the reception
of the call by the diary will throw an exception (lines 8 and 9).

1 C:\>javac StaticCallDiary.java

2 StaticCallDiary.java:11: cannot resolve symbol

3 symbol : method updateMeeting (java.lang.String)?
4 location: class StaticCallDiary

5 d. updateMeeting("");
6
7
8
9

C:\>javac DynamicCallDiary. java

C:\>java DynamicCallDiary
java.lang.IllegalArgumentException: argument type mismatch

Figure 2: Message not understood error in the diary example

192 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

2 ADAPTATION SAFETY

Message-not-understood error handling in middleware platforms: In Noah [8],
software entities participating in an interaction rule are defined by type names but
no type checking is carried out. Hence, if a functionality required in an interaction
rule is missing, no warning is given until the functionality is called because such calls
are dynamically interpreted. The same holds for JAC [32] and Compose* [16]. JAC
and Compose™® also support the modification of the set of functionalities accepted by
a software entity. But these modifications are not handled at the type level because
types are static in JAC and Compose*. Each call is intercepted before its reception
by the receiver. The interceptor maintains a list of functionalities added at runtime
and the delegees that implement each of them. If the call is related to one of these
functionalities, the call is forwarded to the corresponding delegee otherwise the call
is forwarded to the original receiver. In such a case, a message-not-understood error
may still occur since the call can correspond to a functionality unknown to the
receiver nor to the delegee.

Adaptation composition conflicts

Problem statement: As stated by Hanneman [18], aspects composition, in partic-
ular when using same pointcuts (i.e. : aspects that will be woven in the same points
of an application), may lead to undesirable interactions. A composition conflict is a
situation where a combination of adaptations reduces or alters the functionality of
themselves or of the system or engenders contradictory or non deterministic execu-
tion. The conflicts may occur only in one specific weaving order. The conflicts also
tend to happen with aspects that engender side-effects on the adapted application.

Example: Suppose that two persons want to monitor the wrong accesses to the
team’s diary component by raising an exception. Both of them define an aspect
to be woven on the addMeeting and removeMeeting operations of the component.
Each aspect reads an environment variable that tells whether the user of the diary is
authentified or not. As the two persons don’t know that each other weaves a similar
aspect, they probably use a distinct exception type in their aspect definition. In such
a case, identical calls to addMeeting and removeMeeting operations of the team’s
diary component will throw two different exceptions after the weaving of the two
aspects. This may lead to conflicts as in most of runtime environments only one
exception can be thrown at one time.

Behavioral composition conflicts handling in middleware platforms: In Noah [8],
since the merging operation is commutative, applying a set of rules to a component
always results in equivalent behavior and does not depend on a particular order. In
JAC [32], FAC/Julius [33] and Compose* [16], the resulting behavior depends on
the composition order. SECRET (Semantic Reasoning Tool) can be used on top
of Compose™ to perform an impact analysis of each filter on resources (conditions,
global variables, message deadline and so on). Then SECRET focuses only on the
detection of errors related to the superimposition of a filter with an application
not on the composition conflicts between several filters. To prevent composition
conflicts between aspects, JAC proposes to specify use-defined policies that express

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 193

o ‘P_/ SAFETY AS A SERVICE

aspect dependencies and incompatibilities. Then it is powerful to detect local errors
between a few number of aspects that we have anticipated but is useless for indirect
errors with a great amount of aspects that have been woven at different times.

Synchronization

Problem statement: Synchronization problems come along with concurrent pro-
gramming [4] and can be detected using model-checking techniques [22]. Simulta-
neous calls on components that share a component can generate ambiguity in the
shared component behavior. In the situation where the shared component does not
support concurrent calls, a synchronization error occurs.

Example: Suppose that the diary of a project team notifies incoming events to
the diaries of each team member and that the team members’ diaries use a buffer to
display some information. Since we cannot make any hypothesis on the execution
order of the personal diaries notifications, the buffer may be used incorrectly.

addMeeting Ezr.zrder Non-de?ef:tr:inisﬁc point

Paul's diary © '."'
H q Buffer

Figure 3: Synchronization error in the diary example

Synchronization error handling in middleware platforms: Sofa [34] detects only
the particular synchronization situations where a deadlock occurs. The other ap-
proaches do not handle this error.

Divergence

Problem statement: Divergence is a liveness property of model checking that
occurs when computation/communication never stops [22]. Some loops are needed
to implement recursive behavior, other ones are due to multiple adaptations for
which the global network interaction has not been considered. The use of unbounded
pointcuts (wildcards for example) may also lead to circular dependencies between
classes [18].

FExample: Suppose that a team is composed for a new project. Each team mem-
ber has his/her own diary that he/she can parametrize dynamically for its own need.
Joe and Liz work on a same activity and need to communicate quickly. Liz and Paul
work on another common activity and Paul and Joe also share an activity. As Joe
is really busy, he decides to notify Liz each time he updates his diary so that they
can organize quick meetings when they are both free. As the team-work method
works well, Liz decides to do the same with Paul because she knows he works part
time, and Paul with Joe. In such a case, a divergence occurs on the addMeeting
functionality. The circular notifications between the three persons will never end.

194 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

2 ADAPTATION SAFETY

addMeeting addMeeting addMeeting

Figure 4: Divergence in the diary example

Divergence error handling in middleware platforms: Divergence errors occur in
each of the studied approaches except Sofa [34] in which the use of behavior protocols
makes it possible to detect quickly divergence.

Synthesis

To ensure adaptation safety, the studied approaches perform some checking. For
component platforms, in which assembly modifications are predominant and made
explicit, checking focuses on assembly consistency. For aspect-oriented frameworks
such as JAC, Noah and Compose®, in which composition of behavior is the ex-
plicit way to adapt applications, checking emphasizes on behavioral composition
coherence. We can notice that the weaknesses in terms of verification of component
platforms are the strengths of aspect oriented frameworks and vice versa. How-
ever, none of the studied approach except Sofa handles errors related to the global
interaction graph: divergence and synchronization.

Even if component platforms do not provide explicit constructs to compose be-
havior, modifying component assemblies also impacts the way the application be-
haves. And even if aspect-oriented frameworks do not provide explicit constructs to
modify the software entity interaction graph, modifying the behavior of these entity
often engender new interactions thus new implicit assemblies. Then, each platform
is concerned by almost all kind of adaptation errors.

There is no approach that makes all necessary checking. The checking offered
by one platform cannot be reused in other platforms as adaptation implementations
are too different. By comparing the platforms, we conclude that existing solutions
cannot be reused “as-is” everywhere to determine the safety of the three kinds
of adaptations (type evolution, behavioral composition, assembly modification). In
addition, most of the platforms detect errors only after the adaptation has occurred.
Then we loose a degree in the application safety as it is not always possible to revert
to previous application states.

Our goal is to handle the adaptation-related errors independently of the tech-
nological details of the platforms. We also want to check the adaptation safeness
a priori, that is just before the adaptation is performed in order to prevent errors
instead of having to recover them.

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 195

o #_/ SAFETY AS A SERVICE

3 ARCHITECTURE OF THE SAFETY SERVICE

The safety service that we developed, called Satin, can be queried by technological
platforms to determine whether a runtime adaptation is safe or not. The safety
service makes it possible to validate an adaptation of an application A according
to the operations offered by the components and to the previous adaptations of A.
The service prevents the execution of adaptations that would lead the application
to an unsafe state.

In this section, we present the architecture of the service. The architecture has
been designed as a platform-independent model that describes the core of the service.
The entry points to component and aspect platforms are modeled as plugins. The
service protocol formalizes the way the service can be used and how the service
communicates with the platforms.

Core of the service

Figure 5 depicts the core model of the service: adaptation patterns reify the
concept of adaptation and roles reify component typing, taking into account possible
evolution of types by adaptation. Adaptations affect the ports of a component,
which are abstractions of operations provided or required by the component.

+arget
AdaptationPattern Rele |_1 Port
createPattern(roles:sequence(GenericRole), AN
adaptations:sequence(ElementaryAdaptation)) +parameters +emitted Plorts
instantiatePattern{components:sequence{Component), Emit-
):Adaptationinstance 1..n|GenericRole 1..n |tedPort
+providedPorts

1.nl + tations Provi-
Elementary- +roles 1..n |dedPort
Adaptation Component
. 1..n |ConcreteRole
getType().String +participants|canPlayRole(r: +adaptationPorts
Role)boolean | _+instances | Adapta-
1..n| +adaptations 1.n 1.n 1..n|tionPort

Adaptationinstance

removeAdaptation() Template

containsDependencies(a:ElementaryAdaptation).boolean instantiate Template{name:String):Component

Figure 5: Core model overview

Adaptation patterns
An adaptation pattern describes the structural and behavioral modifications in-
volved in a dynamic adaptation. It consists of a set of elementary adaptations, which

196 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

3 ARCHITECTURE OF THE SAFETY SERVICE

can express: 1) addition, withdrawal or replacement of components within an as-
sembly, 2) addition and withdrawal of component ports, or 3) behavior modification
of component ports.

An adaptation pattern represents the unit of application and reuse of elementary
adaptations. For example, figure 6 depicts an adaptation pattern (written in an IST-
like style for easy reading) that contains an elementary adaptation modifying the
behavior associated with an addMeeting port in a diary application. It expresses
that any addition of a meeting to a synchronizing diary also involves an addition of
the meeting to the diary to be synchronized. If this is not possible because the time
slot is not free, a synchronization conflict is reported. Note that the _call expression
refers to a built-in delegation (like super in Java or proceed in Aspect] [19]) that
invokes the prior, non-adapted version of addMeeting.

adaptationPattern
Synchronization(SynchronizingDiary di, SynchronizedDiary d2) {
modifyPort dl.addMeeting(Meeting m)
-> if (d2.isFree(m)) then dil. call(m); d2.addMeeting(m)
else dil._call(m); d2.printError(‘‘Not synchronized’’)
endif

Figure 6: Synchronization adaptation pattern

Roles

An adaptation pattern is defined on a set of roles. An adaptation pattern role
specifies the ports that a component must provide or require to play this role in an
adaptation. For instance, in the previous example, the Synchronization adaptation
pattern expects two parameters with two different roles: The first parameter must
conform to the SynchronizingDiary role by providing at least a port that conforms
to addMeeting. The second parameter must conform to the SynchronizedDiary role
by providing at least ports that conform to addMeeting, isFree and printError.

Adaptation patten roles are complemented by component roles. A component
role describes the ports offered by the component and the ports required by the
component. Note that, unlike in conventional type systems, the role of a component
can evolve by adaptation. Each component role can evolve independently of the
roles of other components.

Safety properties

The third keystone of the model is the criteria of safe adaptations. We suppose
applications to be fault-free (each individual component are safe and the initial
assemblies of these components are safe too). If the application initial state is safe,
we guarantee that the application state remains safe after being adapted. For that,
we have identified a set of safety properties, which correspond to the criteria to be

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 197

o ‘P_/ SAFETY AS A SERVICE

satisfied in order to adapt safely components. Each safety property is guaranteed
by a set of OCL [39] constraints (operation preconditions) which must be true for
the adaptation to occur.

The “assembly inconsistencies” errors described in section 2 are handled by two
safety properties: 1) use context conservation prevents interchanging two soft-
ware entities whose roles are not substitutable according to the rules of the target
platform, and 2) binding consistency guarantees that for each operation required
by a component a conforming operation is effectively offered by another compo-
nent. The “message not understood” errors are handled by two safety properties:
1) guaranteed message consumption prevents calls to unknown operations, and
2) visibility guarantee prevents calls or adaptation of operations that are not
visible to the adaptation process. The “adaptation composition conflicts” and “syn-
chronization” errors are handled by the following safety property: behavioral de-
terminism identifies potentially unpredictable behaviors. The “divergence” errors
are handled by the following safety property: cycle detection identifies loops in
the operation call flow.

Note that the above list of safety criteria is full of terms that have very different
definitions in different platforms (substitutability, conformance, visibility, ...). Thus
the above criteria have different interpretations depending on the target platform.
For this reason, the core of the service that is platform-independent need to rely on
plugins that help to take into account platform specificities and to locate them.

Plugins

The main advantage in the definition of Satin is to capture the overall interactions
that a safety service for run-time adaptation must support, in spite of the variation
of the central notions of “typing” and “adaptation” in the different platforms.

Type checking plugin

Before accepting the application of an adaptation pattern to a set of components,
the binding consistency safety property has to check whether each component con-
forms to the role it has to play in the adaptation. This check must take into account
for various definitions of “conformance” adopted in different platforms. According
to the classification of Beugnard et al. [7] conformance can be based on syntactic,
behavioral, synchronization or even quality of service criteria. Moreover, for each
“conformance model”, a platform can choose a particular concretization. For ex-
ample, syntactic conformance is interpreted differently according to the platforms:
no subtyping, inheritance conformance or inclusion polymorphism (with different
variance rules). Behavioral conformance can be based on pre and postconditions.
The challenge for a general safety service is that there is no universal model for con-
formance and platforms typically implement only one of many conformance models
cited above.

198 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

3 ARCHITECTURE OF THE SAFETY SERVICE

The isSubRoleOf operation of the Role class of the core model refer to the confor-
mance relationship of the implementation platform through the conforms operation
of the type checking plugin, which is responsible for checking that types are com-
patible according to the rules laid down at concretization time. Depending on the
concretization, any of the conformance definitions discussed above could be used.

Adaptation introspection plugin

The types of elementary adaptations differ from a platform to another. The
ways in which the elementary adaptations are expressed and implemented also vary
according to the platforms. These variations are captured in the adaptation intro-
spection plugin. Thus, adaptation patterns handle adaptations without knowing
their representation.

Applying an adaptation pattern to a set of components can be done only if
the elementary adaptations to be applied to components are compatibles (Elemen-
taryAdaptation.isCompatible With operation of the adaptation introspection plugin)
with the adaptations already applied to those components in the same pointcut
(PointCut.match operation of the adaptation introspection plugin).

Data extraction plugin

To populate the Satin model with information about the application to be mon-
itored, some data need to be extracted. The first time a component is involved in
an adaptation, a Satin component with its name is created. Then, the initial roles
of the component need to be deduced from application types. The ways in which
the application can be introspected depends of the platform and language. These
variations are captured in the data extraction plugin.

Section 4 explains how to configure the plugins for a given platform.

Service protocol

Figure 7 presents the overall service architecture with the diary example and FAC/
Julius [33] as the service client. Message exchanges between the service and the
platform are bi-directional. It means not only that the platform queries the server
to check an adaptation, but also that the server interact with the platform. The entry
points for message exchanges are formalized by four interfaces. The Server interface
allows the platform to use the service without knowing its internal mechanisms
thoroughly. Each operation of the Server interface is associated with a step of the
validation process of adaptations described above ((un)registration of components,
creation/destruction of adaptation patterns, (un)application of adaptation patterns,
the replacement components). The Extraction, Contract and Adaptation interfaces
correspond to the service plugins and are used by the server to communicate with the
platform. The Eztraction interface is used by the server to retrieve information on
the application in order to create roles from the component types of the application.

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 199

o ‘P_/ SAFETY AS A SERVICE

The Contract interface is used by the server in order to determine if two roles
conform according to the typing rules of the platform. The Adaptation interface is
used by the server for adaptation introspection.

. . . r Safety service
Partial representation of the diary application

teamDiazg. - - - - {synchronization) (personalDiary) 5 E[2
Server interface j

‘ Service plugin interfaces

ASPQC‘ICOMPOVIGYII personal ‘Contract ‘Adaptatian ‘Extraction
server interface hronizati
synchronization Di | > Client
4 aspect component lary I en
. P p component
1]
. ' T . T
Interception + S%/nchramzanon Diar
controller M client interface server interface

Diary application

FAC/Julius platform

Figure 7: Safety service architecture : component adaptation and service query

The safety service can be used according to the following adaptation process.

Step 1. Components can be registered to the server. This step is important to
have an partial representation of the application to be adapted. However, the step
can be delayed to the first time a component is being adapted (see step 3). Hence,
only the components of the application that are adapted need to be represented in
the service state. At this step, the server queries the platform to retrieve data on
the components through the data extraction plugin.

Step 2. The description of the adaptation to be performed is registered to the
safety server. The modifications involved by the adaptation description are checked
in order to assert if the safety properties are preserved. At this step, the server
queries the platform to get adaptation-relative information through the adaptation
introspection plugin.

Step 3. The client asks if a given list of components can be adapted using a
description of adaptation registered previously. Components to be adapted have to
be registered to the server if not already done. At this step, the server queries the
platform in order to check component types conformity according to the platform
typing rules through the type checking plugin.

Step 4. As some adaptations may not be wished anymore in the future, the
modifications applied on the components may have to be undone. At this step, the
server checks if the modifications involved by an adaptation can be undone regarding
previously adapted components.

Steps 3 and 4 modify the state of the service to memorize the adaptation of
components. Then, the platform and the service must be synchronized so that the
state of the application from the point of view of the adaptations is equivalent in
the service and in the platform.

200 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

4 SERVICE IMPLEMENTATION AND PLATFORM INTEGRATION

4 SERVICE IMPLEMENTATION AND PLATFORM INTEGRATION

A prototype of the service has been realized and has been tested with Noah [§]
and the Julia implementation framework of the Fractal model [11]. As we have
chosen two targets that support different adaptation capabilities (see section 2), the
flexibility of the service and its safety properties could be evaluated.

This section describes the implementation choices of the service and how to
configure the service prototype for Noah and Julia.

Concretization of the service

To concretize the service, we must concretize the core model and the platform /service
exchanges. The core model structure is implemented as Java classes. The OCL con-
straints are injected in the Java code using the Dresden-OCL toolkit [14]. Message
exchange to use the service are described by an IDL Corba that defines the Server,
Extraction, Contract and Adaptation interfaces. Note that the adaptation process
described in section 3 corresponds exactly to the application protocol described by
the Server interface.

interface Server {
void registerComponent(in string componentName, in sequence<string> interfaceNames,
in sequence<string> implantationClassName)
raises (AlreadyDefinedException, SafetyPropertyViolationException);

void unregisterComponent(in string componentName)
raises (LifeCycleException, NotDefinedException);

string createPattern(in string adaptationDescription)
raises (AlreadyDefinedException, SafetyPropertyViolationException);

void removeAdaptationPattern(in string patternName)
raises (LifeCycleException, NotDefinedException);

string instantiatePattern(in string patternName, in sequence<string> participantNames)
raises (AlreadyDefinedException, NotDefinedException, SafetyPropertyViolationException);

void removeAdaptationInstance(in string instanceName)
raises (NotDefinedException, SafetyPropertyViolationException);

void replaceComponent(in string oldComponent, in string newComponent)
raises (AlreadyDefinedException, SafetyPropertyViolationException);
IE

interface Extraction {
Classifier System.getClassifier(in string name) raises (ReflectionException);
sequence<Feature> getFeatures(in Classifier c) raises (ReflectionException);
string getName(in Feature f) raises (ReflectionException);
sequence<Classifier> getArguments(in Feature f) raises (ReflectionException);
Classifier getReturn(in Feature f) raises (ReflectionException);

}s

interface Contract {
boolean conforms(in Classifier cl1, in Classifier c2);

s

interface Adaptation {

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 201

o ‘P_/ SAFETY AS A SERVICE

boolean match(in String s1, in String s2);
boolean isCompatibleWith(in ElementaryAdaptation eal, in ElementaryAdaptation ea2);

}s

Configuration of the plugins

To configure the service so that it can be used with a specific platform, it is nec-
essary to implement the Fxtraction, Contract and Adaptation interfaces. Tables 2,
3 and 4 give correspondences for each plugin operations for Noah and Julia. The
service calls the different operations of the IDL CORBA interfaces on implementa-
tion objects. The objects used depend on a property file that specifies if the service
should use the interface implementations of Noah or those of Julia for example.

As Julia and Noah are Java platforms, the Java reflect API is used to introspect
the hosted application in both cases.

Extraction plugin operations Julia & Noah
System.getClassifier(String name) java.lang.Class.forName(String)
Classifier.getFeatures() java.lang.Class.getDeclaredMethods()
Feature.getName() java.lang.reflect.Method.getName()
Feature.get Arguments() java.lang.reflect.Method.getParameterTypes()
Feature.getReturn() java.lang.reflect. Method.getReturnType()

Table 2: Configuration of the data extraction plugin for Julia and Noah

The two platforms are based on syntactically conformance. Although in the case
of Julia, we have to check that the component belongs to a hierarchy and in Noah we
only use Java class substituability principle. With these two examples, we see that
the implementations of type checking differ for the two platforms. The implementa-
tion of the Contract interface can be delegated to the org.objectweb. fractal. api. Type
class for Julia and to Java.lang.Class class for Noah

Contract plugin operations Julia Noah
conforms(Classifier, Classifier) | Type.isFcSubTypeOf(Type) | Class.isAssignableFrom(Class)

Table 3: Configuration of the type checking plugin for Julia and Noah

The two platforms are based on different types of adaptations: Noah is close to
an aspect oriented platform and Julia is a component platform. In Noah, elementary
adaptations are described explicitly by interactions rules and consist in modifying
the behavior of functionalities. These rules are reified and can be introspected to
find the needed information on compatibility. In Julia, elementary adaptations are
programmed using an API that enables modifying component assemblies (bindFc,
unBindFe¢, addFcSubComponent, removeFcSubComponent). Content controllers
check the consistancy of the components’ bindings and can be queried to access this
information. Here again, we see that the implementations of adaptation introspec-
tion differ for the two platforms.

202 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

CONCLUSION

Adaptation plugin operations Julia Noah

match(String, String) ContentController.checkFC | String.substring(String)

isCompatibleWith(in ElementaryAdapta- | BindingController.lookupFc()| Rule.merge(Rule)
tion eal, in ElementaryAdaptation ea2)

Table 4: Configuration of the adaptation introspection plugin for Julia and Noah

5 CONCLUSION

With the design of the safety service for software adaptations, we have come to
appreciate the benefits of MDE [37]. We have been able to formalize the adaptation
checking at the model using OCL [39]. The minimization of software defects is
an important issue in application areas such as safety, security, cost and legally,
where the residual defect ratio is known to be particularly high. Hence, it would
make no sense to consider the problematic of adaptation safety without a formal
foundation. The abstraction level of the service design has allowed us to verify the
service correctness [30].

The use of the service implies for each platform to give plug-ins implementation.
This plug-in solution has the advantage to locate target code for the concretization
step of the MDE process. The core of the service can be extended in adding new
OCL constraints and new plug-ins at the service level. These extensions would
permit to manage new kind of adaptations and new safety properties. We have
experimented this aspect for mobile platforms [29]. For each new adaptation such
as communication mode switching. Extending the service means to identify new
safety properties and their OCL formalization, to validate them and to express new
dependencies towards platform related information through new plug-ins.

REFERENCES

[1] J. Adamek and F. Plasil. Behavior protocols capturing errors and updates. In
Proceedings of USE, University of Warsaw, Poland, 2003.

2] Jirf Adamek and Frantisek Plasil. Partial bindings of components - any harm?
In 11th Asia-Pacific Software Engineering Conference (APSEC 2004), pages
632—639. IEEE Computer Society, 2004.

(3] AOP Alliance. APT AOP Alliance. http://aopalliance.sourceforge.net/, 2005.

[4] M. Ben-Ari. Principles of concurrent and distributed programming. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[5] L. Berger. Mise en oeuvre des interactions en environnements distribués, com-
pilés et fortement typés: le modle MICADO. These de doctorat, Université de
Nice-Sophia Antipolis, 2001.

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 203

o ‘P_/ SAFETY AS A SERVICE

(6]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[19]

[20]

L. Bergmans and M. Aksit. Composing multiple concerns using composition
filters. Technical report, TRESE project, University of Twente, Centre for
Telematics and Information Technology, Enschede, The Netherlands, 2001.

A. Beugnard, J.-M., N. Plouzeau, and D. Watkins. Making components contract
aware. In IEEFE Software, pages 38-45, 1999.

M. Blay-Fornarino, A. Charfi, D. Emsellem, A.-M. Pinna-Dery, and M. Riveill.
Software interaction. Journal of Object Technology, 10(10), 2004.

R. S. Boyer and J. S. Moore. Proof-checking: Theorem-proving and program
verification. In W. W. Bledsoe and D. W. Loveland, editors, Contemporary
Mathematics: Automated Theorem Proving - After 25 Years, pages 119-132.
American Mathematical Society, Providence, RI, 1984.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257-1284, 2006.

E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal component model.
http://fractal.objectweb.org/, 2004.

L. Cardelli. Type systems. ACM Computing Surveys, pages 263-264, 1996.
P. Costanza. Dynamic vs. static typing - a pattern-based analysis.

Dresden university. OCL2 toolkit. Internet: http://dresden-
ocl.sourceforge.net/.

A. Flissi and P. Merle. Une démarche dirigée par les modeles pour construire les

machines de déploiement des intergiciels a composants. Conférence Langages
et Modeéles a Objets (LMO 2005), 11, 2005.

C. Francisco N. Garcia. Compose*: A runtime for the .Net platform. Mas-
ter’s thesis, Dept. of Computer Science, University of Twente, Enschede, the
Netherlands, August 2003.

The Object Managemant Group. CORBA Component Model Specification, 4.0
edition. OMG Document formal/2006-04-01, 2006.

J. Hanneman, R. Chitchyan, and A. Rashid. Analysis of aspect-oriented soft-
ware (aaos) workshop report. Technical report, University of California, Darm-
stadt, Germany, 2003.

G. Kiczales and J. Lamping. Aspectj home page. http://eclipse.org/aspect;j,
2001.

P. Koopmans. On the design and implementation of the sina/st language.
Master’s thesis, Dept. of Computer Science, University of Twente, August 1995.

204

JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

5 CONCLUSION

[21]

22]

[25]

[26]
[27]

28]

[29]

[30]

[31]

[32]

[33]

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3(2):125-143, 1977.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the 12th ACM Symp. Prin-
ciples of Programming Languages (POPL’85), pages 97-107, New Orleans, LA,
USA, 1985.

R. Marvie, P. Merle, J.-M. Geib, and S. Leblanc. Torba: Trading proxies for
corba. In Proceedings of the Sixzth USENIX Conference on Object-Oriented
Technologies and Systems (COOTS 2001), 2001.

N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. Software Engineering, 26(1):70-93,
1997.

Microsoft. Microsoft .NET platform. http://www.microsoft.com/net/, Febru-
ary 2001.

Y. V. Natis. Service-oriented architecture scenario. Gartner, Inc, 2003.
Objectweb Consortium. Open CCM. http://opencem.objectweb.org/.

Objectweb Consortium. JOnAS : Java (TM) Open Application Server.
http://jonas.objectweb.org/, 2005.

A. Occello and A.-M. Pinna-Déry. Stureté de fonctionnement d’applications
nomades construites par assemblage de composants. In 2nd French-speaking
conference on Mobility and Ubiquity Computing, pages 73-80. ACM Press, 2005.

A. Occello, A.-M. Pinna-Déry, and M. Riveill. Validation and Verification of an
UML/OCL Model with USE and B: Case Study and Lessons Learnt. In Fifth
International Workshop on Model Driven Engineering, Verification, and Vali-

dation: Integrating Verification and Validation in MDE, Lillechammer, Norway,
2008. IEEE Digital Library.

Open Services Gateway initiative. ~ OSGi service platform (3d release).
http://www.osgi.org/, 2003.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible and
efficient solution for aspect-oriented programming in java. In A. Yonezawa and
S. Matsuoka, editors, Reflection, volume 2192 of LNCS, pages 1-24. Springer-
Verlag, 2001.

N. Pessemier, L. Seinturier, and L. Duchien. Components, adl and aop: Towards
a common approach. In In Workshop ECOOP Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE04), 2004.

VOL 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 205

o ‘P_/ SAFETY AS A SERVICE

[34] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for compo-
nent trading and dynamic updating. In Proceedings of ICCDS’98, Annapolis,
Maryland, USA, 1998.

[35] E. Roman, S. W. Ambler, and T. Jewell. Mastering Enterprise Java Beans II
and the Java 2 Platform. John-Wiley & Sons Inc., enterprise edition, 2002.

[36] R. Rouvoy and P. Merle. Towards a model driven approach to build component-
based adaptable middleware. In Proceedings of the 3rd International Middle-
ware Workshop on Reflective and Adaptive Middleware (RAM’04), Toronto,
Ontario, Canada, 2004.

[37] D. C. Schmidt. Model-Driven Engineering. I[EEE Computer, 39(2):25-32, 2006.

[38] The Object Managemant Group. Common Object Request Broker Architec-
ture: Core specification. OMG TC Document formal/04-03-01, 2004.

[39] J. Warmer and A. Kleppe. OCL: The constraint language of the UML. Journal
of Object-Oriented Programming, 1999.

[40] W. Witthawaskul and R. Johnson. Specifying persistence in platform indepen-
dent models. In Proceedings of the 2nd Workshop in Software Model Engineering
at the Sizth International Conference on the Unified Modeling Language, UML
2003, San Francisco, California, USA, 2003.

ABOUT THE AUTHORS

Audrey Occello is a lecturer and research assistant in Computer Science at the
Engineering School of Technology of the University of Nice, France. She can be
reached at occello@polytech.unice.fr. See also http://www.polytech.unice.fr/
~occello/.

Anne-Marie Dery-Pinna is an Assistant Professor in Computer Science at the En-
gineering School of Technology of the University of Nice, France. She can be reached
at pinna@polytech.unice.fr. See also http://www.polytech.unice.fr/~pinna/.

Michel Riveill is a Professor in Computer Science at the Engineering School of
Technology of the University of Nice, France. He can be reached at riveill@polytech.unice.fr.
See also http://www.polytech.unice.fr/~riveill/.

206 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 2

mailto:occello@polytech.unice.fr
http://www.polytech.unice.fr/~occello/
http://www.polytech.unice.fr/~occello/
mailto:pinna@polytech.unice.fr
http://www.polytech.unice.fr/~pinna/
mailto:riveill@polytech.unice.fr
http://www.polytech.unice.fr/~riveill/

